Simple Linear Regression

A first order (straight line) probabilistic model

$$
y=\beta_{0}+\beta x+\varepsilon,
$$

where $y=$ dependent variable, $x=$ independent variable, $E(y)=\beta_{0}+\beta_{1} x=$ deterministic component, $\varepsilon=$ random error component, $\beta_{0}=y$-intercept of the line, $\beta_{1}=$ slope of the line.

The least-square approach

Sum of Squared Errors (SSE) can be found as

$$
S S E=\sum\left(y_{i}-\widehat{y}_{i}\right)^{2}=\sum\left(y_{i}-\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i}\right)\right)^{2},
$$

where $\widehat{y}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x$ is called the least squares lines.

Formulas for the least squares Estimates

Slope: $\widehat{\beta}_{1}=\frac{S S_{x y}}{S S_{x x}}$;
y - intercept: $\widehat{\beta}_{0}=\bar{y}-\widehat{\beta}_{1} \bar{x}$, where
$S S_{x y}=\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\sum x_{i} y_{i}-\frac{\sum x_{i} \sum y_{i}}{n}$,
$S S_{x x}=\sum\left(x_{i}-\bar{x}\right)^{2}=\sum x_{i}^{2}-\frac{\left(\sum x_{i}\right)^{2}}{n}$,
$n=$ Sample size.

Estimation of σ^{2} for a straight-line model

$$
s^{2}=\frac{S S E}{n-2},
$$

where $S S E=\sum\left(y_{i}-\widehat{y}_{i}\right)^{2}=S S_{y y}-\widehat{\beta}_{1} S S_{x y}$ and $S S_{y y}=\sum\left(y_{i}-\bar{y}_{i}\right)^{2}=\sum y_{i}^{2}-\frac{\left(\sum y_{i}\right)^{2}}{n}$.
Moreover,

$$
s=\sqrt{s^{2}}=\sqrt{\frac{S S E}{n-2}} .
$$

Making inferences about the slope β_{1}

One-tailed test
$H_{0}: \beta_{1}=0$
$H_{a}: \beta_{1}<0\left(\right.$ or $\left.H_{a}: \beta_{1}>0\right)$
Test statistic: $t=\frac{\widehat{\beta}_{1}}{s_{\widehat{\beta}_{1}}}=\frac{\widehat{\beta}_{1}}{s / \sqrt{S S_{x x}}}$
Rejection region: $t<-t_{\alpha}$ (or $t>t_{\alpha}$)

$$
|t|>t_{\alpha / 2}
$$

where t_{α} and $t_{\alpha / 2}$ are based on $(n-2)$ degrees of freedom.

The coefficient of Correlation

$$
r=\frac{S S_{x y}}{\sqrt{S S_{x x} S S_{y y}}}
$$

The coefficient of Determination

$$
r^{2}=\frac{S S_{y y}-S S E}{S S_{y y}}=1-\frac{S S E}{S S_{y y}}
$$

Confidence Interval for the mean Value of y at $x=x_{p}$

$$
\widehat{y} \pm t_{\alpha / 2} \cdot s \cdot \sqrt{\frac{1}{n}+\frac{\left(x_{p}-\bar{x}\right)^{2}}{S S_{x x}}}
$$

where $t_{\alpha / 2}$ is based on $(n-2)$ degrees of freedom.

Prediction Interval for an Individual New Value of y at $x=x_{p}$

$$
\widehat{y} \pm t_{\alpha / 2} \cdot s \cdot \sqrt{1+\frac{1}{n}+\frac{\left(x_{p}-\bar{x}\right)^{2}}{S S_{x x}}},
$$

where $t_{\alpha / 2}$ is based on $(n-2)$ degrees of freedom.

