Properties of the Multinomial Experiment

1. The experiment consists of n identical trials.
2. There are k possible outcomes to each trial. These outcomes are called classes, categories, or cells.
3. The probabilities of the k outcomes, denoted by $p_{1}, p_{2}, \ldots, p_{k}$, remain the same from trial to trial, where $p_{1}+p_{2}+\ldots+p_{k}=1$.
4. The trials are independent.
5. The random variables of interest are the cell counts, $n_{1}, n_{2}, \ldots, n_{k}$, of the number of observations that fall in each of the k classes.

A Test of a Hypothesis about Multinomial Probabilities: One-Way Table

$$
H_{0}: p_{1}=p_{1,0}, p_{2}=p_{2,0}, \ldots, p_{k}=p_{k, 0}
$$

where $p_{1,0}, p_{2,0}, \ldots, p_{k, 0}$ represent the hypothesized values of the multinomial probabilities
H_{a} : At least one of the multinomial probabilities does not equal its hypothesized value
Test statistic: $\chi^{2}=\sum \frac{\left[n_{i}-E\left(n_{i}\right)\right]^{2}}{E\left(n_{i}\right)}$
where $E\left(n_{i}\right)=n p_{i, 0}$ is the expected cell count, that is, the expected number of outcomes of type i assuming that H_{0} is true. The total sample size is n.

Rejection region: $\chi^{2}>\chi_{\alpha}^{2}$,
where χ_{α}^{2} has $(k-1) d f$.

Conditions Required for a Valid χ^{2} Test: One-Way Table

1. A multinomial experiment has been conducted. This is generally satisfied by taking a random sample from the population of interest.
2. The sample size n is large. This is satisfied if for every cell, the expected cell count $E\left(n_{i}\right)$ will be equal to 5 or more.

Finding Expected Cell Counts for a Two-Way Contingency Table

The estimate of the expected number of observations falling into the cell in row i and column j is given by

$$
E_{i j}=\frac{R_{i} C_{j}}{n}
$$

where $R_{i}=$ total for row $i, C_{j}=$ total for column j, and $n=$ sample size.

General Form of a Contingency Table Analysis: A χ^{2}-Test for Independence

H_{0} : The two classifications are independent
H_{a} : The two classifications are dependent
Test statistic: $\chi^{2}=\sum \frac{\left[n_{i j}-E_{i j}\right]^{2}}{E_{i j}}$,
where $E_{i j}=\frac{R_{i} C_{j}}{n}$.
Rejection region: $\chi^{2}>\chi_{\alpha}^{2}$,
where χ_{α}^{2} has $(r-1)(c-1) \mathrm{df}$.

Conditions Required for a Valid χ^{2}-Test: Contingency Table

1. The n observed counts are a random sample from the population of interest. We may then consider this to be a multinomial experiment with $r \times c$ possible outcomes.
2. The sample size, n, will be large enough so that, for every cell, the expected count, $E_{i j}$, will be equal to 5 or more.
