Properties of the Multinomial Experiment

1. The experiment consists of n identical trials.

2. There are k possible outcomes to each trial. These outcomes are called *classes, categories*, or *cells*.

3. The probabilities of the k outcomes, denoted by p_1 , p_2 , ..., p_k , remain the same from trial to trial, where $p_1 + p_2 + ... + p_k = 1$.

4. The trials are independent.

5. The random variables of interest are the *cell counts*, n_1 , n_2 , ..., n_k , of the number of observations that fall in each of the k classes.

A Test of a Hypothesis about Multinomial Probabilities: One-Way Table

 $H_0: p_1 = p_{1,0}, p_2 = p_{2,0}, ..., p_k = p_{k,0}$

where $p_{1,0}, p_{2,0}, ..., p_{k,0}$ represent the hypothesized values of the multinomial probabilities

 H_a : At least one of the multinomial probabilities does not equal its hypothesized value

Test statistic: $\chi^2 = \sum \frac{[n_i - E(n_i)]^2}{E(n_i)}$

where $E(n_i) = np_{i,0}$ is the *expected cell count*, that is, the expected number of outcomes of type *i* assuming that H_0 is true. The total sample size is *n*.

Rejection region: $\chi^2 > \chi^2_{\alpha}$,

where χ^2_{α} has (k-1) df.

Conditions Required for a Valid χ^2 Test: One–Way Table

1. A multinomial experiment has been conducted. This is generally satisfied by taking a random sample from the population of interest.

2. The sample size n is large. This is satisfied if for every cell, the expected cell count $E(n_i)$ will be equal to 5 or more.

Finding Expected Cell Counts for a Two-Way Contingency Table

The estimate of the expected number of observations falling into the cell in row i and column j is given by

$$E_{ij} = \frac{R_i C_j}{n}$$

where $R_i = \text{ total for row } i$, $C_j = \text{ total for column } j$, and n = sample size.

General Form of a Contingency Table Analysis: A χ^2 -Test for Independence

 H_0 : The two classifications are independent

 H_a : The two classifications are dependent

Test statistic: $\chi^2 = \sum \frac{[n_{ij} - E_{ij}]^2}{E_{ij}}$, where $E_{ij} = \frac{R_i C_j}{n}$.

Rejection region: $\chi^2 > \chi^2_{lpha}$,

where χ^2_{α} has (r-1)(c-1) df.

Conditions Required for a Valid χ^2 -Test: Contingency Table

1. The *n* observed counts are a random sample from the population of interest. We may then consider this to be a multinomial experiment with $r \times c$ possible outcomes.

2. The sample size, n, will be large enough so that, for every cell, the expected count, E_{ij} , will be equal to 5 or more.