Equation of tangent line

We know that if a straight line passes through the point $M_{1}\left(x_{1} ; y_{1}\right)$ and has the slope k, then its equation is given by the formula:

$$
y-y_{1}=k\left(x-x_{1}\right) .
$$

Moreover, the slope of a line tangent to the graph of $y=f(x)$ at the point $M_{1}\left(x_{1} ; y_{1}\right)$ equals to the derivative of this function at this point. Thus, $k=f^{\prime}\left(x_{1}\right)$. Therefore, the equation of this tangent line is given by the formula:

$$
y-y_{1}=f^{\prime}\left(x_{1}\right)\left(x-x_{1}\right)
$$

Example 1 Find the equation of the line tangent to the graph of $f(x)=-(x+3)^{2}-5$ at the point $x_{1}=-2$.

Solution 1 Find $y_{1}: \quad y_{1}=f(-2)=-(-2+3)^{2}-5=-6$.
Find $f^{\prime}(x)$ and the value $f^{\prime}(-2)$:

$$
\begin{gathered}
f^{\prime}(x)=-2(x+3) \\
f^{\prime}(-2)=-2(-2+3)=-2
\end{gathered}
$$

Find the equation of the tangent line:

$$
y-(-6)=-2(x-(-2)) \quad \Rightarrow \quad y=-2 x-10
$$

Figure 1

L'Hôpital's rules

The first L'Hôpital rule

Suppose the functions f and g are differentiable on the interval $(a ; b)$ and $g^{\prime}(x) \neq 0$ there. Let $a<c<b$. Suppose also that

1) $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow a} g(x)=0$,
2) $\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$, where L is finite or $+\infty$ or ∞.

Then $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=L$.

The second L'Hôpital rule

Suppose the functions f and g are differentiable on the interval $(a ; b)$ and $g^{\prime}(x) \neq 0$ there. Let $a<c<b$. Suppose also that

1) $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow a} g(x)= \pm \infty$,
2) $\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$, where L is finite or $+\infty$ or ∞.

Then $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=L$.

Example 2 Find the limit by L'Hôpital's rule $\lim _{x \rightarrow 1} \frac{\ln x}{x^{2}-1}$.
Solution 2 It is obvious that $(\ln x) \rightarrow 0$ and $\left(x^{2}-1\right) \rightarrow 0$ when $x \rightarrow 1$. Thus, by L'Hôpital's rule we have

$$
\lim _{x \rightarrow 1} \frac{\ln x}{x^{2}-1}=\lim _{x \rightarrow 1} \frac{(\ln x)^{\prime}}{\left(x^{2}-1\right)^{\prime}}=\lim _{x \rightarrow 1} \frac{\frac{1}{x}}{2 x}=\frac{\frac{1}{1}}{2 \cdot 1}=\frac{1}{2}
$$

Applications

In business and economics, the rates of change are called not derivatives but marginals.
So we can define marginal cost, marginal revenue and marginal profit.
Example 3 The total cost (in dollars) of producing x units is given by

$$
C(x)=0.01 x^{3}-0.2 x^{2}+10 x+2000
$$

1. Find the marginal cost function. 2. Find its value at a production level of 10 units and interpret the result.

Solution 3 1. $C^{\prime}(x)=0.03 x^{2}-0.4 x+10$.
2. $C^{\prime}(10)=3-4+10=\$ 9$.

It means that if 10 units have been produced, then cost of producing the 11th unit is approximately \$9. Let us check.

Total cost of producing 11 units is
$C(11)=0.01 \cdot 11^{3}-0.2 \cdot 11^{2}+10 \cdot 11+2000=13.31-24.2+110+2000=\$ 2099.11$

Total cost of producing 10 units is

$$
C(10)=0.01 \cdot 10^{3}-0.2 \cdot 10^{2}+10 \cdot 10+2000=10-20+100+2000=\$ 2090 .
$$

Exact cost of producing the 11th unit is

$$
C(11)-C(10)=2099.11-2090=\$ 9.11
$$

Asymptotes

An asymptote is a line such that the graph of a function approaches very close. Asymptotes are of three types: vertical, horizontal and oblique.

Definition 1 The graph of $f(x)$ has a vertical asymptote $x=a$ if either

$$
\lim _{x \rightarrow a-} f(x)= \pm \infty
$$

or

$$
\lim _{x \rightarrow a+} f(x)= \pm \infty
$$

or both.

How can we find vertical asymptotes? The domain will reveal vertical asymptotes.

Definition 2 The graph of $f(x)$ has a horizontal asymptote $y=b$ if either

$$
\lim _{x \rightarrow-\infty} f(x)=b
$$

or

$$
\lim _{x \rightarrow+\infty} f(x)=b
$$

or both.

Definition 3 The graph of $f(x)$ has an oblique asymptote $y=k x+b$ if either

$$
\lim _{x \rightarrow-\infty}(f(x)-(k x+b))=0
$$

or

$$
\lim _{x \rightarrow+\infty}(f(x)-(k x+b))=0
$$

or both.

Remark 1 It is obvious that a horizontal asymptote is a partial case of an oblique asymptote when $k=0$. Therefore, the oblique asymptotes will only be found when there are no horizontal asymptotes.

How can we find oblique asymptotes? Let

$$
\lim _{x \rightarrow+\infty}(f(x)-(k x+b))=0 .
$$

It means that

$$
f(x)-(k x+b)=\alpha, \text { where } \alpha \rightarrow 0 \text { when } x \rightarrow+\infty .
$$

Then

$$
\begin{gathered}
f(x)=k x+b+\alpha \\
\frac{f(x)}{x}=k+\frac{b}{x}+\frac{\alpha}{x} \\
\lim _{x \rightarrow+\infty} \frac{f(x)}{x}=\lim _{x \rightarrow+\infty}\left(k+\frac{b}{x}+\frac{\alpha}{x}\right) .
\end{gathered}
$$

Therefore,

$$
k=\lim _{x \rightarrow+\infty} \frac{f(x)}{x}
$$

and respectively,

$$
b=\lim _{x \rightarrow+\infty}(f(x)-k x) .
$$

Similarly,

$$
k=\lim _{x \rightarrow-\infty} \frac{f(x)}{x}
$$

and respectively,

$$
b=\lim _{x \rightarrow-\infty}(f(x)-k x) .
$$

Example 4 Find the asymptotes for $f(x)=\frac{x^{2}+1}{4 x-1}$.

Solution 4 1. The vertical asymptotes are found from the zeroes of the denominator:

$$
\begin{gathered}
4 x-1=0 \\
x=\frac{1}{4} .
\end{gathered}
$$

Indeed,

$$
\lim _{x \rightarrow \frac{1}{4}-} \frac{x^{2}+1}{4 x-1}=-\infty
$$

and

$$
\lim _{x \rightarrow \frac{1}{4}+} \frac{x^{2}+1}{4 x-1}=+\infty
$$

Therefore, $x=\frac{1}{4}$ is a vertical asymptote.
2. By the rule for limits at infinity for rational functions, we have

$$
\lim _{x \rightarrow+\infty} \frac{x^{2}+1}{4 x-1}=+\infty
$$

and

$$
\lim _{x \rightarrow-\infty} \frac{x^{2}+1}{4 x-1}=-\infty
$$

Therefore, the function does not have horizontal asymptotes to the both directions.
3. By the rule for limits at infinity for rational functions, we have

$$
k=\lim _{x \rightarrow \pm \infty} \frac{f(x)}{x}=\lim _{x \rightarrow \pm \infty} \frac{\frac{x^{2}+1}{4 x-1}}{x}=\lim _{x \rightarrow \pm \infty} \frac{x^{2}+1}{4 x^{2}-x}=\frac{1}{4}
$$

and

$$
\begin{gathered}
b=\lim _{x \rightarrow \pm \infty}(f(x)-k x)=\lim _{x \rightarrow \pm \infty}\left(\frac{x^{2}+1}{4 x-1}-\frac{1}{4} \cdot x\right)=\lim _{x \rightarrow \pm \infty} \frac{4 x^{2}+4-4 x^{2}+x}{(4 x-1) 4} \\
=\lim _{x \rightarrow \pm \infty} \frac{4+x}{16 x-4}=\frac{1}{16}
\end{gathered}
$$

Therefore, $y=\frac{1}{4} x+\frac{1}{16}$ is an oblique asymptote to the both directions.

Figure 2

