Derivatives

Let us consider the graph of a function $y=f(x)$ that has a non-vertical tangent line at the point $M\left(x_{0} ; y_{0}\right)$. Let α be an angle formed by this tangent line and the positive direction of the x-axis. Let us find the slope of the tangent line $k=\tan \alpha$. For this purpose, we draw one more line through two points of the graph $M\left(x_{0} ; f\left(x_{0}\right)\right)$ and $M_{1}\left(x_{0}+\Delta x ; f\left(x_{0}+\Delta x\right)\right)$ (Figure 1). This line $M M_{1}$ is a secant line of the graph. Let φ be an angle formed by this secant line and the positive direction of the x-axis. It is easy to find that

$$
\tan \varphi=\frac{\Delta y}{\Delta x}=\frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}
$$

It is obvious that when Δx tends to 0 , then Δy also tends to 0 . It means that the point M_{1} tends to the point M, therefore the secant line becomes closer to the tangent line. It means that φ becomes closer to α. This fact can be written as

$$
\tan \alpha=\lim _{\Delta x \rightarrow 0} \tan \varphi
$$

Hence,

$$
k=\tan \alpha=\lim _{\Delta x \rightarrow 0} \tan \varphi=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} .
$$

This formula is the geometric interpretation of the derivative.

Figure 1

Definition 1 The derivative of a function f is a new function f^{\prime} defined by the formula

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

if the limit exists. If f^{\prime} exists for each x in the interval $(a ; b)$, then f is differentiable over $(a ; b)$.

If the limit

$$
f^{\prime}(c)=\lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta x)-f(c)}{\Delta x}
$$

does not exist, we say that f is non-differentiable at $x=c$. The points on the graph of f where $f^{\prime}(c)$ does not exist can be recognized geometrically (Figure 2).

(A) not continuous at c
(B) sharp corner at c
(C) vertical tangent at c

Figure 2

Remark 1 For a function $y=f(x)$, the notations

$$
f^{\prime}(x), \quad y^{\prime}, \frac{d f}{d x}, \frac{d y}{d x}, \quad D f(x) \text { and } D_{x} y
$$

all represent the derivative of f.

Example 1 Find the derivative of $f(x)=x^{2}$.

Solution 1 By the definition of the derivative, we have

$$
\begin{aligned}
f^{\prime}(x)= & \lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{2}-x^{2}}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{x^{2}+2 x \Delta x+(\Delta x)^{2}-x^{2}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{2 x \Delta x+(\Delta x)^{2}}{\Delta x}=\lim _{\Delta x \rightarrow 0}(2 x+\Delta x)=2 x .
\end{aligned}
$$

Thus, $\left(x^{2}\right)^{\prime}=2 x$.

Example 2 Find the derivative of $f(x)=\ln x$.

Solution 2 By the definition of the derivative, we have

$$
\begin{aligned}
f^{\prime}(x)= & \lim _{\Delta x \rightarrow 0} \frac{\ln (x+\Delta x)-\ln x}{\Delta x}=\lim _{\Delta x \rightarrow 0}\left(\frac{1}{\Delta x} \ln \frac{x+\Delta x}{x}\right) \\
= & \lim _{\Delta x \rightarrow 0} \ln \left(\frac{x+\Delta x}{x}\right)^{\frac{1}{\Delta x}}=\lim _{\Delta x \rightarrow 0} \ln \left(1+\frac{\Delta x}{x}\right)^{\frac{1}{\Delta x}} \\
= & \lim _{\Delta x \rightarrow 0} \ln \left(\left(1+\frac{\Delta x}{x}\right)^{\frac{x}{\Delta x}}\right)^{\frac{1}{x}}=\ln e^{\frac{1}{x}}=\frac{1}{x} .
\end{aligned}
$$

Thus, $(\ln x)^{\prime}=\frac{1}{x}$.

Arguing as in Examples 1 and 2 we construct

Table of main derivatives

1. $c^{\prime}=0$, where c is any constant;
2. $\left(x^{\alpha}\right)^{\prime}=\alpha x^{\alpha-1}$;
3. $\left(a^{x}\right)^{\prime}=a^{x} \ln a$, in particular, $\left(e^{x}\right)^{\prime}=e^{x}$;
4. $\left(\log _{a} x\right)^{\prime}=\frac{1}{x \ln a}$, in particular, $(\ln x)^{\prime}=\frac{1}{x}$;
5. $(\sin x)^{\prime}=\cos x ;$
6. $(\cos x)^{\prime}=-\sin x ;$
7. $(\tan x)^{\prime}=\frac{1}{\cos ^{2} x}$;
8. $(\cot x)^{\prime}=-\frac{1}{\sin ^{2} x}$;
9. $(\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}}$;
10. $(\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}}$;
11. $(\arctan x)^{\prime}=\frac{1}{1+x^{2}}$;
12. $(\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^{2}}$.

Chain rule

Let us develop a way to find the derivative of the composite function $y=f(u)$, where $u=g(x)$, i.e., $y=f(g(x))$.

For the function $y=f(u)$ we have that $\lim _{\Delta u \rightarrow 0} \frac{\Delta y}{\Delta u}=y_{u}^{\prime}$. Therefore, $\frac{\Delta y}{\Delta u}=y_{u}^{\prime}+\alpha$ or

$$
\Delta y=y_{u}^{\prime} \cdot \Delta u+\alpha \cdot \Delta u
$$

where $\alpha \rightarrow 0$ when $\Delta u \rightarrow 0$.
Similarly, for the function $u=g(x)$ we have that $\lim _{\Delta x \rightarrow 0} \frac{\Delta u}{\Delta x}=u_{x}^{\prime}$. Therefore,

$$
\Delta u=u_{x}^{\prime} \cdot \Delta x+\beta \cdot \Delta x
$$

where $\beta \rightarrow 0$ when $\Delta x \rightarrow 0$.
If we substitute the expression Δu in the expression Δy, we get

$$
\begin{gathered}
\Delta y=y_{u}^{\prime}\left(u_{x}^{\prime} \cdot \Delta x+\beta \cdot \Delta x\right)+\alpha\left(u_{x}^{\prime} \cdot \Delta x+\beta \cdot \Delta x\right) \\
\Delta y=y_{u}^{\prime} \cdot u_{x}^{\prime} \cdot \Delta x+y_{u}^{\prime} \cdot \beta \cdot \Delta x+\alpha \cdot u_{x}^{\prime} \cdot \Delta x+\alpha \cdot \beta \cdot \Delta x .
\end{gathered}
$$

Division by Δx yields

$$
\frac{\Delta y}{\Delta x}=y_{u}^{\prime} \cdot u_{x}^{\prime}+y_{u}^{\prime} \cdot \beta+\alpha \cdot u_{x}^{\prime}+\alpha \cdot \beta
$$

that gives

$$
y_{x}^{\prime}=y_{u}^{\prime} \cdot u_{x}^{\prime}
$$

when $\Delta x \rightarrow 0$.
This rule is known as the chain rule for the composite function $y=f(g(x))$, and it can be also written in the form:

$$
y^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

Rules of differentiation

Let $u(x)$ and $v(x)$ be differentiable functions over the interval $(a ; b)$.

1. Sum - difference rule

Suppose that $y=u \pm v$. Then, by the definition of derivative, we have

$$
\begin{gathered}
y^{\prime}=\lim _{\Delta x \rightarrow 0} \frac{(u(x+\Delta x) \pm v(x+\Delta x))-(u(x) \pm v(x))}{\Delta x} \\
=\lim _{\Delta x \rightarrow 0}\left(\frac{u(x+\Delta x)-u(x)}{\Delta x} \pm \frac{v(x+\Delta x)-v(x)}{\Delta x}\right) \\
=\lim _{\Delta x \rightarrow 0} \frac{\Delta u}{\Delta x} \pm \lim _{\Delta x \rightarrow 0} \frac{\Delta v}{\Delta x}=u^{\prime} \pm v^{\prime}
\end{gathered}
$$

Thus,

$$
(u \pm v)^{\prime}=u^{\prime} \pm v^{\prime}
$$

2. Product rule

Suppose that $y=u \cdot v$. Then

$$
\begin{gathered}
y^{\prime}=\lim _{\Delta x \rightarrow 0} \frac{u(x+\Delta x) \cdot v(x+\Delta x)-u(x) \cdot v(x)}{\Delta x} \\
=\lim _{\Delta x \rightarrow 0} \frac{(u(x)+\Delta u) \cdot(v(x)+\Delta v)-u(x) \cdot v(x)}{\Delta x} \\
=\lim _{\Delta x \rightarrow 0} \frac{u(x) \cdot v(x)+u(x) \cdot \Delta v+v(x) \cdot \Delta u+\Delta u \cdot \Delta v-u(x) \cdot v(x)}{\Delta x} \\
=\lim _{\Delta x \rightarrow 0}\left(u(x) \cdot \frac{\Delta v}{\Delta x}+v(x) \cdot \frac{\Delta u}{\Delta x}+\Delta u \cdot \frac{\Delta v}{\Delta x}\right) \\
=u(x) \cdot \lim _{\Delta x \rightarrow 0} \frac{\Delta v}{\Delta x}+v(x) \cdot \lim _{\Delta x \rightarrow 0} \frac{\Delta u}{\Delta x}+\lim _{\Delta x \rightarrow 0} \Delta u \cdot \lim _{\Delta x \rightarrow 0} \frac{\Delta v}{\Delta x} \\
=u \cdot v^{\prime}+v \cdot u^{\prime}+0 \cdot v^{\prime}=u^{\prime} \cdot v+v^{\prime} \cdot u .
\end{gathered}
$$

Thus,

$$
(u \cdot v)^{\prime}=u^{\prime} \cdot v+v^{\prime} \cdot u
$$

In particular,

$$
(c \cdot u)^{\prime}=c \cdot u^{\prime}
$$

where c is a constant.

3. Quotient rule

Suppose that $y=\frac{u}{v}$. Then

$$
\begin{gathered}
y^{\prime}=\lim _{\Delta x \rightarrow 0} \frac{\frac{u(x+\Delta x)}{v(x+\Delta x)}-\frac{u(x)}{v(x)}}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\frac{u(x)+\Delta u}{v(x)+\Delta v}-\frac{u(x)}{v(x)}}{\Delta x} \\
=\lim _{\Delta x \rightarrow 0} \frac{u(x) \cdot v(x)+v(x) \cdot \Delta u-u(x) \cdot v(x)-u(x) \cdot \Delta v}{\Delta x(v(x)+\Delta v) v(x)} \\
=\lim _{\Delta x \rightarrow 0} \frac{v(x) \cdot \Delta u-u(x) \cdot \Delta v}{\Delta x\left(v^{2}(x)+v(x) \cdot \Delta v\right)}=\lim _{\Delta x \rightarrow 0} \frac{v(x) \cdot \frac{\Delta u}{\Delta x}-u(x) \cdot \frac{\Delta v}{\Delta x}}{v^{2}(x)+v(x) \cdot \Delta v} \\
=\frac{v(x) \cdot \lim _{\Delta x \rightarrow 0} \frac{\Delta u}{\Delta x}-u(x) \cdot \lim _{\Delta x \rightarrow 0} \frac{\Delta v}{\Delta x}}{v^{2}(x)+v(x) \cdot \lim _{\Delta x \rightarrow 0} \Delta v}=\frac{u^{\prime} \cdot v-v^{\prime} \cdot u}{v^{2}} .
\end{gathered}
$$

Thus,

$$
\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} \cdot v-v^{\prime} \cdot u}{v^{2}}
$$

Example 3 Find the derivative of $f(x)=5^{x^{3}-4}$.

Solution 3 We use the chain and difference rules:

$$
f^{\prime}(x)=\left(5^{x^{3}-4}\right)^{\prime}=5^{x^{3}-4} \cdot \ln 5 \cdot\left(x^{3}-4\right)^{\prime}=5^{x^{3}-4} \cdot \ln 5 \cdot 3 x
$$

Example 4 Find the derivative of $f(x)=\frac{3 x^{2}+4 x-5}{\cos x}$.

Solution 4 We use the quotient and sum-difference rules:

$$
\begin{gathered}
f^{\prime}(x)=\left(\frac{3 x^{2}+4 x-5}{\cos x}\right)^{\prime}=\frac{\left(3 x^{2}+4 x-5\right)^{\prime} \cos x-(\cos x)^{\prime}\left(3 x^{2}+4 x-5\right)}{\cos ^{2} x} \\
=\frac{(6 x+4) \cos x+\sin x\left(3 x^{2}+4 x-5\right)}{\cos ^{2} x}
\end{gathered}
$$

Higher order derivatives

If a function $y=f(x)$ has the derivative f^{\prime}, then the derivative of f^{\prime}, if it exists, is called the second order derivative and written as $f^{\prime \prime}$. The derivative of $f^{\prime \prime}$, if it exists, is called the third order derivative and written as $f^{\prime \prime \prime}$, and so on. If we continue this process we can find nth order derivative.

Remark 2 For a function $y=f(x)$, the notations

$$
f^{\prime \prime}(x), y^{\prime \prime}, \frac{d^{2} f}{d x^{2}}, \frac{d^{2} y}{d x^{2}}, \quad D_{x}^{2} f(x) \text { and } D_{x}^{2} y
$$

all represent the second order derivative of f.
The third order derivative is written similarly. For $n \geq 4$, the nth order derivative is written as $f^{(n)}(x)$.

Example 5 Find the fourth order derivative of $f(x)=7 x^{4}+3 x^{3}+5 x^{2}-6 x+11$.

Solution 5

$$
\begin{gathered}
f^{\prime}(x)=28 x^{3}+9 x^{2}+10 x-6 \\
f^{\prime \prime}(x)=84 x^{2}+18 x+10 \\
f^{\prime \prime \prime}(x)=168 x+18 \\
f^{(4)}(x)=168
\end{gathered}
$$

