Limits of functions

Definitions

The idea of "limit" is to examine the behavior of a function $y=f(x)$ near some value $x=a$, but not at $x=a$. Let us consider two examples.

Example 1 What happens to the values of $f(x)=2 x$ when x is very close to $x=3$?

Solution 1 The answer is obvious from the following two tables:

x	2	2.5	2.9	2.99	2.999	2.9999	\ldots
$f(x)$	4	5	5.8	5.98	5.998	5.9998	\ldots

x	4	3.5	3.1	3.01	3.001	3.0001	\ldots
$f(x)$	8	7	6.2	6.02	6.002	6.0002	\ldots

In the first table, x approaches 3 from the left. In the second table, x approaches 3 from the right. The tables suggest that as x gets closer and closer to 3 from both directions, the corresponding value of $f(x)$ gets closer and closer to 6 .

This fact can be written as

$$
\lim _{x \rightarrow 3-} 2 x=6
$$

and

$$
\lim _{x \rightarrow 3+} 2 x=6
$$

for the left and right approaches, respectively. If answers for both sides are equal, we say that limit exists and write:

$$
\lim _{x \rightarrow 3} 2 x=6
$$

Example 2 What happens to the values of $f(x)=\frac{x}{|x|}$ when x is very close to $x=0$?

Solution 2 Again the answer comes from the following two tables:

x	-1	-0.5	-0.1	-0.01	-0.001	-0.0001	\ldots
$f(x)$	-1	-1	-1	-1	-1	-1	\ldots

x	1	0.5	0.1	0.01	0.001	0.0001	\ldots
$f(x)$	1	1	1	1	1	1	\ldots

The first table suggests that as x gets closer and closer to 0 from the left, the corresponding value of $f(x)$ equals to -1 . The second table suggests that as x gets closer and closer to 0 from the right, the corresponding value of $f(x)$ equals to 1 . It means that

$$
\lim _{x \rightarrow 0-} \frac{x}{|x|}=-1
$$

and

$$
\lim _{x \rightarrow 0+} \frac{x}{|x|}=1
$$

The answers are different, so we say that limit does not exist.

Based on these examples, we can write the following three informal definitions and theorem.

Definition 1 We write

$$
\lim _{x \rightarrow a} f(x)=A
$$

if functional value $f(x)$ is close to the real number A whenever x is close to, but not equal to, a (on both sides of a).

Definition 2 We write

$$
\lim _{x \rightarrow a-} f(x)=B
$$

and call B the limit from the left or the left-hand limit if $f(x)$ is close to B whenever x is close to, but to the left of $a(x<a)$.

Definition 3 We write

$$
\lim _{x \rightarrow a+} f(x)=C
$$

and call C the limit from the right or the right-hand limit if $f(x)$ is close to C whenever x is close to, but to the right of $a(x>a)$.

Theorem 1 For a limit to exist, the limit from the left and limit from the right must exist and be equal. That is

$$
\lim _{x \rightarrow a} f(x)=A \quad \text { if and only if } \quad \lim _{x \rightarrow a-} f(x)=\lim _{x \rightarrow a+} f(x)=A
$$

Properties of limits

Let f and g be two functions such that

$$
\lim _{x \rightarrow a} f(x)=A \quad \text { and } \quad \lim _{x \rightarrow a} g(x)=B
$$

where A and B are real numbers (both limits exist). Then:

1. $\lim _{x \rightarrow a}(f(x) \pm g(x))=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)=A \pm B$;
2. $\lim _{x \rightarrow a}(f(x) \cdot g(x))=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)=A \cdot B$;
3. $\lim _{x \rightarrow a} k f(x)=k \lim _{x \rightarrow a} f(x)=k A$ for any constant k;
4. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}=\frac{A}{B}$;
5. $\lim _{x \rightarrow a}(f(x))^{r}=\left(\lim _{x \rightarrow a} f(x)\right)^{r}=A^{r}$ for any real number r such that A^{r} exists.

Infinite limits

Suppose that $\lim _{x \rightarrow a} f(x)=A$, where A is not a finite real number but "infinity". This means that "positive infinity $+\infty$ " and "negative infinity $-\infty$ " do not denote numbers. They are just convenient notations to express that $f(x)$ takes very large or very small values. To illustrate this fact, let us again consider an example.

Example 3 What happens to the values of $f(x)=\frac{1}{3-x}$ when x is very close to $x=3$?

Solution 3 The answer is based on the following two tables:

x	2.9	2.99	2.999	\ldots	2.999999	\ldots	2.999999999	\ldots
$f(x)$	10	100	1000	\ldots	1000000	\ldots	1000000000	\ldots

x	3.1	3.01	3.001	\ldots	3.000001	\ldots	3.000000001	\ldots
$f(x)$	-10	-100	-1000	\ldots	-1000000	\ldots	-1000000000	\ldots

The first table shows that as x approaches 3 from the left, the corresponding values of $f(x)$ get very large. The second table shows that as x approaches 3 from the right, the corresponding values of $f(x)$ get very small. So, we write

$$
\lim _{x \rightarrow 3-} \frac{1}{3-x}=+\infty
$$

and

$$
\lim _{x \rightarrow 3+} \frac{1}{3-x}=-\infty
$$

and say that the limit from the left of $f(x)$ is infinity and the limit from the right of $f(x)$ is negative infinity.

It means that sometimes either on the left side or on the right side or on the both sides of the specified point $x=a$ the values of f infinitely increase or/and infinitely decrease. For example,

1. values of $f(x)$ boundless increase on the both sides of a (Figure 1, A):

$$
\lim _{x \rightarrow a} f(x)=+\infty
$$

2. values of $f(x)$ boundless decrease on the both sides of a (Figure 1, B):

$$
\lim _{x \rightarrow a} f(x)=-\infty
$$

3. values of $f(x)$ boundless increase on the left of a and decrease on the right of a (Figure 1, C):

$$
\lim _{x \rightarrow a-} f(x)=+\infty \text { and } \lim _{x \rightarrow a+} f(x)=-\infty,
$$

4. values of $f(x)$ boundless decrease on the left of a and increase on the right of a (Figure 1, D):

$$
\lim _{x \rightarrow a-} f(x)=-\infty \quad \text { and } \quad \lim _{x \rightarrow a+} f(x)=+\infty
$$

(A)

(B)

(C)

(D)

Figure 1

In all the situations just described we do not say that $\lim _{x \rightarrow a} f(x)$ exists. Rather, we say that limit does not exist because $f(x)$ becomes very large or very small near $x=a$.

Limits at infinity

Now we consider the behavior of a function $f(x)$ when x is very large or very small. This means that x tends to "positive infinity $+\infty$ " or "negative infinity $-\infty$ " but not to a number.

Example 4 Describe the behavior of $f(x)=e^{x}$ when x is very large and very small.

Solution 4 The behavior of $f(x)=e^{x}$ can be described by its graph (Figure 13, A).
When x is very large, the corresponding values of $f(x)$ get also very large. Thus, we write

$$
\lim _{x \rightarrow+\infty} e^{x}=+\infty
$$

The left side of the graph appears to coincide with the x-axis. Indeed, when x gets smaller and smaller, the corresponding values are very close to 0 . So, we write

$$
\lim _{x \rightarrow-\infty} e^{x}=0
$$

Example 5 Describe the behavior of $f(x)=\frac{3}{1+e^{x}}+5$ when x is very large and very small.

Solution 5 It is obvious that if we divide a finite real number by a very large number, we get a number close to zero. From Example 4 we know that e^{x} gets very large whenever x is very large. Therefore, the first term $\frac{3}{1+e^{x}}$ tends to zero when x tends to $+\infty$. Thus, if we replace the first term by zero, we get

$$
\lim _{x \rightarrow+\infty}\left(\frac{3}{1+e^{x}}+5\right)=0+5=5
$$

From Example 4 we know that if x is close to a very small number, then e^{x} is close to 0 . If we substitute 0 instead of e^{x}, we get

$$
\lim _{x \rightarrow-\infty}\left(\frac{3}{1+e^{x}}+5\right)=\frac{3}{1+0}+5=3+5=8
$$

These answers can be explained by the graph of $f(x)=\frac{3}{1+e^{x}}+5$ (Figure 2). The right side of the graph is very close to the line $y=5$ when x tends to $+\infty$. The left side of the graph appears to coincide with the line $y=8$ when x tends to $-\infty$.

Figure 2

Examples 4 and 5 show that, in general, the behaviors of functions at two opposite directions are different. However, sometimes two answers can be equal.

Example 6 Describe the behavior of $f(x)=\frac{1}{x}$ when x is very large and very small.

Solution 6 Make a table of values for very large x :

x	1000	\ldots	1000000	\ldots	1000000000	\ldots
$f(x)$	0.001	\ldots	0.000001	\ldots	0.000000001	\ldots

The table suggests that

$$
\lim _{x \rightarrow+\infty} \frac{1}{x}=0
$$

Make a table of values for very small x :

x	-1000	\ldots	-1000000	\ldots	-1000000000	\ldots
$f(x)$	-0.001	\ldots	-0.000001	\ldots	-0.000000001	\ldots

The table suggests that

$$
\lim _{x \rightarrow-\infty} \frac{1}{x}=0
$$

Since the answers coincide, we could combine them and write

$$
\lim _{x \rightarrow \pm \infty} \frac{1}{x}=0
$$

The solutions of the next three examples are based on Example 6 .

Example 7 Find the limit $\lim _{x \rightarrow \pm \infty} \frac{5 x^{2}-3 x+1}{3 x^{2}+2 x+2}$.

Solution 7

$$
\begin{aligned}
\lim _{x \rightarrow \pm \infty} \frac{5 x^{2}-3 x+1}{3 x^{2}+2 x+2}= & \lim _{x \rightarrow \pm \infty} \frac{x^{2}\left(5-\frac{3}{x}+\frac{1}{x^{2}}\right)}{x^{2}\left(3+\frac{2}{x}+\frac{2}{x^{2}}\right)}=\lim _{x \rightarrow \pm \infty} \frac{5-3 \cdot \frac{1}{x}+\frac{1}{x} \cdot \frac{1}{x}}{3+2 \cdot \frac{1}{x}+2 \cdot \frac{1}{x} \cdot \frac{1}{x}} \\
& =\frac{5-3 \cdot 0+0 \cdot 0}{3+2 \cdot 0+2 \cdot 0 \cdot 0}=\frac{5}{3}
\end{aligned}
$$

Example 8 Find the limit $\lim _{x \rightarrow \pm \infty} \frac{5 x^{2}-3 x+1}{3 x^{3}+2 x+2}$.

Solution 8

$$
\begin{aligned}
\lim _{x \rightarrow \pm \infty} \frac{5 x^{2}-3 x+1}{3 x^{3}+2 x+2} & =\lim _{x \rightarrow \pm \infty} \frac{x^{2}\left(5-\frac{3}{x}+\frac{1}{x^{2}}\right)}{x^{3}\left(3+\frac{2}{x^{2}}+\frac{2}{x^{3}}\right)}=\lim _{x \rightarrow \pm \infty} \frac{1}{x} \cdot \frac{5-3 \cdot \frac{1}{x}+\frac{1}{x} \cdot \frac{1}{x}}{3+2 \cdot \frac{1}{x} \cdot \frac{1}{x}+2 \cdot \frac{1}{x} \cdot \frac{1}{x} \cdot \frac{1}{x}} \\
& =0 \cdot \frac{5-3 \cdot 0+0 \cdot 0}{3+2 \cdot 0 \cdot 0+2 \cdot 0 \cdot 0 \cdot 0}=0 \cdot \frac{5}{3}=0
\end{aligned}
$$

Example 9 Find the limit $\lim _{x \rightarrow \pm \infty} \frac{5 x^{3}-3 x+1}{3 x^{2}+2 x+2}$.

Solution 9

$$
\begin{gathered}
\lim _{x \rightarrow \pm \infty} \frac{5 x^{3}-3 x+1}{3 x^{2}+2 x+2}=\lim _{x \rightarrow \pm \infty} \frac{x^{3}\left(5-\frac{3}{x^{2}}+\frac{1}{x^{3}}\right)}{x^{2}\left(3+\frac{2}{x}+\frac{2}{x^{2}}\right)}=\lim _{x \rightarrow \pm \infty} x \cdot \frac{5-3 \cdot \frac{1}{x} \cdot \frac{1}{x}+\frac{1}{x} \cdot \frac{1}{x} \cdot \frac{1}{x}}{3+2 \cdot \frac{1}{x}+2 \cdot \frac{1}{x} \cdot \frac{1}{x}} \\
=\frac{5}{3} \lim _{x \rightarrow \pm \infty} x= \pm \infty
\end{gathered}
$$

The technique in Examples 7, 8 and 9 carries over any rational function $f(x)=$ $\frac{n(x)}{d(x)}$. Thus, we can write some general rule for limits at infinity for rational functions.

Suppose that

$$
\begin{aligned}
& n(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \\
& d(x)=b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} x+b_{0}
\end{aligned}
$$

then

$$
\begin{aligned}
& \lim _{x \rightarrow \pm \infty} \frac{n(x)}{d(x)}=\frac{a_{n}}{b_{m}} \text { if } n=m \\
& \lim _{x \rightarrow \pm \infty} \frac{n(x)}{d(x)}=0 \text { if } n<m
\end{aligned}
$$

$$
\lim _{x \rightarrow \pm \infty} \frac{n(x)}{d(x)} \text { does not exist if } n>m
$$

Indeterminate forms

In the most situations discussed above, $\operatorname{limits} \lim _{x \rightarrow a} f(x)$ are performed by replacing x by a in $f(x)$. Sometimes, the expression obtained after this substitution does not give enough information to determine the limit and it is known as an indeterminate form. For example, if $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=0$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ is said to be a $\frac{0}{0}$ indeterminate form.

The most common indeterminate forms are $\frac{0}{0}, \frac{\infty}{\infty}, 0 \cdot \infty, \infty-\infty, 1^{\infty}, 0^{0}, \infty^{0}$.
Example 10 Find the limit $\lim _{x \rightarrow 5} \frac{x-5}{x^{2}-25}$.

Solution 10 When we replace x by 5 in the expression $\frac{x-5}{x^{2}-25}$ we get the $\frac{0}{0}$ indeterminate form. Since x is close to, but not equal to 5, we have

$$
\frac{x-5}{x^{2}-25}=\frac{x-5}{(x-5)(x+5)}=\frac{1}{x+5} .
$$

Finally, we obtain

$$
\lim _{x \rightarrow 5} \frac{x-5}{x^{2}-25}=\lim _{x \rightarrow 5} \frac{1}{x+5}=\frac{1}{5+5}=\frac{1}{10}
$$

Fundamental limits

There is a class of limits called the fundamental limits. Let us present two of them.
1.

$$
\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e
$$

This limit has been already discussed in Section "Base exponential function". If we replace x by $\frac{1}{t}$, the limit can be rewritten in the form:

$$
\lim _{t \rightarrow 0}(1+t)^{\frac{1}{t}}=e .
$$

Example 11 Find the limit $\lim _{x \rightarrow \infty}\left(1+\frac{7}{2 x-4}\right)^{\frac{x}{3}}$.

Solution 11 When we consider x to be very large or very small, the expression $\left(1+\frac{7}{2 x-4}\right)^{\frac{x}{3}}$ has the 1^{∞} indeterminate form. This limit can be evaluated by the introduction of a new variable t such that $t=\frac{2 x-4}{7}$. Hence, $x=\frac{7}{2} t+2$. Moreover, if $x \rightarrow \infty$, then $t \rightarrow \infty$. So, we have

$$
\begin{gathered}
\lim _{x \rightarrow \infty}\left(1+\frac{7}{2 x-4}\right)^{\frac{x}{3}}=\lim _{t \rightarrow \infty}\left(1+\frac{1}{t}\right)^{\frac{7}{2} t+2} 3 \\
=\lim _{t \rightarrow \infty}\left(1+\frac{1}{t}\right)^{\frac{7}{6} t}\left(1+\frac{1}{t}\right)^{\frac{2}{3}}=\lim _{t \rightarrow \infty}\left(1+\frac{1}{t}\right)^{\frac{7}{6} t+\frac{2}{3}} \\
=\lim _{t \rightarrow \infty}\left(1+\frac{1}{t}\right)^{\frac{2}{3}} \\
=\lim _{t \rightarrow \infty}\left(\left(1+\frac{1}{t}\right)^{t}\right)^{\frac{7}{6}} \cdot 1=e^{\frac{7}{6}}
\end{gathered}
$$

2.

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

The graphs of $y=\sin x$ and $y=x$ (Figure 3) geometrically explain the validity of this formula. It is obvious that at the neighborhood of 0 the values of these two functions are very close, so their ratio is approximately equal to 1 .

Figure 3

Example 12 Find the limit $\lim _{x \rightarrow 0} \frac{\sin 5 x}{x}$.
Solution 12 When we replace x by 0 in the expression $\frac{\sin 5 x}{x}$ we get the $\frac{0}{0}$ indeterminate form. This limit can be evaluated by the introduction of a new variable t such that $t=5 x$. Hence, $x=\frac{t}{5}$. Moreover, if $x \rightarrow 0$, then $t \rightarrow 0$. So, we have

$$
\lim _{x \rightarrow 0} \frac{\sin 5 x}{x}=\lim _{t \rightarrow 0} \frac{\sin t}{\frac{t}{5}}=5 \lim _{t \rightarrow 0} \frac{\sin t}{t}=5 \cdot 1=5 .
$$

Applications

Suppose that compounding periods m gets larger and larger in the general compound interest formula:

$$
A=P\left(1+\frac{r}{m}\right)^{m t}
$$

This equivalently means that

$$
A=\lim _{m \rightarrow+\infty} P\left(1+\frac{r}{m}\right)^{m t}
$$

or

$$
A=P \cdot \lim _{m \rightarrow+\infty}\left(\left(1+\frac{r}{m}\right)^{\frac{m}{r}}\right)^{r t}=P e^{r t}
$$

Thus, a principal P is invested at an annual rate r compounded continuously, then the amount A in the account at the end of t years is given by

$$
A=P e^{r t}
$$

Example 13 Suppose $\$ 5000$ is invested in an account paying 9\% compounded continuously.
How much will be in account after 5 years?

Solution 13

$$
A=P e^{r t}=5000 \cdot e^{0.09 \cdot 5}=5000 \cdot e^{0.45} \approx 5000 \cdot 1.568239=\$ 7841.20
$$

Continuity

Limits are used to define the continuity of a function at a point.

Definition $4 A$ function f is continuous at $x=c$ if

1. $f(c)$ is defined;
2. $\lim _{x \rightarrow c} f(x)$ exists;
3. $\lim _{x \rightarrow c} f(x)=f(c)$.

If at least one of the conditions in the definition fails, then f is discontinuous at $x=c$.

Definition 5 A function f is continuous on the interval $(a ; b)$ if it is continues at each point on $(a ; b)$.

Example 14 Are the functions $f(x)=3 x^{2}-2 x+5$ and $g(x)=\frac{x}{|x|}$ continuous at $x=0$?

Solution 14 1. $f(0)=5$ is defined. Moreover, $\lim _{x \rightarrow 0}\left(3 x^{2}-2 x+5\right)=5$. It means that $\lim _{x \rightarrow 0} f(x)=f(0)$. Therefore, f is continuous at 0 .
2. $g(0)=0$ is defined. However, $\lim _{x \rightarrow 0} g(x)$ does not exist (see Example 2). Therefore, g is discontinuous at 0 .

