Functions

In mathematics, the central concept of function is correspondence. Thus, a function is some relation between a set of inputs and a set of outputs. Usually, to denote that y is a function of x we write $y=f(x)$, where x is called the independent variable and y is called the dependent variable.

As an example of a function, let us consider the following well-known formula:

$$
s=\pi r^{2}
$$

This formula is the relationship between the radius r and the area of the circle s. It is obvious that the larger r the larger s. Therefore, it is a function that can be presented in the form $s=f(r)$.

The second function example is as follows:

$$
t= \begin{cases}1852, & 0<s \leq 1100 \\ 3704, & 1100<s \leq 1500 \\ 5556, & 1500<s \leq 2000 \\ 11112, & 2000<s \leq 2500 \\ 16668, & 2500<s \leq 3000 \\ 27780, & 3000<s \leq 4000 \\ 216684, & s>4000\end{cases}
$$

This formula shows the correspondence between the tax rate t on vehicles (in tenge) and their engine size s in Kazakhstan in 2014. This function can be written in the form $t=f(s)$.

Definition $1 A$ function f is a rule that assigns to each element (number) x of a set $D(f)$ a unique element (number) of a set $R(f)$.

The set $D(f)$ is called the domain of f and the set $R(f)$ is called the range of f.

Example 1 Find the domains of the functions:

1. $f(x)=\sqrt{1-x^{2}}$; 2. $g(x)=\frac{1}{x-3}$.

Solution 1 1. For the square root to exist, $1-x^{2}$ must be greater than or equal to 0. That is,

$$
\begin{gathered}
1-x^{2} \geq 0 \text { or }(1-x)(1+x) \geq 0 \\
\left\{\begin{array} { l }
{ 1 - x \geq 0 } \\
{ 1 + x \geq 0 }
\end{array} \text { or } \left\{\begin{array}{l}
1-x \leq 0 \\
1+x \leq 0
\end{array}\right.\right. \\
\left\{\begin{array} { l }
{ x \leq 1 } \\
{ x \geq - 1 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
x \geq 1 \\
x \leq-1
\end{array}\right.\right.
\end{gathered}
$$

The second system has no solutions. Thus, $D(f)=[-1 ; 1]$.
2. For the fraction to exist, the denominator $x-3$ must be not equal to 0 (division by 0 is not defined). That is,

$$
x-3 \neq 0 \text { or } x \neq 3
$$

Thus, $D(f)=(-\infty ; 3) \cup(3 ;+\infty)$.

Cartesian system of coordinates

The set of all pairs of all real numbers is called the number plane. This number plane can be represented by Cartesian system of coordinates (Figure 1).

Figure 1

The graph of a function f consists of those points in the Cartesian plane whose coordinates (x, y) satisfy the equation $y=f(x)$. It means that the pair (x, y) lies on the graph of f if and only if x is of the domain and $y=f(x)$. Usually, to draw the graph of a function we use a table of coordinate pairs $(x, f(x))$ for various values of x in the domain of f, then plot these points and connect them with a "smooth" curve.

Example 2 Sketch the graph of the function $f(x)=(x-1)^{3}+2$.

Solution 2 Make a table of coordinate pairs that satisfy the equation $f(x)=(x-$ $1)^{3}+2$:

x	-1	0	1	2	3
y	-6	1	2	3	10

Plot these points and join them with a smooth curve as shown in Figure 2.

Figure 2

Graph transformations

Comparing the graph of $y=f(x)+k$ with the graph of $y=f(x)$, we see that it is the graph of $y=f(x)$ vertically shifted up by k units if k is positive and down by k units if k is negative.

Comparing the graph of $y=f(x+h)$ with the graph of $y=f(x)$, we see that it is the graph of $y=f(x)$ horizontally shifted left by h units if h is positive and right by h units if h is negative.

To sketch the graph of $y=-f(x)$ we reflect the graph of $y=f(x)$ in the x-axis.
Moreover, the graph of $y=A f(x)$ is a vertical stretch of the graph of $y=f(x)$ if $A>1$ and a vertical shrink of the graph of $y=f(x)$ if $0<A<1$.

Remark 1 The graph of the equation $f(x)=(x-1)^{3}+2$ given in Example 2 can be sketched by using graph transformations. Thus, first we sketch the graph of $f(x)=x^{3}$. Then we shift it upward by 2 units and to the right by 1 unit.

Intercepts

x-intercept (root) is the abscissa of a such point of the graph, where this graph crosses (touches) the x-axis. To find x-intercept we pose $y=0$, and x satisfying $f(x)=0$ will be x-intercept.
y-intercept is the ordinate of a such point of the graph, where this graph crosses (touches) the y-axis. To find y-intercept we pose $x=0$, and y satisfying $y=f(0)$ will be y-intercept.

Increasing and decreasing functions

We say that a function f is increasing on an interval $(a ; b)$ if $f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $a<x_{1}<x_{2}<b$. We say that a function f is decreasing on an interval $(a ; b)$ if $f\left(x_{1}\right)>f\left(x_{2}\right)$ whenever $a<x_{1}<x_{2}<b$.

Some elementary functions

Linear function

Definition $2 A$ function f is a linear function if

$$
y=k x+b
$$

where k and b are real numbers.

The domain and range of a linear function is the set of all real numbers.
The graph of a linear function $y=k x+b$ is a straight line with the slope k and y-intercept b. Therefore, the equation $y=k x+b$ is called the slope-intercept form of a linear function.

The standard form of a linear function is

$$
A x+B y=C
$$

where A, B and C are real numbers. If $B \neq 0$, the standard equation can be resolved with respect to y :

$$
y=-\frac{A}{B} x+\frac{C}{B}
$$

that is the slope-intercept form.
Suppose that two fixed distinct points $M_{1}\left(x_{1} ; y_{1}\right)$ and $M_{2}\left(x_{2} ; y_{2}\right)$ belong to the graph of $y=k x+b$. It means that their coordinates satisfy the equation $y=k x+b$; hence, $y_{1}=k x_{1}+b$ and $y_{2}=k x_{2}+b$. If we find the difference $y_{2}-y_{1}$, we get

$$
\begin{gathered}
y_{2}-y_{1}=\left(k x_{2}+b\right)-\left(k x_{1}+b\right)=k x_{2}+b-k x_{1}-b=k\left(x_{2}-x_{1}\right) \\
y_{2}-y_{1}=k\left(x_{2}-x_{1}\right) \\
k=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} .
\end{gathered}
$$

Definition 3 If a straight line passes through two distinct points $M_{1}\left(x_{1} ; y_{1}\right)$ and $M_{2}\left(x_{2} ; y_{2}\right)$, then its slope is given by the formula:

$$
k=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Thus, the slope k of a line $y=k x+b$ equals to the tangent of an angle α formed by this line and the positive direction of the x-axis. It is known that
(A) if $0<\alpha<\frac{\pi}{2}$ (α is an acute angle), then $\tan \alpha>0$;
(B) if $\frac{\pi}{2}<\alpha<\pi$ (α is an obtuse angle), then $\tan \alpha<0$;
(C) if $\alpha=0$, then $\tan \alpha=0$;
(D) if $\alpha=\frac{\pi}{2}$, then $\tan \alpha$ does not exist.

Therefore, since $k=\tan \alpha$, we have
(A) if $k>0$, then a straight line $y=k x+b$ is increasing;
(B) if $k<0$, then a straight line $y=k x+b$ is decreasing;
(C) if $k=0$, then a straight line $y=b$ is a horizontal line parallel to the x-axis;
(D) if k does not exist, then $x=a$ is a vertical line that is not a function.

Each case is illustrated in Figure 3.

Figure 3

Arguing as above, for a line that passes through an arbitrary point $M(x ; y)$ and a fixed point $M_{1}\left(x_{1} ; y_{1}\right)$, its slope is given by the formula:

$$
k=\frac{y-y_{1}}{x-x_{1}} .
$$

Thus, we write the following definition.

Definition 4 If a straight line passes through the point $M_{1}\left(x_{1} ; y_{1}\right)$ and has the slope k, then its equation is given by the formula:

$$
y-y_{1}=k\left(x-x_{1}\right) .
$$

Moreover, if we combine

$$
k=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \text { and } \quad k=\frac{y-y_{1}}{x-x_{1}},
$$

we come up with one more definition.

Definition 5 If a straight line passes through two distinct points $M_{1}\left(x_{1} ; y_{1}\right)$ and $M_{2}\left(x_{2} ; y_{2}\right)$, then its equation is given by the formula:

$$
\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}} .
$$

Parallel and perpendicular lines

Suppose that we have two distinct lines $y_{1}=k_{1} x+b_{1}$ and $y_{2}=k_{2} x+b_{2}$. Denote by α and β the angles formed by the lines y_{1} and y_{2} and positive direction of the x-axis, respectively. It means that $k_{1}=\tan \alpha$ and $k_{2}=\tan \beta$.

1. If two non-vertical lines are parallel, they have the same slope.

Since α and β are two corresponding angles formed by two parallel lines y_{1} and y_{2} and the x-axis as a transversal line (Figure 4), then $\alpha=\beta$. Therefore, $k_{1}=k_{2}$.

Figure 4
2. If two lines y_{1} and y_{2} are perpendicular, excluding the case of vertical and horizontal lines, the product of their slopes is equal to -1 .

To prove this formula we draw a line parallel to the x-axis through the point of intersection of y_{1} and y_{2} (Figure 5). Since the sum of two interior angles formed by two parallel lines and a transversal line equals to π, we have

$$
\begin{gathered}
\left(\frac{\pi}{2}-\alpha\right)+\beta=\pi \\
\beta=\frac{\pi}{2}+\alpha .
\end{gathered}
$$

We substitute the obtained relation in k_{2} and get

$$
k_{2}=\tan \beta=\tan \left(\frac{\pi}{2}+\alpha\right)=-\cot \alpha=-\frac{1}{\tan \alpha}=-\frac{1}{k_{1}} .
$$

Therefore, $k_{1} \cdot k_{2}=-1$.

Figure 5

Example 3 Find the equation of the line

1. if it passes through the points $(1 ;-2)$ and $(-4 ; 3)$;
2. if it passes through the point $(5 ;-3)$ and is parallel to the line $3 x-2 y=6$;
3. if it is perpendicular to the line $y=\frac{1}{3} x+\frac{4}{7}$ and has the y-intercept (5).

Solution 3 1. If we use Definition 5, we get

$$
\frac{y+2}{3+2}=\frac{x-1}{-4-1}
$$

$$
\begin{gathered}
(y+2) \cdot(-5)=(x-1) \cdot 5 \\
y+2=-x+1 \\
y=-x-1 .
\end{gathered}
$$

Figure 6
2. If we resolve the equation $3 x-2 y=6$ with respect to y, we get $y=\frac{3}{2} x-3$. The slope of this line is $\frac{3}{2}$, it means that the slope of the desired function is also $\frac{3}{2}$. Now, we use Definition 4 and obtain

$$
\begin{gathered}
y+3=\frac{3}{2}(x-5) \\
y=\frac{3}{2} x-\frac{15}{2}-3 \\
y=\frac{3}{2} x-\frac{21}{2} .
\end{gathered}
$$

Figure 7
3. The slope of the perpendicular line is $\frac{1}{3}$. Since the product of slopes of two perpendicular lines is (-1), the slope of the desired line is (-3). By the condition, the y-intercept is (5). Thus, the desired equation is

$$
y=-3 x+5 .
$$

Figure 8

Applications

The supply and demand of an item are usually related to its price. Producer will supply larger numbers of the item at a higher price. However, at a higher price, consumer will demand less of the item. Thus, in general, the graph of the supply equation $y=S(x)$ increases and the graph of the demand equation $y=D(x)$ decreases. Here, x stands for the quantity and y stands for the price. If we have linear functions for supply and demand curves, they can be written in the form:

$$
S(x)=a x+b
$$

and

$$
D(x)=m x+n,
$$

where a, b, m and n are real numbers. Moreover, since the line $S(x)$ increases and the line $D(x)$ decreases, their slopes must be positive ($a>0$) and negative ($m<0$), respectively. The price tends to stabilize at the point of intersection of the supply and the demand equations. This is the equilibrium point, where its first coordinate x is the equilibrium quantity and its second coordinate y is the equilibrium price.

Example 4 At a price of $\$ 50$ per kilo, the annual Kazakhstan supply and demand for tea are 1500 and 1700 tones, respectively. When the price rises to $\$ 80$, the supply
increases to 1800 tones while the demand decreases to 1300 tones. 1. Assuming that the price-supply and the price-demand equations are linear, find their equations; 2. Find the equilibrium point for Kazakhstan tea market.

Solution 4 1. We have that the supply curve $S(x)$ passes through two points $(1500 ; 50)$ and (1800; 80). If we use Definition 5, we get

$$
\frac{S(x)-50}{80-50}=\frac{x-1500}{1800-1500}
$$

$$
\begin{gathered}
(S(x)-50) \cdot 300=(x-1500) \cdot 30 \text { or }(S(x)-50) \cdot 10=x-1500 \\
S(x)=\frac{1}{10} x-100
\end{gathered}
$$

Similarly, since the demand curve $D(x)$ passes through two points $(1700 ; 50)$ and (1300; 80), from Definition 5 we have

$$
\begin{gathered}
\frac{D(x)-50}{80-50}=\frac{x-1700}{1300-1700} \\
(D(x)-50) \cdot(-400)=(x-1700) \cdot 30 \\
\text { or } \quad(D(x)-50) \cdot 40=(x-1700) \cdot(-3) \\
40 \cdot D(x)=-3 x+7100 \\
D(x)=-\frac{3}{40} x+\frac{355}{2} .
\end{gathered}
$$

2. To find the equilibrium point, we need to solve the equation $S(x)=D(x)$. Thus,

$$
\begin{gathered}
\frac{1}{10} x-100=-\frac{3}{40} x+\frac{355}{2} \\
\frac{1}{10} x+\frac{3}{40} x=\frac{355}{2}+100 \quad \text { or } \quad \frac{7}{40} x=\frac{555}{2} \\
x=\frac{555}{2} \cdot \frac{40}{7}=\frac{11100}{7} \approx 1585.7 \text { tones. }
\end{gathered}
$$

Moreover,
$S\left(\frac{11100}{7}\right)=D\left(\frac{11100}{7}\right)=\frac{1}{10} \cdot \frac{11100}{7}-100=\frac{1110}{7}-\frac{700}{7}=\frac{410}{7} \approx \$ 58.57$ per kilo.

Figure 9

