# Lecture notes Exponentials and Logarithms (Chapter 10) 

Kevin Wainwright
April 26, 2014

## 1 Simple Compound Interest

Suppose you have $x$ dollars to invest at an interest rate of $r$ percent per year. In one year you will have $y$ dollars, where

$$
y=x+r x=x(1+r)
$$

in two years

$$
y=[x(1+r)](1+r)=x(1+r)^{2}
$$

in three years

$$
y=\left[x(1+r)^{2}\right](1+r)=x(1+r)^{3}
$$

The present value (PV) of $y 3$ years from now is

$$
x=\frac{y}{(1+r)^{3}}=y(1+r)^{-3}
$$

PV: Tells you "how much to invest now" in order to have $y$ dollars in 3 years.

### 1.1 Compounding Within a Year

1. (a) Semi-annual compounding
at six months

$$
y=x\left(1+\frac{r}{2}\right)=x+\frac{x r}{2}
$$

at one year

$$
y=\left[x\left(1+\frac{r}{2}\right)\right]\left(1+\frac{r}{2}\right)=x\left(1+\frac{r}{2}\right)^{2}
$$

(b) Monthly compounding

$$
\begin{aligned}
& y=x\left(1+\frac{r}{12}\right)^{12} \quad \text { for one year } \\
& y=\left[x\left(1+\frac{r}{12}\right)^{12}\right]\left(1+\frac{r}{2}\right)=x\left(1+\frac{r}{12}\right)^{24} \quad \text { for two years } \\
& y=x\left(1+\frac{r}{12}\right)^{12 n} \quad \text { for n years }
\end{aligned}
$$

### 1.2 Converting Compound Interest into an Annual Yield

Suppose you are offered a choice:

1. $10 \%$ compounded semi-annually, or
2. $10.2 \%$ annually

Which would you choose?
We know for semi-annual

$$
\begin{aligned}
& y=x\left(1+\frac{r}{2}\right)^{2}=x\left(1+\frac{.10}{2}\right)^{2}=(1.05)^{2} x \\
& y=1.1025 x
\end{aligned}
$$

Yield $=y$ - principal $=y-x$
Yield $=1.1025 x-x=0.1025 x$ or you can earn $10.25 \%$ annually since $10.25 \%>10.20 \% \Longrightarrow \Longrightarrow$ Pick option (1)

### 1.3 Continuous Compounding

1. (a) Daily interest for one year

$$
y=x\left(1+\frac{r}{365}\right)^{365}
$$

Suppose $\mathrm{x}=\$ 1$ and $\mathrm{r}=100 \%$ (or $\mathrm{r}=1$ )

$$
y=1\left(1+\frac{1}{365}\right)^{365}=\$ 2.71456
$$

(b) Compound hourly ( $365 \times 24=8760$ )

$$
y=x\left(1+\frac{1}{8760}\right)^{8760}=\$ 2.71812
$$

or if

$$
y=1\left(1+\frac{1}{m}\right)^{m}
$$

if we let $\mathrm{m} \Longrightarrow$ infinity $(\infty)$

$$
y=\left(1+\frac{1}{m}\right)^{m} \Longrightarrow 2.71828 \ldots \equiv e
$$

for any $r$ as $m \longrightarrow \infty\{$ and $x=\$ 1\}$

$$
y=\left(1+\frac{1}{m}\right)^{m} \Longrightarrow e^{r}
$$

## 2 The Number "e"

The number $e=2.71828 \ldots$ is the value of $\$ 1$ compounded continuously for one year (or one period) at an interest rate of $100 \%$.

Continuous compounding at $r$ percent for $t$ years of a principal equal to x

$$
y=x e^{r t}
$$

The present value of $y$ is

$$
x=\frac{y}{e^{r t}}=y e^{-r t}
$$

which tells you the amount needed to invest today that will be worth y dollars in $t$ years of continuous compounding
$\underline{\text { Present Value ( } x e^{r t} \text { ) Graphically }}$


Slope $=\frac{d y}{d t}=r x e^{r t}$

## 3 Derivative rules of e

1. 

$$
y=e^{x} \quad \frac{d y}{d x}=e^{x}
$$

2. 

$$
y=e^{f(x)} \quad \frac{d y}{d x}=f^{\prime}(x) e^{f(x)}
$$

3. Examples:
(a) $y=e^{3 x}$
$\frac{d y}{d x}=3 e^{3 x}$
(b) $y=e^{-r t}$
$\frac{d y}{d t}=-r e^{-r t}$
(c) $y=a e^{\left(t^{2}-t\right)}$
$\frac{d y}{d t}=a(2 t-1) e^{\left(t^{2}-t\right)}$
4. 

$$
e^{-\infty}=\frac{1}{e^{\infty}} \approx 0 \quad e^{0}=1
$$

### 3.1 Growth Rates

Given

$$
y=x e^{r t}
$$

The change in y is

$$
\frac{d y}{d t}=r x e^{r t}=r y
$$

However, the percentage change in $y$, or the "growth rate" is

$$
\text { Growth Rate }=\frac{\Delta \text { in } y}{y} \approx \frac{d y}{y}
$$

Therefore

$$
\text { Growth Rate }=\frac{\frac{d y}{d t}}{y}=\frac{r x e^{r t}}{x e^{r t}}=r
$$

Where $r$ is the continuous rate of growth of $y$ over time. NOTE: the growth rate is constant, however, the slope of $y=x e^{r t}$ is not constant.

## 4 Logarithms

### 4.1 Common Log (or log base 10)

Given

$$
10^{2}=100
$$

The exponent 2 is defined as the logarithm of 100 to the base 10 . eg.

$$
\begin{array}{clc}
\log 1000=3 & \text { because } & \left\{10^{3}=1000\right\} \\
\log 10=1 & \text { because } & 10^{1}=10 \\
\log 1=0 & \text { because } & 10^{0}=1 \\
\log 0.1=-1 & \text { because } & 10^{-1}=.1 \\
\log 0.01=-2 & \text { because } & 10^{-2}=.001
\end{array}
$$

### 4.2 Natural Logarithm

If $y=e^{x} \quad \ln y=\ln e^{x}=x$ where $\ln$ is the logarithm to base $e$

### 4.3 Rules of Logarithms

1. $\ln (A B)=\ln A+\ln B$
2. $\ln \left(\frac{A}{B}\right)=\ln A-\ln B$
3. $\ln \left(A^{b}\right)=b \ln A$

### 4.3.1 Example:

$$
\ln \left(x^{3} y^{2}\right)=3 \ln x+2 \ln y
$$

### 4.3.2 Other Properties

if $x=y$ then $\ln x=\ln y$
if $x>y$ then $\ln x>\ln y$
** $\ln (-3)$ does NOT exist!! You cannot take a logarithm of a negative number.
${ }^{* *} \ln (A+B) \neq \ln A+\ln B!!!$

## 5 Derivatives of the Natural Logarithm

1. $y=\ln x \quad \frac{d y}{d x}=\frac{1}{x} \quad$ or $d y=\frac{d x}{x}$
2. $y=\ln a x \quad \frac{d y}{d x}=\frac{a}{a x}=\frac{1}{x}$

OR $y=\ln a x=\ln x+\ln a$

$$
\frac{d y}{d x}=\frac{1}{x}\left\{\text { since } \frac{d(\ln a)}{d x}=0\right\}
$$

3. $y=\ln \left(x^{2}+2 x\right)$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{\left(x^{2}+2 x\right)}(2 x+2)=\frac{2 x+2}{x^{2}+2 x}=\frac{1}{x+2}+\frac{1}{x} \\
& \text { OR } y=\ln \left(x^{2}+2 x\right)=\ln [(x+2) x]=\ln (x+2)+\ln x \\
& \frac{d y}{d x}=\frac{1}{x+2}+\frac{1}{x}
\end{aligned}
$$

## 6 Optimal Timing Problems



### 6.1 The Forest Harvesting Problem

Assume a stand of trees grows according to the following function

$$
\text { Volume }=V(t)=A e^{\alpha-\frac{\beta}{t}} \quad\left\{\text { measured in }(\mathrm{ft})^{3}\right\}
$$

Question: When is the best time to harvest the stand of trees?

- For simplicity, assume that the price per $\mathrm{ft}^{3}$ for lumber is $\$ 1$ and it remains constant over time
- if the market rate of interest is $r$ gthen the problem is to choose a time to harvest the trees that maximizes the present value of the asset
- at any time, $t_{0}$ the present value is:

$$
\begin{aligned}
P V & =V\left(t_{0}\right) e^{-r t_{0}} \\
& =\left(A e^{\alpha-\frac{\beta}{t_{0}}}\right) e^{-r t} \\
P V & =A e^{\alpha-\frac{\beta}{t}-r t}
\end{aligned}
$$



Optimal harvest time: $\mathrm{t}_{3}$
Maximum present value: $\mathrm{PV}_{3}\left\{\frac{V_{3}^{\prime}}{V_{3}}=r\right\}$
At $\mathrm{V}_{1}$ the growth rate of trees exceeds the growth rate of a financial asset since $\left(\frac{V_{1}(t)^{\prime}}{V_{1}}>r\right)$

## Present Value is

$$
\begin{aligned}
& P V(t)=V(t) e^{-r t} \\
& P V(t)=A e^{\alpha-\frac{\beta}{t}-r t} \quad\left\{V(t)=A e^{\alpha-\frac{\beta}{t}}\right\}
\end{aligned}
$$

Max PV with respect to $\mathrm{t}\left\{\frac{d P V}{d t}=0\right\}$

$$
\begin{aligned}
\frac{d P V}{d t} & =A e^{\alpha-\frac{\beta}{t}-r t}\left(\frac{\beta}{t^{2}}-r\right)=0 \\
\frac{d P V}{d t} & =0 \text { If } \frac{\beta}{t^{2}}-r=0
\end{aligned}
$$

Therefore

$$
\frac{\beta}{t^{2}}=r \text { or } t=\sqrt{\frac{\beta}{r}}
$$

## Logarithmic Approach

$$
\begin{aligned}
\ln P V & =\ln \left(e^{\alpha-\frac{\beta}{t}-r t}\right)=\alpha-\frac{\beta}{t}-r t \\
\frac{d(\ln P V)}{d t} & =\frac{d P V}{d t}=\frac{\beta}{t^{2}}-r=0 \\
& =\frac{\beta}{t^{2}}=r \quad\left\{t=\sqrt{\frac{\beta}{r}}\right\}
\end{aligned}
$$

$\frac{\beta}{t^{2}}=$ growth rate of the value of uncut trees
$r=$ growth rate of the optimally invested money

$\frac{\beta}{t^{2}}=$ the growth in your wealth from leaving trees uncut
$r=$ Growth in your wealth if you cut down the trees, sell them, and put the money into a savings account paying $e^{r t}$

Comparative Statistics: if interest rate rises: $r \rightarrow r^{\prime}$ then the optimal cutting time falls: $t^{*} \rightarrow t^{\prime}$

