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P reface 

This book e xplains how an econometrics computer package, Stata, can b e  used to per­
form regression analysis of cross-section and panel data. The term microeconometrics 
is used in the book title because the applications are to economics-related data and be­
cause the coverage includes methods such as instrumental-variables regression that are 
emphasized more in economics than in some other areas of applied statistics. However, 
many issues, models, and methodologies discussed in this book are also relevant to other 
social sciences. 

The main audience is graduate students and researchers. For them, this book 
can be used as an adjunct to our own Microeconometrics: Methods and Applications 
(Cameron and Trivedi 2005), as well as to other graduate-level te xts such as Greene 
(2008) and Wooldridge (2002). :iy comparison to these books, we present little theory 
and instead emphasize practical aspects of implementation using Stata. More advanced 
topics we cover include quantile regTession, weak instruments, nonlinear optimization, 
bootstrap methods, nonlinear panel-data methods, and Stata's matrix programming 
language , Mata. 

At the same time, the book provides introductions to topics such as ordinary least­
squares regression , instrumental-variables estimation, and logit and probit models so 
that it is suitable for use in an undergraduate econometrics class, as a complement to 
an appropriate undergraduate-level te xt. The following table suggests sections of the 
book for an introductory class, with the caveat that in places formulas are provided 
using matrix algebra. 

Stata basics 
Data management 
OLS 
Simulation 
GLS (heteroskedastici ty) 
Instrumental variables 
Linear panel data 
Logit and probit models 
Tobit model 

Chapter 1.1-1.4 
Chapter 2.1-2 .4, 2 .6 
Chapter 3 .1-3 .6 
Chapter 4.6-4. 7 
Chapter 5.3 
Chapter 6 .2-6.3 
Chapter 8 
Chapter 14.1-14.4 
Chapter 16.1-16.3 

Although we provide considerable detail on Stata, the treatment is by no means 
complete. In particular, we introduce various Stata commands but avoid detailed listing 
and description of cmnmands as they are already well documented in the Stata manuals 
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and online help. Typically, we provide a pointer and a brief discussion and often an 
example. 

As much as possible, we provide template code that can be adapted to other prob­
lems. Keep in mind that to shorten output for this book, our examples use many fewer 
regressors than necessary for serious research. Our code often suppresses intermedi­
ate output that is important in actual research , because of extensive use of command 
quietly and options nolog, nodots, and noheader. And we minimize the use of graphs 
compared with typicai use in exploratory data analysis. 

We have used Stata 10, including Stata updates . 1  Instructions on how to obtain 
the datasets and the do-files used in this book are available on the Stata Press web 
site at http:/ /www.stata-press.com/data/mus.html .  Any corrections to the book will 
be documented at http:/  /www.stata-press.com/books/mus.html. 

We have learned a lot of econometrics, in addition to learning Stata, during this 
project. Indeed, we feel strongly that an effective learning tool for econometrics is 
hands-on learning by opening a Stata dataset and seeing the effect of using different 
methods and variations on the methods, such as using robust standard errors rather than 
default standard errors. This method is beneficial at all levels of ability in econometrics. 
Indeed, an efficient way of familiarizing yourself with Stata's leading features might be 
to execute the co=ands in a relevant chapter on your own dataset. 

We thank the many people who have assisted us in preparing this book. The project 
grew out of our 2005 book, and we thank Scott Parris for his expert handling of that 
book. Juan Du, Qian Li, and Abhijit Ramalingam carefully read many of the book 
chapters. Discussions with John Daniels, Oscar Jorda, Guido Kuersteiner, and Doug 
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obtain robust standard errors. A mid-2008 update of version 10 introduced new random-number 
fLtnctions, such as runiform ( )  and rnormalO . 
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This chapter provides some of the basic information about issuing commands in  Stata. 
Sections 1 . 1-1.3 enable a first-time user to begin using Stata interactively. In this book , 
we instead emphasize storing these comm ands in a text file , called a Stata do-fi le ,  that is 
then executed. This is presented in section 1.4. Sections 1.5-1. 7 present more-advanced 
Stata material that might be skipped on a first reading. 

The chapter concludes with a summary of some commonly used Stata commands and 
with a template do-file that demonstrates many of the tools introduced in this chapter. 
Chapters 2 and 3 then demonstrate many of the Stata commands and tools used in 
applied microeconometrics. Additional features of Stata are introduced throughout the 
book and in appendices A and :i. 

1 . 1  I nteractive use 

Interactive use means that Stata commands are initiated from within Stata. 

A graphical user interface ( GUI) for Stata is available. This enables almost all Stata 
commands to be selected from drop-down menus. Interactive use is then especially easy, 
as there is no need to know in advance the Stata command.  

A l l  implementations of  Stata allow commands to  be directly typed in ;  for exam­
ple ,  entering summarize yields summary statistics for the current dataset. This is the 
primary way that Stata is used, as it is considerably faster than working through drop­
down menus. Fux:thermore, for most analyses, the standard procedure is to aggregate 
the various commands needed into one file called a do-file (see section 1 .4) that can be 
nm with or without interactive use. We therefore provide little detail on the Stata GUI. 

For new Stata users, we suggest entering Stata, usually by clicking on the Stata icon, 
opening one of the Stata example datasets, and doing some basic statistical analysis. 
To obtain example data, select File > Example Datasets . . . , meaning from the File 
menu, select the entry Example Datasets.. . .  Then click on the link to Example 
datasets installed with Stata. Work with the dataset aut o . dta; this is used in 
many of the introductory examples presented in the Stata documentation. F irst , select 
describe to obtain descriptions of the variables in the dataset. Second, select use to 
read the dataset into Stata. You can then obtain summary statistics either by typing 
summarize in the Command window or by selecting Statistics > Summaries) tables) 
and tests > Summary and descriptive statistics > Summary statistics. You 
can run a simple regression by typing regress mpg weight or by selecting Statistics 

1 
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> Linear models and related > Linear regression and then using the drop-down 
lists in the Model tab to choose mpg as the dependent variable and weight as the 
independent variable. 

The Stata manual [GS] Getting Started with Stata is very helpf1.u, especially [Gs] 
3 A sample session, which uses typed-in commands, and [Gs] 4 The Stata user 
interface. 

The extent to which you use Stata in interactive mode is really a personal preference. 
There are several reasons for at least occasionally using interactive mode. First, it can 
be useful for learning how to use Stata. Second, it can be useful for exploratory analysis 
of datasets because ym.: can see in real time the effect of, for example, adding or dropping 
regressors. If you do this, however, be sure to first start a session log file (see section 1.4) 
that saves the commands and resulting output. Third, you can use help and related 
commands to obtain online information about Stata commands. Fourth, one way to 
implement the preferred method of running do-files is to use the Stata Do-file Editor in 
interactive mode. 

Finally, components of a given version of Stata, such as version 10, are periodically 
updated. Entering update query determines the current update level and provides the 
option to install official updates to Stata. You can also install user-written commands 
in interactive mode once the relevant software is located using, for example, the findi t 
command. 

1 . 2  Documentation 

Stata documentation is extensive; you can find i t  i n  hard copy, i n  Stata (online ),  or on 
the web. 

1 .2 .1  Stata manuals 

For first-time users, see [Gs] Getting Started with Stata. The most useful manual is [u] 
User's Guide. Entries within manuals are referred to using shorthand such as [u] 11.1.4 
in range, which denotes section 11 .1.4 of [u] User's Guide o n  the topic in range. 

Many commands are described in [R] Base Reference Manual, which spans three 
volumes. For version 10,  these are A-H, 1-P, and Q-Z. Not all Stata commands appear 
here, however, because some appear instead in the appropriate topical manual. These 
topical manuals are [D] Data Management Reference Manual, [G] Graphics Reference 
Manual, [M] Mata Reference Manual (two volumes) ,  [Mv] Multivariate Statistics Refer­
ence Manual, [P] Programming Reference Manual, [ST] Survival Analysis and Epidemio­
logical Tables Reference Manual, [svY] Survey Data Reference Manual, [TS] Time-Series 
Reference Manual, and [XT] Longjtudinal/Panel-Data Reference Manual. For example, 
the generate command appears in [D] generate rather than in [R]. 

For a complete list of documentation, see [u] 1 Read this-it will help and also 
[r] Quick Reference and Index. 
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1.2.2 Additional Stata resources 

The Stata Journal (sJ) and its predecessor, the Stata Technical Bulletin (STi�), present 
examples and code that go beyond the current installation of Stata. SJ articles over 
three years old and all ST� articles are available online· from the Stata web site at no 
charge. You can fi nd this material by using various Stat a help commands given later in 
this section, and you can often install code as a free user-written command. 

The Stat a web site has a lot of information. This inc! udes a summary of what Stat a 
does. A good place to begin is http :/ /www .stata.com/support/. In particular, see the 
answers to frequently asked questions (FAQs ). 

• 

The University of California-Los A ngeles web site 
http:/ /www.ats.ucla.edu/STAT /stata/ provides many Stata tutorials. 

1 .2 .3 The help command 

Stata has extensive help available once you are i n  the program. 

The help command is most useful if you already know the name of the command 
for which you need help . For example, for help on the regress command, type 

. help regress 
(output omitted) 

Note that here and elsewhere the dot ( . ) is not typed in but is provided to enable 
distinction between Stata commands (preceded by a dot) and subsequent Stat a output, 
which appears with no dot. 

The help command is also useful if you know the class of commands for which you 
need help . For example, for help on functions, type 

help function 

(output omitted) 

(Continued on next page) 
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Often, however, you need to start with the basic help command, which will open 
the Viewer window shown in figure 1 .1 .  

help 

Top 

Cat:eqot'y 1 isti ngs 
Basics 

language syntax� ex:pressions and functions, 

om:a � 
inp�..ttting, editing, creating new variabl es ,  

scat.iS'l.ics 
summary stat:i� ics, 'tables, es'tirna:rion, 

Gr...,trics 
scat:te:rplots, bar chcu··ts� . . .  

wogrimlling ..-.1 caatr·ic.es 
do-fi l es ,  ado-f i l e s ,  Mat:a, mat r i c es  

·� t'ne li:;t;ing;; 

l..- S}Irl<ax 
acrvi ce: on tn'hat t:o "type 

__..,, �  
do-wnload da:tasets from the Reference manuals 

!'!���������� 1: .1J 

Figure 1.1 .  Basic help contents 

For further details, click cin a category and subsequent subcategories. 

For help with the Stata matrix programming language, Mata, add the term mata 
after help. Often, for Mata, it is necessary to start with the very broad command 

help mata 

(output omitted ) 

and then narrow the results by selecting the appropriate categories and subcategories. 

1 . 2 .4  The search, findit, and hsearch commands 

There are several search-related commands that do not require knowledge of command 
names. 

For example, the search command does a keyword search. It is especially useful if 
you do not know the Stata command name or if you want to find the many places t hat 
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a command or method might be used. The default for search is to obtain information 
from official help files; FAQs, examples, the SJ, and the STB but not from Internet 
sources. For example, for ordinary least squares (OLS) the command 

search ols 

(output omitted) 

finds references in the manuals [R], [Mv] , [svv], and [XT] ; in FAQs; in examples; and 
in the SJ and the STB. It also gives help commands that you can click on to get 
further information without the need to consult the manuals. The net search command 
searches the Internet for installable packages, including code from the SJ and the STB. 

The findi t command provides the broadest possible keyword search for Stat a­
related information. You can obtain details on this command by typing help findi t. 
To find information on weak instruments, for example, type 

findit weak instr 
(output omitted) 

This finds joint occurrences of keywords beginning with the letters "weak" and the 
letters "instr" . 

The search and findi t commands lead to keyword searches only. A more detailed 
search is not restricted to keywords. For example, the hsearch command searches all 
words in the help files (extension . sthlp or . hlp) on your computer, for both official 
Stata commands and user-written commands. Unlike the findi t command, hsearch 
uses a whole word search. For example, 

hsearch weak instrument 
(output omitted) · 

actually leads to more results than hsearch weak instr. 

The hsearch command is especially useful if you are unsure whether Stata can 
perform a particular task. In that case, use hsearch first, and if the task is not found, 
then use findi t to see if someone else has developed Stata code for the task. 

1.3 Command syntax and operators 

Stata command syntax describes the rules of the Stata programming language. 

1 .3 . 1  Basic command syntax 

The basic command syntax is almost always some subset of 

[prefix : ] command [ varlist ] [ = exp ] [ if ]  [ in ]  [ weight ] 
[ using filename ] .. [ ,  options ] 
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The square brackets denote qualifiers that in most instances are optionaL ·words in 
the typewriter font are to be typed into Stata like they appear on the page. Italicized 
words are to be substituted by the user, where 

• prefix denotes a command that repeats execution of command or modifies the 
input or output of command, 

• command denotes a Stata command, 

• varlist denotes a list of variable names, 

• exp is a mathematical expression, 

• weight denotes a weighting expression, 

• filename is a filename, and 

• options denotes one or more options that apply to command. 

The greatest variation across commands is in the available options. Commands 
can have many options, and these options can also have options, which are given in 
parentheses. 

Stata is case sensitive. We generally use lowercase throughout, though occasionally 
we use uppercase for model names. 

Commands and output are displayed following the style for Stata manuals. For 
Stata commands given in the text , the typewriter font is used. For example, for OLS, 
we use the regress command. For displayed commands and output, the commands 
have the prefix . (a period followed by a space) , whereas output has no prefix. For 
!'data commands, tl_l.e prefix is a colon ( : ) rather than a period. Output from commands 
that span more than one line has the continuation prefL'< > (greater-than sign) . For a 
Stata or !'data program, the lines within the program do not have a prefix . 

1.3 .2 Example: The summarize command 

The summarize command provides descriptive statistics (e.g. , mean, standard deviation) 
for one or more variables. 

You can obtain be syntax of summarize by typing help summarize. This yields 
output including 

summarize [ varlist ]  [ if ]  [ in ]  [ weight ] [ , options ] 

It follows that, at the minimum, we can give the command without any qualifiers. Unlike 
some commands, s=arize does not use [ "'  exp ] or [ using filename ] .  

As an example, we use a commonly used, illustrative dataset installed with Stata 
called auto . dta, which has information on various attributes of 74 new automobiles. 
You ca.n read this dataset into memory by using the sysuse command, which accesses 
Stata-installed datasets. To read in the data and obtain descriptive statistics, we type 
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. sysuse aut o . dta 
(1978 Automobile Data) 

summarize 
Variable Obs Mean Std. Dev. Min Max 

make 0 
price 74 6165 . 257 2949. 496 3291 15906 

mpg 74 2 1 . 2973 5 . 785503 12 41 
rep78 69 3 . 405797 . 9 899323 1 5 

headroom 74 2 . 993243 .8459948 1 . 5  5 

trunk 74 13 .75676 4 . 277404 5 23 
<Jeight 74 3019 . 459 777. 1936 1760 4840 
length 74 187 . 9 324 22. 26634 142 233 

turn 74 39 . 64865 4 . 399354 31 51  
displacement 74 197. 2973 9 1 . 83722 79 425 

gear_ratio 74 3. 014865 .4562871 2 . 19 3 . 89 
foreign 74 .2972973 .4601885 0 

The dataset comprises 12 variables for 74 automobiles. The average price of the au­
tomobiles is $6,165, and the standard deviation is $2,949. The column Obs gives the 
number of observations for which data are available for each variable. The make vari­
able has zero observations because it is a string (or text) variable giving the make of the 
automobile, and summary statistics are not applicable to a nonnumeric variable. The 
rep78 variable is available for only 69 of the 7 4 observations. 

A more focused use of summarize restricts attention to selected variables and uses 
one or more of the available options. For example, 

summarize mpg price weight , separator ( l )  

Variable Obs Mean Std. Dev. Min Max 

mpg 74 2 1 . 2973 5 . 785503 12 41 

price 74 6165.257 2949.496 3291 15906 

weight 74 3019.459 777. 1936 1760 4840 

provides descriptive statistics for the mpg, price, and weight variables. The option 
separator ( 1 )  inserts a line between the output for each variable. 

1.3.3 Example: The regress command 

The regress command implements OLS regression. 

You can obtain the synta.'C of regress by typing help regress .  This yields output 
including 

regress depvar [ indepvars ] [ if ]  [ in ]  [ weight ] [ , options ] 
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It follows that, at the minimum , we need to include the variable name for the dependent 
variable (in that case, the regression is on an intercept only) . Although not explicitly 
stated, prefixes can be used. Many estimation commands have similar syntax. 

Suppose that we want to run an OLS regression of the mpg variable (fuel economy in 
miles per gallon) on price (auto price in dollars) and weight (weight in pounds) . The 
basic command is simply 

regress mpg price �eight 

Source ss d.f MS Number of obs 74 
F (  2 ,  7 1 )  6 6 . 8 5  

Model 1595. 93249 2 797. 966246 Prob > F 0 . 0000 
Residual 847. 526967 71 1 1 . 9369995 R-squared 0. 6531 

Adj R-squared = 0 . 6434 
Total 2443.45946 73 33. 4720474 Root MSE 3 . 455 

mpg Coef . Std. Err . t P> l t l  [95/. Coni. Inter<ral] 

price - . 0000935 . 0001627 -0 .57  0 . 567 - . 000418 . 0002309 
weight - . 0058175 . 0006175 -9 .42 0 . 000 - . 0070489 - . 0 045862 

cons 39. 43966 1 . 621563 24.32 0.000 3 6 . 20635 42 . 67296 

The coefficient of - . 0058175 for weight implies that fuel economy falls by 5 .8 miles per 
gallon when the car's weight increases by 1,000 pounds. 

A more complicated version of regress that demonstrates much of the command 
syntax is the following: 

by foreign: regress mpg price weight if weight < 4000, vce (robust) 
(out put omitted ) 

For each value of the foreign variable, here either 0 or 1, this conunand fi.ts distinct OLS 
regressions of mpg on price and weight. The if qualifier limits the sample to cars with 
weight less than 4,000 pounds. The vce (robust) option leads to heteroskedasticity­
robust standard errors being used. 

Output from commands is not always desired. We can suppress output by using the 
quietly prefix. For example, 

. quietly regress mpg price weight 

The quietly prefi.."< does not require a colon, for historical reasons, even though it is 
a command prefix. In this book, we use this pretL, extensively to suppress extraneous 
output. 

The preceding examples used one of the available options for regress. From help 
regress, we fi nd that the regress command has the following options: noconstant, 
hascons, tsscons, vee (vcetype) ,  leve l ( # ) ,  beta, eform(string ) , noheader, plus, 
depname (varna me) , and msel. 
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1.3. 4 Abbreviations, case sensitivity, and wildcards 

9 

Commands and parts of commands can be abbreviated to the shortest string of charac­
ters that uniquely identify them, often just two or three characters. For example, we can 
shorten summarize to su. For expositional clarity, we do not use such abbreviations in 
this book; a notable exception is that we may use abbreviations in the options to graph­
ics commands because these commands can get very lengthy. Not using abbreviations 
makes it much easier to read your do-files. 

Variable
· 
names can be up to 32 characters long, where the characters can be A-Z, 

a-z, 0-9, and _ (underscore). Some names, such as in, are reserved. Stata is case 
sensitive, and the norm is to use lowercase. 

We can use the wildcard * (asterisk) for variable names in commands, provided 
there is nb ambiguity such as two potential variables for a one-variable command. For 
example, 

summarize t* 
Variable 

trunk I turn 

Dbs 

74 
74 

Mean 

13 . 75676 
39. 64865 

Std. Dev. 

4 . 277404 
4 . 399354 

Min 

5 
31 

Max 

23 
51 

provides summary statistics for all variables with names beginning with the letter t. 
\i\There ambiguity may arise, wildcards arc not permitted. 

1.3.5 Arithmetic, relational, and logical operators 

The arithmetic operators in Stata are + (addition) , - (subtraction) , * (multiplication), 
I (division) ,  - (raised tG a power), and the prefix - (negation). For example, to compute 
and display -2 x {9/(8 + 2 - 7)p, which simplifies to -2 x 32 , we type 

. display - 2*(9/ (8+2-7 ) ) -2 
-18  

If the arithmetic operation is not possible, or data are not available to perform the 
operation, then a missing value denote by . is displayed. For example, 

. display 2/0 

The relational operators are > (greater than), < (less than), >= (gTeater than or 
equal), <= (less than or equal), == (equal ) ,  and ! = (not equal ) .  These are the obvious 
symbols, except that a pair of equal-signs is used for equality, and ! = denotes not equal. 
Relational operators are often used in if qualifi ers that define the sample for analysis. 

Logical operators return 1 for true and 0 fodalse. The logical operators are & (and) , 
I (or), and ! (not). The operator - can be used in place of ! . Logical operators are 
also used to define the sample for analysis. For· example,  to restrict regression analysis 
to smaller less expensive cars, type 
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regress mpg price weight if weight <= 4000 & price <= 10000 

(output omitted) 

The string operator + is used to concatenate two strings into a single, longer string. 

The order of evaluation of all operators is ! (or - ) , -, - (negation) , I, *, - (subtrac­
tion) , + , ! = (or -= ) , > , < , <=, >=, ==, &,  and I .  

1.  3. 6 Error messages 

Stata produces error messages when a command fails. These messages are brief, but a 
fuller explanation can be obtained from the manual or directly from Stata. 

For example, if we regTeSS mpg on notthere but the notthere variable does not 
exist, we get 

. regress mpg notthere 
variable notthere not found 
r ( 1 1 1 ) ; 

Here r ( 1 1 1 )  denotes return code 1 1 1 .  You can obtain further details by clicking on 
r ( 1 1 1 )  ; if in interactive mode or by typing 

search rc 111 

(output omitted) 

1 .4  Do-files and log files 

For Stata analysis requiring many commands, or requiring lengthy commands, it  is best 
to collect all the commands into a program (or script) that is stored in a text file called 
a do-file. 

In this book, we perform data analysis using a do-file. We assume that the do-fi le 
and, if relevant, any input and output fi les are in a common directory and that Stata 
is executed from that directory. Then we only need to provide the filename rather than 
the complete directory structure. For example , we can refer to a fi le as mus02dat a .dta 
rather than c :  \mus\chapter2\mus02da ta .  d ta. 

1 .4 .1  Writing a do-file 

A do-fi.le is a text file with extension . do that contains a series of Stat a commands. 

As an example, we write a two-line program that reads in the Stata example dataset 
auto . dta and then presents summary statistics for the mpg variable that we already 
know is in the dc1.taset. The commands are sysuse auto . d ta, clear, where the clear 
option is added to remove the current dataset from memory, and summarize mpg. The 
two commands are to be collected into a command file called a do-file. The filename 
should include no spaces, and the fi le extension is . do. In this example, we suppose this 
fi le is given the name example . do and is stored in the current working directory. 
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To see the current directory, type c d  without any arguments. To change t o  another 
directory, cd is used with an argument. For example, in Windows, to change to the 
directory c :  \Program Files\Stata10\, we type 

. cd " c :  \Program Files\Sta ta10" 
c : \Program Files\Stata10 

The directory name is given in double quotes because it includes spaces. Otherwise, the 
double quotes are unnecessary. 

One way to create the do-file is to start Stata and use the Do-file Editor. Within 
Stata, we select Window > Do-file Editor > New Do-file, type in the commands, 
and save the do-file. 

Alternatively, type in the commands outside Stata by using a preferred text editor. 
Ideally, this text editor supports multiple windows, reads large files ( datasets or output), 
and gives line numbers and column numbers. 

The type command lists the contents of the file. We have 

. type example . do 
sysuse auto . dta, clear 
summarize mpg 

1.4.2 Running do-files 

You can run (or execute) an already-written do-file by using the Command window. 
Start Stat a and, in the Command window, change directory ( cd) to the directory that 
has the do-file, and then issue the do command. We obtain 

. do example. do 

. sysuse auto .dta, clear 
(1978 Automobile Data) 

summarize mpg 
Variable 1 

mpg I 
end of do-file 

Obs 

74 

Mean Std. Dev. Min Max 

21 . 2973 5 . 785503 12 41 

where we assume that example . do is in directory c :  \Program Files\Sta ta10\. 

An alternative method is to run the do-file from the Do-fi le Editor. Select Window 
> Do-file Editor > New Do-file, and then select File > Open . . .  and the appropriate 
fi le, and finally select Tools > Do. An advantage to using the Do-fi le Editor is that 
you can highlight or select just part of the do-file. and then execute this part by selecting 
Tools > Do Selection. 

You can also run do-files noninteractively, using batch mode. This initiates Stata, 
executes the commands in the do-file, and (optionally) exits Stata. The term batch 
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mode is a throwback to earlier times when each line of a program was entered on a 
separate computer card, so that a program was a collection or "batch" of computer 
cards. For example, to run example . do in batch mode, double-click on example . do in 
Windows Explorer. This initiates Stata and executes the file's Stata commands. You 
can also use the do command. (In Unix, you would use the stata -b examp l e . do 
command.) 

It can be useful to include the set more o f f  command at the start of a do-file so 
that output scrolls continuously rather than pausing after each page of output. 

1.4.3 log files 

By default, Stata output is sent to the screen. For reproducibility, you should save this 
output in a separate S.le. Another advantage to saving output is that lengthy ·output 
can be difficult to read on the screen; it can be easier to review results by viewing an 
output file using a text editor. 

A Stata output file is called a log file. It stores the commands in addition to the 
output from these cor..1mands . The default Stata extension for the file is . lo g, but you 
can choose an alternative extension, such as . txt. An extension name change may be 
worthwhile because several other programs, such as 13-1£X compilers, also create files 
with the . log extension. Log files can be read as either standard text or in a special 
Stata code called smcl (Stata Markup and Control Language) . We use text throughout 
this book, because it is easier to read in a text editor. A useful convention can be to 
give the log the same filename as that for the do-file. For example, for example . d o ,  we 
save the output as example . txt. 

A log file is created by using the log command. In a typical analysis, the do-file will 
change over time, in which case the output fi le will also change. The Stata default is 
to protect against an existing log being accidentally overwritten. To create a log file in 
text form named example . txt, the usual command is 

. log using example. txt, text replace 

The replace option permits the existing version of example . txt, if there is one, to be 
overwritten. Without replace, Stata will refuse to open the log file if there is already 
a file called example .  txt. 

In some cases, we may not want to overwrite the existing log, in which case we 
would not specify the replace option. The most likely reason for preserving a log is 
that it contains important results, such as those from final analysis. Then it can be 
good practice to rename the log after analysis is complete. Thus example . txt might 
be renamed example07052008 . txt. 

When a program is finished, you should close the log file by typing log clos e .  

T h e  l o g  can be very lengthy. If you need a hard copy, you can edit the log to 
include only essential results. The text editor you use should use a monospace font such 
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as Courier New, where each character takes u p  the same space, so that output table 
columns will be properly aligned. 

The log file includes the Stata commands, with a dot ( . )  prefix, and the output. 
You can use a log file to create a do-fi le, if a do-file do�s not already exist, by deleting 
the dot and all lines that are command results (no dot) .  �y this means, you can do 
initial work using the Stata GUI and generate a do-file from the session, provided that 
you created a log file at the beginning of the session. 

1.4.4 A three-step process 

Data analysis using Stata can repeatedly use the following three-step process: 

1. Create or change the do-:6le. 

2. Execute the do-file in Stata. 

3. Read the resulting log with a text editor. 

The initial do-file can be written by editing a previously written do-file that is a useful 
template or starting point, especially if it uses the same dataset or the same commands 
as the current analysis. The resulting log may include Stata errors or estimation results 
that lead to changes in the original do-file and so on. 

Suppose we have fitted several models and now want to fi.t an additional modeL In 
interactive mode, we would type in the new command, execute it, and see the results. 
Using the three-step process, we add the new command to the do-file, execute the do­
file, and read the new output. Because many Stata programs execute in seconds, this 
adds little extra time compared with using interactive mode, and it has the benefit of 
having a do-file that can be modified for later use. 

1.4.5 Comments and long lines 

Stata do-files can include comments. This can greatly increase understanding of a 
program, which is especially useful if you return to a program and its output a year or 
two later. Lengthy single-line comments can be allowed to span several lines, ensuring 
readability. There are several ways to include comments: 

• For single-line comments, begin the line with an asterisk ( * ); Stata ignores such 
lines. 

• For a comment on the same line a8 a Stata command, use two slashes (//) after 
the Stata command. 

• For multiple-line comments, place the coi:nmented text between slash-star (! * ) 
and star-slash (*/). 
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The Stata default is to view each line as a separate Stata command, where a line 
continues until a carriage return (end-of-line or Enter key) is encountered. Some com­
mands, such as those for nicely formatted graphs, can be very long. For readability, 
these commands need to span more than one line. The easiest way to break a line at, 
say, the 70th colwnn is by using three slashes (///) and then continuing the command 
on the next line. 

The following do-file code includes several comments to explain the program and 
demonstrates how to allow a command to span more than one line. 

* Demonstrate use of comments 
* This program reads in system file auto . dta and gets scmmary statistics 
clear II Remove data from memory 
* The next code shows how to allow a single command to span two lines 
sysuse I I I 
auto. dta 
summarize 

For long commands, you can alternatively use the command #delimit command. 
This changes the delimiter from the Stata default, which is a carriage return ( i .e . ,  end­
of-line), to a semicolon. This also permits more than one command on a single line. 
The following code changes the delimiter from the default to a semicolon and back to 
the default: 

* Change delimiter from cr to semicolon and back to cr 
#delimit 
* More than one command per line and command spans more than one line; 
clear; sysuse 
auto .d ta; summarize ;  
#delimit cr 

We recommend using Ill instead of changing the delimiter because the comment 
method produces more readable code. 

1.4.6 Different implementations of Stata 

The different platforms for Stata share the same command syntax; however, commands 
can change across versions of Stata. For this book, we use Stata 10. To ensure that 
later versions of Stata will continue to work with our code, we include the version 10 
command near the beginning o f  the do-file. 

Different implementations of Stata have different limits. A common limit encoun­
tered is the memory allocated to Stata, which restricts the size of dataset that can be 
handled by Stata. The default is small, e.g., 1 megabyte, so that Stata does not occupy 
too much memory, permitting other tasks to run while Stata is used. Another common 
limit is the size of matrix, which limits the number of variables in the dataset . 
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You can increase or decrease the limits with the set command. For example, 

. set matsize 300 

sets the maximum number of variables in an estimation command to 300. 

The ma.--::imum possible values vary with the version ofStata: Small Stata, Stata/IC, 
StatafSE, or Stata/MP. The help limits command provides details on the limits for 
the current implementation of Stata. The query and creturn list commands detail 
the current settings. 

1 .5 Scalars and matrices 

Scalars can store a single number or a single string, and matrices can store several 
numbers or strings as an array. We provide a very brief introduction here, sufficient for 
use of the scalars and matrices in section 1 . 6 .  

1.5. 1 Scalars 

A scalar can store a single number or string. You can display the content.s of a scalar 
by using the display command. 

For example, to store the number 2 x 3 as the scalar a and then display the scalar, 
we type 

* Scalars: Example 
scalar a � 2*3 
scalar b = 11 2  times 3 = • t  

display b a 
2 times 3 = 6 

One common use of scalars, detailed in section 1.6, is to store the scalar results 
of estimation commands that <:an then be accessed for use in subsequent analysis. In 
section 1. 7, we discuss the relative merits of using a scalar or a macro to store a scalar 
quantity. 

1.5.2 Matrices 

Stata provides two distinct ways to use matrices, both of which store several numbers or 
strings as an array. One way is through Stata commands that have the matrix prefix. 
More recently, beginning with version 9, Stat a includes a matrix programming language, 
Mata. These two methods are presented in, respectively, appendices A and � .  

The following Stata code illustrates the definition of  a specific 2 x 3 matrix, the 
listing of the matrix, and the extraction and display of a specific element of the matrix. 



16 Chapter 1 Stata basics 

. • Matrix commands : Example 

. matrix define A = ( 1 , 2 , 3  \ 4 , 5 , 6 )  

. . matrix list A 
A [ 2 , 3] 

c1 c2 c3 
r1 1 2 3 
r2 4 5 6 

scalar c = A [ 2,3]  

display c 
6 

1 .6  Using results from Stata commands 

One goal of  this book is to  enable analysis that uses more than just Stata built-in com­
mands and printed output. Much of this additional analysis entails further computations 
after using Stata commands. 

1 .6.1 Using results from the r-class command summarize 

The Stata commands that analyze the data but do not estimate parameters are r-class 
commands. All r-class commands save their results in r( ) .  The contents of r ( ) vary 
with the command and are listed by typing return list.  

As an example, we list the results stored after using summarize: 

• Illustrate use of return list for r-class command summarize 
summarize mpg 

Variable 1 
mpg / 

return list 
scalars: 

Dbs 

74 

r (N) = 74 
r ( sum_w) 74 

Mean Std. Dev. 

2 1 . 2973 5 . 785503 

r(mean) 2 1 . 2972972972973 
r(Var) 33 . 47204738985561 

r(sd) 5 . 785503209735141 
r (min) 12 
r(max) 41 
r(sum) = 1576 

Min 

12 

Max 

41 

There are eight separate results stored as  Stata scalars with the names r (N) , r(sum_>J ) ,  
. . .  , r (sum) . These are fairly obvious aside from r(sul!L>J ) ,  which gives the sum of the 
weights. Several additional results are returned if the detail option to summarize is 
used; see [R] summarize. 
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The following code calculates and displays the range of the data: 

• Illustrate use of r( )  
quietly summarize mpg 
scalar range � r (max) - r(min) 
display "Sample range � " range 

Sample range � 29 
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The results in r () disappear when a subsequent r-class or e-class command is exe­
cuted. We can always save the value as a scalar. It can be particularly useful to save 
the sample mean. 

• Save a result in r ( )  as a scalar 
. scalar mpgmean � r (mean) 

1.6.2 Using results from the e-dass command regres� 

Estimation commands are e-class commands (or estimation-class commands) ,  such as 
regress. The results are stored in e ( ) , the contents of which you can view by typing 
ereturn list.  

A leading example is regress for OLS regression. For example, after typing 

regress mpg price weight 
Source ss df MS 

Model 1595 . 93249 2 797. 966246 
Residual 847.526967 7 1  1 1 . 9369995 

Total 2443 .45946 73 33. 4720474 

mpg . Coef . Std. Err . t 

price - . 0000935 . 0001627 -0 .57  
weight - . 0058175 . 0006175 -9 . 42 

cons 39 . 43966 1 . 621563 24.32 

ereturn list yields 

. • ereturn list after e-class command regress 

. ereturn list 

scalars: 
e(N) 74 

e (df_m) 2 
e (df_r) 71 

e(F) 6 6 . 84814256414501 
e (r2) .6531446579233134 

e (rmse) � 3 . 454996314099513 
e (mss) 1595 .932492798133 
e (rss) 847.5269666613265' 

e (r2_a) . 6433740849070687 
e( ll) - 195.2 169813478502 

e (11_0) -234. 3943376482347 

Number of obs � 74 
F( 2 ,  7 1 )  66 .85 
Prob > F 0 . 0000 
R-squared 0 .  6531 
Adj R-squared � 0 . 6434 
Root MSE 3.455 

P> l t l  [95/. Conf .  Intel:'Val] 

0 . 567 - . 000418 .0 002309 
0 . 000 - . 0070489 - . 0045862 
0 . 000 36. 20635 42. 67296 
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macros: 

matrices: 

e (cmdline) 
e (title) 

e (vce) 
e (depvar) 

e (cmd) 
e (properties) 

e(predict) 
e (model) 

e (estat_c;md) 

"regress mpg price weight" 
''Linear regression•• 
�·ols 11 
"mpgu 
"regress�• 
"b V 11 
11regres_p" 

11regress_esta t" 

e (b )  x 3 
e(V)  3 X 3 

functions: 
e(sample) 

Cbapter 1 Stata basics 

The key numeric output in the analysis-of-variance table is stored as scalars. As 
an example of using scalar results, consider the calculation of R2. The model sum of 
squares is stored in e (mss ) ,  and the residual sum of squares is stored in e (rss ) , so that 

* Use of e () <Jhere scalar 
scalar r2 = e (mss )/ ( e(mss)+e(rss ) )  

display "r-squared = " r2 
r-squared = . 65314466 

The result is the same as the 0.6531 given in the original regression output. 

The remaining numeric output is stored as matrices. Here we present methods to 
extract scalars from these matrices and manipulate them. Specifically, we obtain the OLS 
coefficient of price from the 1 x 3 matrix e (b) , the estimated variance of this estimate 
from the 3 x 3 matrix e (V) , and then we form the t statistic for testing whether the 
coefficient of price is zero: 

* Use of e ( )  where matrix 
matrix best = e(b)  
scalar bprice = best [ 1 , 1] 
matrix Vest = e(V) 

scalar Vprice = Vest [ 1 , 1] 
scalar tprice = bprice/sqrt(Vprice) 
display "t statistic for H O :  b_price = 0 i s  " tprice 

t statistic for HO: b_price = 0 is - . 57468079 

The result is the same as the -0.57 given in the original regression output. 

The results in e 0 disappear when a subsequent e-class command is executed. How­
ever, you can save the results by using estimates store, detailed in section 3.4.4. 
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1 . 7 Global and local macros 

A macro is a string of characters that stands for another string of characters. For 
example, you can use the macro xlist in place of "price weight " . This substitution 
can lead to code that is shorter, easier to read, and that can be easily adapted to similar 
problems. 

Macros can be global or local. A global macro is accessible across Stata do-files or 
throughout a Stata session. A local macro can be accessed only within a given do-file 
or in the interactive session. 

1.7.1 Global macros 

Global macros are the simplest macro and are adequate for many purposes. We use 
global macros extensively throughout this book. 

Global macros are defined with the global command. To access what was stored in 
a global macro, put the character $ immediately before the macro name. For example, 
consider a regression of the dependent variable mpg on several regressors, where the 
global macro xlist is used to store the regressor list. 

* Global macro definition and use 
global xlist price weight 
regress mpg $xlist , noheader 

mpg 

price 
<Jeight 

_cons 

Coef . S td.  Err. 

- . 0000935 .0001627 
- . 0058175 . 0006175 

39 .43966 1 .  621563 

II $ prefix is necessary 

t P> l  t l  

-0 .57  0 . 567 
- 9 . 42 0 . 000 
24.32 0.  000 

[95/. Conf. Interval] 

- . 000418 . 0002309 
- . 0070489 - . 0045862 

3 6 . 20635 42. 67296 

Global macros are frequently used when fitting several different models with the same 
regressor list because they ensure that the regressor list is the same in all instances and 
they make it easy to change the regressor list. A single change to the global macro 
changes the regressor list in all instances. 

A second example might be where several different models are fi tted, but we want to 
hold a key parameter constant throughout. For example, suppose we obtain standard 
errors by using the bootstrap. Then we might define the global macro nbreps for the 
number of bootstrap replications. Exploratory data analysis might set nbreps to a 
small value such as .so to save computational time, whereas final results set nbr eps to 
an appropriately higher value such as 400. 

A third example is to highlight key program parameters, such as the variable used 
to defi11e the cluster if cluster-robust standard errors are obtained. �y gathering all 
such global macros at the start of the program, it can be clear what the settings are for 
key program parameters. 
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1 .  7.2 local macros 

Local macros are defined with the local command. To access what was stored in the 
local macro, enclose the macro name in single quotes. These quotes differ from how 
they appear on this printed page. On most keyboards, the left quote is located at the 
upper left, under the tilde, and the right quote is located at the middle right, under the 
double quote. 

As an example of a local macro, consider a regression of the mpg variable on several 
regressors. We define the local macro xlist and subsequently access its contents by 
enclosing the name in single quotes as - xlist · . 

• Local macro definition and use 
local xlist 
regress mpg 

mpg 

price 
<Jeight 

_cons 

11price '-leigh t 11 

· xlist · , noheader II 

Coef . Std. Err. 

- .  0000935 . 0001627 
- . 0058175 . 0006175 

3 9 . 43966 1 .  621563 

single quotes are necessary 

t P> J t l  [95/. Coni.  Interval] 

-0 . 57 0 . 567 -.  000418 . 0002309 
-9 .42  0 . 000 - . 0070489 - . 0045862 
24.32 0.000 3 6 . 20635 42 . 67296 

The double quotes used in defining the local macro as a string are unnecessary, which 
is why we did not use them in the earlier global macro example. Using the double quotes 
does emphasize that a text substitution has been made. The single quotes in subsequent 
references to xlist are necessary. 

We could also use a macro to define the dependent variable. For example, 

• Local macro definition <Jithout double quotes 
local y mpg 

regress y "xlist · ,  noheador 

mpg 

price 
<Jeight 

_cons 

Cocf . Std. Err. 

- . 0000935 . 0001627 
- . 0058175 . 0006175 

39 . 43966 1 . 621563 

t P> l t l  

-0 . 57 0 . 567 
-9 .42  0 .  000 
24.32 0 . 000 

[95/. Conf . Interval] 

- . 000418 . 0002309 
- . 0070489 - . 0045862 

36 . 20635 42 . 67296 

Note that here - y · is not a variable with N observations. Instead, it is the string mpg. 
The regress command simply replaces · y • with the text mpg, which in turn denotes a 
variable that has N observations. 

We can also defi.ne a local macro through evaluation of a function. For example, 

4 

• Local macro definition through function evaluation 
local z = 2+2 

display ' z '  
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leads to ' z'  being the string 4 .  Using the equality sign when defining a macro causes the 
macro to be evaluated as an expression. For numerical expressions, using the equality 
sign stores the result of the expression and not the characters in the expression itself 

in the macro. For string assignments, it is best not to use the equality sign. This is 

especially true when storing lists of variables in macros. Strings in Stata expressions 
can contain only 244 characters, fewer characters than many variable lists. Macros 
assigned without an equality sign can hold 165,200 characters in Stata/IC and 1 ,081 ,511 
characters i i?- Stata/MP and Stata/SE. 

Local macros are especially usefLll for programming in Stata; see appendix A. Then, 
for example, you can use ' y - and · x - as generic notation for the dependent variable 
and regressors, making the code easier to read. 

Local macros apply only to the current progTam and have the advantage of no 
potential conflict with other programs. They are preferred to. global macros, unless 
there is a compelling reason to use global macros. 

1.  7.3 Scalar or macro? 

A macro can be used in place of a scalar, but a scalar is simpler. Furthermore, [P] scalar 
points out that using a scalar will usually be faster than using a macro, because a macro 
requires conversion into and out of internal binary representation. Tbis reference also 
gives an example where macros lead to a loss of accuracy because of these conversion::;. 

One drawback of a scalar, however, is that the scalar is dropped whenever clear 
all is used. By contrast, a macro is still retained. Consider the following example: 

• Scalars disappear after clear all but macro does not 
global b 3 

local c 4 
scalar d � 5 
clear 
display $b _ _  skip(3) ' c '  I I  display macros 

3 4 

. display d 
5 
. clear all 

I I display the scalar 

. display $b _skip(3) · c ·  II display macros 
3 4 

. display d 
d not found 
r(111 ) ; 

II display the scalar 

Here the scalar d has been dropped after clear all, though not after clear. 
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We use global macros in this text because there are cases in wbich we want the 
contents of our macros to be accessible across do-files. A second reason for using global 
macros is that the required $ prefix makes it clear that a global parameter is being used. 

1 .8  Looping commands 

Loops provide a way to repeat the same command many times. We use loops in  a 
variety of contexts throughout the book. 

Stata has three looping constructs: foreach, forvalues, and while. The foreach 
construct loops over items in a list, where the list can be a list of variable name:; (possibly 
given in a macro) or a :ist of numbers. The forval ues construct loops over consecutive 
values of numbers. A while loop continues until a user-specified condition is not met. 

We illustrate how to use these three looping constructs in creating the smn of f our 
variables, where each variable is created from the uniform distribution. There are many 
variations in the way you can use these loop commands; see [P] foreach, [P] forvalues, 
and [P] while. 

The generate command is used to create a new variable. The runiformO function 
provides a draw from the uniform distribution. Whenever random numbers are gener­
ated, we set the seed to a specific value with the set seed command so that subsequent 
runs of the same progTam lead to the same random numbers be:ng drawn. We have, for 
example, 

• Make artificial dataset of 100 observations on 4 uniform variables 
clear 
set cbs 100 

cbs was 0 ,  now 100 
set seed 10101 
generate x1var = runiform ( )  

generate x2var = runiform ( )  
generate x3var = runiform ( )  

generate x4var = runiform ( )  

vVe want t o  sum the four variables. The obvious way t o  do this is 

• Manually obtain the sum of four variables 
generate sum = x1var + x2var + x3var + x4var 

summarize sum 
Variable 1 Obs 

100 

Mean 

2 .  093172 

Std. Dev.  Min Max 

. 594672 .5337163 3 . 204005 

We now present several ways to use loops to progressively sum these variables. 
Although only four variables are considered here, the same methods can potentially be 
applied to hundreds of variables. 
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1 .8 . 1 The foreach loop 

We begin by using foreach to loop over items in a list of variable names. Here the list 
is xlvar, x2var, x3var, and x4var. 

The variable ultimately created will be called sum. Because sum already exists, we 
need to first drop sum and then generate sum=O. The replace sum=O command collapses 
these two steps into one step, and the quietly prefix suppresses output stating that 
100 observations have been replaced. Following this initial line, we use a foreach loop 
and additiorially use quietly within the loop to suppress output following replace. 
The program is 

* foreach loop with a variable list 
quietly replace sum = 0 

for·each var of varlist x1var x2var x3var x4var { 
2 .  quietly replace sum = sum + ·var·  
3 .  } 
summarize sum 

Variable Obs 

sum I 100 

Mean 

2 . 093172 

Std. Dev. Min Max 

. 594672 . 5337163 3 . 204005 

The result is the :;arne as that obtained manually. 

The preceding code is an example of a program (se� appendix A) with the { brace 
appearing at the end of the first line and the } brace appearing on its own at the lw;t 
line of the program. The numbers 2 .  and 3 .  do not actually appear in the program but 
are produced as output. In the foreach loop, we refer to each variable in the variable 
list varlist by the local macro named var, so that ' var· with single quotes is needed 
in subsequent uses of var. The choice of var as the local macro name is arbitrary and 
other names can be use-d. The word varlist is necessary, though type:; of lists other 
than variable lists z.re possible, in which case we use numlist, newlist, global, or 
local; see [P] foreach. 

An attraction of using a variable list is that the method can be applied when 
variable names are. 

not" sequential. For example, the variable names could have been 
incomehusband, incomewife, incomechild1, and incomechild2. 

1 .8 .2 The forvalues loop 

A forvalues loop iterates over consecutive values. In the following code, we let the 
index be the local n:acro i, and - i · with single quotes is needed in subsequent uses of 
i. The program 

* forvalues loop to create a swn of variables 
quietly replace sum = 0 
forvalues i = 1/4 { 
2 .  quietly replace sum = sum + x' i "var 
3 .  } 
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summarize sum 

Variable / Obs 

100 

produces the same result. 

Mean 

2 . 093172 
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Std. Dev. Min Max 

. 594672 .5337163 3 . 204005 

The choice of the name i for the local macro was arbitrary. In this example , the 
increment is one, but you can use other increments. For example, if we use forvalues 
i = 1 (2) 1 1 ,  then the index goes from 1 to 11 in increments of 2 .  

1.8.3 The while loop 

A while loop continues until a condition is  no longer met. Thi::; method i::; u::;ed when 
foreach and forvalues cannot be used. For completeness, we apply it to the summing 
example. 

In the following code, the local macro i is initialized to 1 and then incremented by 
1 in each loop; looping continues, provided that i ::; 4 .  

* While loop and local macros to create a sum of variables 
quietly replace sum = 0 

local i 1 
while ' i '  <a 4 { 
2 .  quietly replace sum a sum + x ' i 'var 
3 .  local i = ' i '  + 
4 .  } 

summarize sum 
Variable Obs 

sum ! 100 

Mean 

2. 093172 

1 .8 .4 The continue command 

Std.  Dev .  Min Max 

. 594672 . 5337163 3 . 204005 

The continue command provides a·way to prematurely cease execution of the current 
loop iteration. This :nay be usefnl if, for example, the loop includes taking the log of 
a number and we want to skip this iteration if the number is negative. Execution then 
resumes at the start of the next loop iteration, unless the break option is used. For 
details, see help continue. 

1 .  9 Some usefu I commands 

We have mentioned only a few Stata commands. See [U] 27.1 4 3  commands for a list 
of 43 commands that everyone will find useful. 
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1 .10 Template do-file 

The following do-file provides a template. It captures most of the features of Stata 
presented in this chapter, aside from looping commands. 

1 . 11  

• 1 .  Program name 
• mus01p2templat e . do written 2/15/2008 is a template do-file 
• 2. Write output to a log file 
log using mus01p2template.txt, text replace 
• 3. Stata version 
version 1 0 . 1  / / so will still run i n  a later version o f  Stata 
• 4 .  Program explanation 
• This illustrative program creates 100 uniform variates 
• 5 .  Change Stata default settings - two examples are given 
set more off I I scroll screen output by at full speed 
set mem 20m / / set aside 20 mb for memory space 
• 6 .  Set program parameters using global macros 
global numobs 100 
local seed 10101 
local xlist xvar 
• 7 .  Generate data and summarize 
set cbs $numobs 
set seed • seed· 
generate xvar runiformO 
generate yvar = xvar -2 
summarize 
• 8 .  Demonstrate use of results stored in r ( )  
summarize xvar 
display "Sample range = " r (max)-r (min) 
regress yvar 'xlist' 
scalar r2 = e (mss )/ (e (mss)+e(rss) ) 
display "r-squared = " r2 
• 9. Close output file and exit Stata 
log close 
exit, clear 

User-written commands 

We make extensive use of  user-written commands. These are freely available ado-files 
(see section A.2.8) that are easy to install, provided you are connected to the Internet 
and, for computer lab users, that the computer lab places no restriction on adding 
components to Stata. They are then executed in the same way as Stata commands. 

As an example, consider instrumental-variables (rv) estimation. In some cases, we 
know which user-written commands we want. For example, a leading user-written 
command for IV is i vreg2, and we type findi t i vreg2 to get it. More generally, we 
can type the broader command 

findit instrumental variables 
(output omitted ) 

This gives information on IV commands available both within Stata and packages avail­
able on the web, provided you are connected to the Internet. 
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Many entries are provided, often with several potential user-written commands and 
several versions of a given user-written command. The best place to begin can be a 
recent Stata. Journal article because this code is more likely to have been closely vetted 
for accuracy and written in a way suited to a range of applications. The listing from 
the findi t command includes 

SJ-7-4 st0030_3 . · 
. . . Enhanced routines for IV/GMM estimation and testing 

. . . . . . . . . . • . . C. F. Baum , M. E. Schaffer,  and S .  Stillman 
(help ivactest, ivendog, iv�ettest, ivreg2, ivreset, 
overid, ranktest if installed) 
Q4/07 SJ 7(4 ) : 465--506 
extension of IV and GMM estimation addressing hetero­
skedasticity- and autocorrelation-consistent standard 
errors , �eak instruments, LIML and k-class Gstimation, 
tests for endogeneity and Ramsey " s  regression 
specification-error test, and autocorrelation tests 
for IV estimates and panel-data IV estimates 

The entry means that it is the third revision of the package (st0030_3), and the package 
is discussed in detail in Stata Journal, volume 7, number 4 (SJ-7-4) .  

By left-clicking on the highlighted te:x.'t st0030_3 on the first line of the entry, you will 
see a new window with title, descriptionfauthor(s), and installation files for the package. 
By left-clicking on the help files, you can obtain information on the commands. By left­
clicking on the (click here to install) , you will install the fi.les into an ado-directory. 

1 . 1 2  Stata resources 

For first-time users, [ GS] Getting Started with Stata is very helpful, along with analyzing 
an example dataset such as auto .d ta interactively in Stata. The next source is [u] Users 
Guide, especially the early chapters. 

1 . 13  Exercises 

1. Find information on the estimation method clogi t using help, search, findi t, 
and hsearch. Comment on the relative usefulness of these search commands. 

2. Download the Stata example dataset auto . dta. Obtain summary statistics for 
mpg and weight according to whether the car type is foreign (use the by foreign: 
prefix) . Comment on any differences between foreign and domestic cars. Then 
regress mpg on weight and fore ign. Comment on any difference for foreign 
cars. 

3. Write a do-file to repeat the previous question. This do-file should include a log 
fi.le. Run the do-file and then use a text editor to view the log file. 

4. Using aut o . dta, obtain summary statistics for the price variable. Then use the 
results stored in r () to compute a scalar, cv, equal to the coefficient of variation 
(the standard deviation divided by the mean) of price. 
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5 .  Using aut o . dta, regress mpg on price and weight. Then use the results stored 
in e 0 to compute a scalar, r2adj , equal to R2. The adjusted R2 equals R3 - ( 1 -
R2) ( k- 1)/(N - k) ,  where N is the number of observations and k is the number of 
regTessors including the intercept. Also use the results stored in e 0 to calculate 
a scalar, tweight, equal to the t statistic to test that the coefficient of weight is 
zero. 

6. Using auto . dta, define a global macro named varlist for a variable list with mpg, 
price, ,and weight, and then obtain summary statistics for varlist. Repeat this 
exercise for a local macro named varlist. 

7. Using auto . dta, use a foreach loop to create a variable, total, equal to the sum 
of headroom and length. Confirm by using summarize that total has a mean 
equal to the sum of the means of headroom and length. 

S. Create a simulated dataset with 100 observations on two random variables that 
are each drawn from the uniform distribution. Use a seed of 12345 . In theory, 
these random variables have a mean of 0.5 and a variance of 1/12 .  Does this 
appear to be the case here? 
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2.1 Introduction 

The starting point of an empirical investigation based on microeconomic data is the col­
lection and preparation of a relevant dataset. The primary sources are often government 
surveys and administrative data. vVe assume the researcher has such a primary dataset 
and do not address issues of survey design and data collection. ·  Even given primary 
data, it is rare that it will be in a form that is exactly what is required for ultimate 
analysis. 

The process of transforming original data to a form that is suitable for econometric 
a.•1alysisis referred to as data management. This is typically a time-intensive task that 
has important implication:; for the quality and reliability of modeling carried out at the 
next stage. 

This process usually begins with a data file or fi les containing basic information 
extracted from a census or a sm"Vey. They are often organized by. data record for a 
sampled entity such as an individual, a household, or a fi rm. Each record or observation 
is a vector of data on the qualitative and quantitative attributes of each individual. 
Typically, the data need to be cleaned up and recoded, and data from multiple sources 
may need to be combined. The focus of the investigation might be a particular group 
or subpopulation, e.g. , employed women, so that a series of criteria need to be used 
to determine whether a particular observation in the dataset is to be included in the 
analysis sample. 

In this chapter; we present the tasks involved in data preparation and management. 
These include reading in and modifying data, transforming data, merging data, checking 
data, and selecting an analysis sample. The rest of the book focuses on analyzing a given 
sample, though special features of handling panel data and multinomial data are given 
in the relevant chapters. 

2.2 Types of data 

All data are ultimately stored in a computer as a sequence of Os and ls because comput­
ers operate on binary digits, or bits, that are either 0 or 1. There are several different 
ways to do this, with potential to cause confusion. 

29 
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2 .2 . 1  Text or  ASC I I  data 

A standard text forma� is ASCII, an acronym for American Standard Code for Infor­
mation Interchange. Regular ASCII represents 27 = 128 and extended ASCII represents 
2s 

= 256 different digits, letters (uppercase and lowercase) , and common symbols and 
punctuation marks. In either case, eight bits (called a byte) are used. As examples, 1 
is stored as 00110001, 2 is stored as 00110010, 3 is stored as 00110011, A is stored as 
01010001, and a is stored as 00110001. A text fi le that is readable on a computer screen 
is stored in ASCII. 

A leading text-file example is a spreadsheet file that has been stored as a "comma­
separated values" file, usually a file with the . csv extension. Here a comma is used to 
separate each data value; however, more generally, other separators can be used. 

Text-file data can also be stored as fixed-width data. Then no separator is needed 
provided we use the knowledge that, say, columns 1-7 have the fi.rst data entry, columns 
8-9 have the second data entry, and so on. 

Text data can be numeric or nonnumeric. The letter a is clearly nonnumeric, but 
depending on the context, the number 3 might be numeric or nonnumeric. For example, 
the number 3 might represent the number of doctor visits (numeric) or be part of a street 
address, such as 3 Main Street (nonnumeric ) . 

2.2.2 I nternal numeric data 

When data are numeric, the computer stores them internally using a format different 
from text to enable application of arithmetic operations and to reduce storage. The 
two main types of numeric data are integer and floating point . Because computers work 
with Os and ls (a binary digit or bit ) , data are stored in ba.se-2 approximations to their 
base-10 counterparts. 

For integer data, the exact integer can be stored. The size of the integer stored 
depends on the number of bytes used, where a byte is eight bits. For example, if one 
byte is used, then in theory 28 = 256 different integers could be stored, such as -127 ,  
-126,  . . .  ) 127)  128. 

Noninteger data, or often even integer data, are stored as floating-point data. Stan­
dard floating-point data are stored in four bytes, where the first bit may represent the 
sign, the next 8 bits may represent the exponent, and the remaining 23 bits may rep­
resent the digits. Although all integers have an exact base-2 representation, not all 
base-10 numbers do. For example, the base-10 number 0 . 1  is 0.00011 in base 2. For this 
reason, the more bytes in the base-2 approximation, the more precisely it approximates 
the base-10 number. Double-precision floating-point data use eight bytes, have about 
16 digits precision (in base 10 ) , and are sufficiently accurate for statistical calculations. 
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Stata has the numeric storage types listed in table 2.1 :  three are integer and two 
are floating point. 

Table 2 . 1 .  Stata's numeric storage types 

Storage type Bytes 

byte 1 
int 2 

long 4 
float 4 

double 8 

Minimum 

-127 
-32, 767 

-2 , 147, 483, 647 
-1 .7014117:3319 X 1038 
-8. 99846567 43 X 10307 

Maximum 

100 
32,740 

2,14 7,483,620 
1.70141173319 X lQ:lS 
8.99846567 43 x W:;o7 

These internal data types have the advantage of taking fewer bytes to store the 
same amount of data. For example , the integer 123456789 takes up 9 bytes if stored 
as text but only 4 bytes if stored as an integer (long) or floating point (float). For 
large or long numbers, the savings can clearly be much greater. The Stata default is for 
floating-point data to be stored as float and for computations to be stored as double. 

Data read into Stata are stored using these various formats, and Stata data files 
( . dta) use these formats. One disadvantage is that numbers in internal-storage form 
cannot be read in the same way that text can; we need to first reconvert them to a text 
format . A second disadvantage is that it is not easy to transfer data in internal format 
across packages, such as transferring Excel's .xls to Stata's . dta, though commercial 
software is available that transfers data across leading packages. 

It is much easier to transfer data that is stored as text data. Down::;ides, however, 
are an increase in the s!ze of the dataset compared with the same dataset stored in 
internal numeric form, and possible loss of precision in converting floating-point data 
to text format. 

2.2.3 String data 

Nonnumeric data in Stata are recorded as strings, typically enclosed in double quotes, 
such as "3 Main Street" . The format command str20, for example, states that the data 
should be stored as a string of length 20 characters. 

In this book, we focus on numeric data and seldom use strings. Stata has many com­
mands for working with strings. Two useful commands me destring, which converts 
string data to integer data, and tostring, which does the reverse. 

2.2.4 Formats for displaying numeric data 

Stata output and text files written by Stata format data for readability. The format is 
automatically chosen by Stata but can be overridden. 
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The most commonly used format is the f format, or the fixed format. An example 
is %7 . 2f ,  which means the number will be right-justified and fill 7 columns with 2 digits 
after the decimal point. For example, 123.321 is represented as 123 .32 .  

The format type always begins with %. The default of  right-justification is replaced 
by left-justification if an optional - follows. Then follows an integer for the width 
(number of columns ) ,  a period ( . ) ,  an integer for the number of digits following the 
decimal point, and an e or f or g for the format used. An optional c at the end leads 
to comma format .. 

The usual format is the f format, or fixed format, e.g. ,  123 .32 .  The e, or exponential, 
format (scientifi.c notation) is used for very large or small numbers, e.g. ,  1 .  23321e+02. 
The g, or general format, leads to e or f being chosen by Stata in a way that will 
work well regardless of whether the data are very large or very small. In particular, the 
format % # .  ( # -1 )  g will vary the number of columns after the decimal point optimally. 
For example, %8 . 7g will present a space followed by the first six digits of the number 
and the appropriately placed decimal point. 

2 .3  Inputting data 

The starting point is the computer-readable file that comains the raw data. Where 
large datasets are involved, this is typically either a. text file or the output of another 
computer program, s1:ch as Excel, SAS, or even Stata. 

2.3 .1 General principles 

For a discussion of initial use of Stata, see chapter 1. We generally a::,sume that Stata 
is used in batch mode. 

To replace any e.\.isting dataset in memory, you need to fi.rst clear the current dataset. 

. • Remove current dataset from memory 

. clear 

This removes data and any associated value labels from memory. If you are reading in 
data from a Stata dataset, you can instead use the clear option with the use command. 
Various arguments of clear lead to additional removal of Mata functions, saved results, 
and programs. The clear all command removes all these. 

Some datasets are large. In that case, we need to assign more memory than the 
Stata default by using the set memory command. For example, if 100 megabytes are 
needed, then we type 

• Set memory to 100 mb 
. set memory tOOm 
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Various commands are used to read in data, depending on the format of the .file 
being read. These commands, discussed in detail in the rest of this section, include the 
following: 

e use to read a Stata dataset (with extension . dta) 
e edit and input to enter data from the keyboard or the Data Editor 

o insheet to read comma-separated or tab-separated text data created by a spread­
sheet · 

e infile to read unformatted or fixed-format text data 

., infix to read formatted data 

As soon as data are inputted into Stata, you should save the data as a Stata dataset. 
For example, 

• Save data as a Stata dataset 
save mydata.dta, replace 
(output omitted) 

The replace option will replace any existing dataset with the same name. If you do 
not want this to happen, then do not use the option. 

To check that data are read in correctly, list the first few observat ions, use describe, 
and obtain the summ<:1Iy statistics. 

• Quick check that data are read in correctly 
list in 115 // list the first five observations 
(output omitted) 

describe J I describe the variables 
(output omitted) 

summarize . II descriptive statistics for the variables 
(output omitted) 

Examples illustr�ting the output from describe and su=arize are given in sec­
tions 2.4.1 and 3.2. 

2.3.2 Inputting data already in Stata format 

Data in the Stata format are stored with the . dta extension, e.g., mydata. dta. Then 
the data can be read in with the use command. For example, 

• Read in existing Stata dataset 
use c : \research\mydata.dta, clear 

The clear option removes any data currently in memory, even if the current data have 
not been saved, enabling the new Tile to be read in to memory. 
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If Stata is initiated from the current directory, then we can more simply type 

• Read in dataset in current directory 
use mydat a . dta,  clear 

The use command also works over the Internet, provided that your computer is con­
nected. For example, you can obtain an extract from the 1980 U.S. Census by typing 

. * Read i n  dataset from an Internet web site 

. use http : //www. stata-press .c om/data/r10/census .dta, clear 
(1980 Census data by state) 

. clear 

2.3.3 Inputting data from the keyboard 

The input command enables data to be typed in from the keyboard. It assumes that 
data are numeric. If instead data are character, then input should additionally define 
the data as a string and give the string length. For example, 

• Data input froo keyboard 
input str20 name age female income 

name 
1 .  "Barry" 25 0 40 .990  
2 .  "Carrie" 30 1 37 .000 
3 .  "Gary" 31 0 48. 000 
4 .  end 

age female inc01r..e 

The quotes here are not necessary; we could use Barry rather than "iarry " .  If the 
name includes a space, such as "Barry Jr" , then double quotes are needed; otherwise, 
Barry would be read as a string, and then Jr would be read as a number, leading to a 
progTam error. 

To check that the data are read in correctly, we use the list command. Here we 
add the clean option, which lists the data without divider and sepa.rator lines. 

list, clean 
name age female income 

1 .  Barry 25 0 40 .99  
2 .  Carrie 30 37 
3 .  Gary 31 0 48 

In interactive mode, you can instead use the Data Editor to type in data (and to 
edit existing data) . 

2.3.4 I nputting nontext data 

By nontext data, we mean data that are stored in the internal code of a software package 
other than Stata. It is easy to establish whether a file is a nontext file by viewing the 
file using a text editor. If strange characters appear, then the fi le is a nontext fi le. An 
example is an Excel .x:.s file. 
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Stata supports several special formats. The fdause command reads SAS XPORT 
Transport format fi les; the haver command reads Haver Analytics database fi les; the 
odbc command reads Open Database Connectivity ( ODBC) data files; and the xmluse 
conm1and reads XML files. 

Other formats such as an Excel . xls fi le cannot be reC�.d by Stata. One solution is to 
use the software that created the data to write the data out into one of the readable text 
format files discussed below, such as a comma-separated values text fi.le. For example, 
just save an Excel worksheet as a . csv file. A second solution is to purchase software 
such as Stat/Transfer that will change data from one format to another. For conversion 
progTa.ms, see http:/ /www .ats.ucla.edu/stat/StatajfaqjconverLpkg.htm. 

2.3.5 Inputting text data from a spreadsheet 

The insheet command reads data that are saved by a spreadsheet or database program 
a'3 comma-separated or tab-separated text data. For example, mus02file1 . csv, a file 
with comma-separated values, has the following data: 

name ,age,female, income 
Barry , 25 , 0 ,40 . 990 
Carrie , 30 , 1 ,  37. 000 
Gary , 3 1 , 0  ,48 .  000 

To read these data, we use insheet. Thus 

• Read data from a csv file that includes variable names using insheet 
clear 
insheet using mus02f i le1. csv 

(4 vars, 3 cbs) 

list,  clean 
name age female 

1 .  Barry 25 0 
2.  Carrie 30 
3 .  Gary_ . 31 0 

income 
40.99 

37 
48 

Stata automatically recognized the name variable to be a string variable, the age and 
female variables to be integer, and the income variable to be floating point. 

A major advantage of insheet is that it can read in a text file that includes variable 
names as well as data, making mistakes less likely. There are some limitations, however. 
The insheet command is restricted to fi les with a single observation per line. And the 
data must be comma-separated or tab-separated, but not both. It cannot be space­
separated, but other delimiters can be specified.by using the delimiter option. 

The fi rst line with variable names is optional. Let mus02file2 .  csv be the same as 
the original fi le, except without the header line: · 

Barry , 2 5 ,  0 ,4  0 .  990 
Carrie , 30 , 1 , 37 . 000 
Gary , 3 1 , 0 , 48 . 000 
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The insheet command still works. By default ,  the variables read in are given the names 
vl, v2, v3, and v4. Alternatively, you can assign more meaningful names in insheet. 
For example, 

• Read data from a csv file without variable names and assign names 
clear 
insheet name age female income using mus02file2.csv 

(4 vars , 3 cbs) 

2.3.6 I nputting text data 1n free format 

The infile command reads free-format te.:d. data that are space-separated, tab­
separated, or comma-separated. 

We again consider mus02f ile2 .  csv, which has no header line. Then 

• Read data from free-format text file using infilc 
clear 
infilo str20 name age female income using mus02file2 . csv 

(3 observations read) 

list,  clean 

name age female income 
1 .  Barry 25 0 40 .99  
2 .  Carrie 30 37 
3. Gary 31 0 48 

By default, infile reads in all data as numbers that are stored as floating point. This 
causes obvious problems if the original data are string. By inserting str20 before name, 
the first variable is instead a string that is stored as a string of at most 20 characters. 

For infile ,  a single observation is allowed to span more than one line, or there can 
be more than one observation per line. Essentially every fourth entry after Barry will 
be read as a string entry for name, every fourth entry after 25 will be read as a numeric 
entry for age, and so on. 

The infile command is the most flexible command to read in data and will also 
read in fixed-format data. 

2 .3 .  7 I nputting text data 1n  fixed format 

The infix command reads fixed-format text data that are in fixed-column format. For 
example, suppose mus02file3 .  txt contains the same data as before, except without 
the header line and with the following fixed format: 

Barry 
Carrie 
Gary 

250 40.990 
301 37.000 
310 48.000 

Here columns 1-10 store the name variable, coltunns 11-12 store the age variable, 
colmnn 13 stores the female variable, and columns 14-20 store the income variable. 
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Note that a special feature of fixed-format data is that there need be no S?parator 
between data entries. For example, for the first observation, the sequence 250 is not 
age of 250 but is instead two variables: age = 25 and female = 0. It is easy to make 
errors when reading fixed-format data. 

To use infix, we need to define the columns in which each entry appears. There 
are a number of ways to do this. For example, 

• Read data from fixed-format text file using infix 
clear 
infix str20 name 1-10 age 11-12 female 13 income 14-20 using mus02file3 .txt 

(3 observations read) 

list, clean 
name age female income 

1 .  Barry 25 0 40 .99  
2 . Carrie 30  37 
3 .  Gary 31 0 48 

Similarly to infile, we include str20 to indicate that name is a string rather than a 
number. 

A single observation can appear on more than one line. Then we use the symbol 
I to skip a line or use the entry 2 : ,  for example, to switch to line 2. For example, 
suppose mus02file4 .  txt is the same as mus02f ile3 .  txt, except that income appears 
on a separate second line for each observation in columns 1-7. Then 

• Read data using infix where an observation spans more than one line 
clear 
infix str20 name 1-10 age 11-12 female 13 2: income 1-7 using mus02f ile4.txt 

(3 observations read) 

2.3.8 Dictionary files 

For more complicated text data.sets, the format for the data being read in carl. be stored 
in a dictionary file, .a te;'<t file created by a word processor, or editor. Details are provided 
in [D] infile (fixed format) .  Suppose this file is called mus02dict . dct. Then we simply 
type 

. • Read in data with dictionary file 

. infile using mus02dict 

where the dictionary fi.le mus02dic t. dct provides variable names and formats as well 
as the name of the file containing the data. 

2.3.9 Common pitfalls 

It  can be surprisingly difficult to  read in data. With fixed-format data, wrong column 
alignment leads to errors. Data can unexpectedly include string data, perhaps with 
embedded blanks. Missing values might be coded as NA, causing problems if a nu-
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meric value is expected. An observation can span several lines when a single line was 
erroneously assumed. 

It is possible to read a dataset into Stata without Stata issuing an error message; 
no error message does not mean that the dataset has been successfully read in. For 
example, transferring data from one computer type to another, such as a file transfer 
using File Transfer Protocol (FTP), can lead to an additional carriage return, or Enter , 
being typed at the end of each line . Then infix reads the dataset as containing one 
line of data, followed by a blank line, then another line of data, and so on. The blank 
lines generate extraneous observations with missing values. 

You should always perform checks, such as using list and summarize. Always view 
the data before beginning analysis. 

2.4 Data management 

Once the data are read in ,  there can be considerable work in cleaning up the data, trans­
forming variables, and selecting the final sample. All data-management tasks should 
be recorded, dated, and saved. The existence of such a record makes it easier to track 
changes in definitions and eases the task of replication. By far, the easiest way to do 
this is to have the data-management manipulations stored in a do-file rather than to 
use commands interactively. We assume that a do-file is  used. 

2.4.1 PSiD example 

Data management is best illustrated using a real-data example. Typically, one needs 
to download the entire original dataset and an accompanying document describing the 
dataset. For some major commonly used datasets, however, there may be cleaned-up 
versions of the dataset, simple data extraction tools, or both. 

Here we obtain a very small extract from the 1992 Individual-Level data from the 
Panel Study of Income Dynamics (PSID ), a U.S. longitudinal survey conducted by the 
University of Michigan. The extract was downloaded from the Data Center at the 
web site http:/ /psidonline.isr.umich.edu/, using interactive tools to select just a few 
variables. The extracted sample was restricted to men aged 30-50 years. The output 
conveniently included a Stata do-file in addition to the text data file. Additionally, a 
codebook describing the variables selected was provided. The data download included 
several additional variables that enable unique identifi ers and provide sample weights. 
These should also be included in the final dataset but, for brevity, have been omitted 
below. 

Reading the text dataset mus02psid92m. txt using a text editor reveals that the first 
two observations are 

4- 3- 1- 2- 1- 2482- 1- to· 4o- s· 22ooo· 2340 
4- 17o- 1 - 2· 1 - 5974· t· to· 3r 12· 31468- 2008 

The data are text data delimited by the symbol • .  
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Several methods could be used to read the data, but the simplest is to use insheet. 
This is especially simple here given the provided do-file. The mus02psid92m . d o  file 
contains the following information: 

• Commands to read in data from PSID extract 
type mus02psid92m .do 

• mus02psid92m .do 
clear 
#delimit ; 

PSID DATA CENTER * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
JOBID 10654 

PSIO DAT A_DOMAIN 
USER_WHERE 
FILE_ TYPE 
OUTPUT_DATA_TYPE 
STATEMENTS 

ER32000�1 and ER30736 ge 30 and ER 
All Individuals Data 
ASCII Data File 
STATA Statements 

CODEBOOK_TYPE PDF 
N_OF_VARIABLES 12 
N_OF_OBSERVATIONS: 4290 
MAX_REC_LENGTH 56 
DATE & TIME November 3, 2003 @ 0 : 2 8 : 35 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

in sheet 
ER30001 ER30002 ER32000 ER32022 ER32049 ER30733 ER30734 ER30735 ER30736 
ER30748 ER30750 ER30754 

using mus02psid92m. txt, delim( " - " )  clear 

destring , replace ; 
label variable er30001 
label variable er30002 
label variable er32000 
label variable er32022 
label variable er32049 
label variable cr307.33 
label variable er30734 
label variable er30735 
label variable er30736 
label variable er30748 

" 1968 INTERVIEW NUMBER" 
"PERSON NUNBER 
"SEX OF INDIVIDUAL" ; 

68" 

"# LIVE BIRTHS TO THIS INDIVIDUAL" 
"LAST KNOWN MARITAL STATUS" 
" 1992 INTERVIEW NUMBER" 
"SEQUENCE NUNBER 92" 
"RELATION TO HEAD 92" 
"AGE OF INDIVIDUAL 92" 
"COMPLETED EDUCATION 92" 

label variable er30750 "TOT LABOR INCOME 92" 
label variable ·er30754 "ANN WORK HRS 92" 
#delimit c r; II Change delimiter to default cr 

To read the data, only insheet is essential. The code separates commands using 
the delimiter ; rather than the default cr (the Enter key or carriage return) to enable 
comments and commands that span several lines. The destring command, unnecessary 
here, converts any string data into numeric data. For example, $1,234 would become 
1234. The label variable command provides a longer description of the data that will 
be reproduced by using describe. 

Executing this code yields output that includes the following: 

(12 vars,  4290 cbs) 
. destring , replace 
er30001 already numeric ;  no replace 

(output omitted). 
er30754 already numeric ;  no replace 
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The statement already numeric is output for all variables because all the data in 
mus02psid92m. txt are numeric. 

The describe command provides a description of the data: 

. • Data description 

. describe 
Contains data 

cbs: 4 ,290 
12 var s:  

size:  9 8 , 670 (99.1/. of memory free) 

storage display value 
variable name typo format label variable label 

er30001 int /.8.0g 1968 INTERVIE'..I truMBER 
er30002 int /. 8 .0g PERSON NUMB ER 6 8 
er32000 byte /.8.0g SEX OF  INDIVIDUAL 
er32022 byte /.8.0g # LIVE BIRTHS TO THIS INDIVIDUAL 
er32049 byte /.8.0g LAST KNOWN MARITAL STATUS 
er30733 int /.8.0g 1992 INTERVIEW NUMBER 
er30734 byte /.8.0g SEQUENCE NUMBER 9 2 
er30735 byte /.8.0g RELATION TO HEAD 92 
er30736 byte /.8.0g AGE OF  INDIVIDUAL 92 
er30748 byte /.8.0g COMPLETED EDUCATION 92 
er30750 long 'l.12.0g TOT LABOR INCOME 92 
er30754 int /.8.0g .ANN WORK HRS 92 

Sorted by: 
Note: dataset has changed since last saved 

Th·e summarize command provides descriptive statistics: 

• Data summary 
summarize 

Variable Obs Mean Std. Dev.  

er30001 4290 4559 . 2  2850 . 509 
er30002 4290 60 . 66247 7 9 . 93979 
er32000 4290 1 0 
er32022 4290 2 1 . 35385 38.20765 
er32049 4290 1 . 699534 1. 391921 

er30733 4290 4911 . 015 2804 . 8  
er30734 4290 3 . 179487 1 1 . 4933 
er30735 4290 1 3 . 33147 12 . 44482 
er30736 4290 38. 37995 5. 650311 
er30748 4290 1 4 . 87249 1 5 . 07546 

er30750 4290 27832 .68 31927 .35  
er30754 4290 1929. 477 899. 5496 

Min Max 

4 9308 
227 

9 9  
9 

9829 
81 

10 98 
30 50 

0 99 

0 999999 
0 5840 

Satisfied that the original data have been read in carefully, we proceed with cleaning 
the data. 
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The first step is to give more meaningful names to variables by using the rename com­
mand. 'vVe do so just for the variables used in subsequent analysis. 

* Rename variables 
rename er32000 sex 
rename er30736 age 
rename er30748 education 
rename er30750 earnings 

rename er30754 hours 

The renamed variables retain the descriptions that they were originally given. Some 
of these descriptions are unnecessarily long, so we use label variable to shorten output 
from commands, such as describe, that give the variable labels: 

• Relabel some of the variables 
label variable age "AGE OF INDIVIDUAL" 

label variable education "COMPLETED· EDUCATION" 
label variable earnings "TOT LABOR INCOME" 

label variab:e hours "ANN WORK lffiS" 

For categorical variables, it can be useful to explain the meanings of the variables. 
For example, from the code book discussed in section 2.4.4, the er32000 variable takes 
on the value 1 if male and 2 if female. We may prefer that the output of variable values 
uses a label in place of the number. These labels are provided by using label define 
together with label values. 

* Define the label gender for the values taken by variable sex 
label def�e gender 1 male 2 female 

label values sex gender 
list sex in 1/2,  clean 

sex 
1 .  male 
2 .  male 

After renaming, we obtain 

* Data summary of key variables after renaming 
summarize sex age education earnings hours 

Variable Obs Mean Std. Dev. 

sex 4290 0 
age 4290 38.37995 5 . 650311 

education 4290 1 4 . 87249 1 5 . 07546 
earnings 4290 27832 .68  31927.35 

hours 4290 1929 . 477 899,5496 

Min 

30 
0 
0 
0 

Max 

1 
50 
99 

999999 
5840 

Data exist for these variables for all 4,290 sample observations. The data have 30 � 
age � 50 and sex = .1 (male) for all observations, as expected. The maximum value 
for earnings is $999;999, an unusual value that most likely indicates top-coding. The 
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maximum value of hours is quite high and may also indicate top-coding (365 x 16 = 
5840). The maximum value of 99 for education is clearly erroneous; the most likely 
explanation is that this is a missing-value code, because numbers such as 99 or �99 are 
often used to denote a missing value. 

2.4.3 Viewing data 

The standard commands for viewing data are summarize, list, and tabulate .  

We have already illustrated the summarize command. Additional statistics, includ­
ing key percentiles and the five largest and smallest observations, can be obtained by 
using the d etail option; see section 3.2.4. 

The list command can list every observation, too many in practice. But you could 
list just a few observations: 

• List first 2 observations of tYo of the variables 
list age hours in 1/2 ,  clean 

age hours 
1 .  40 2340 
2 .  37 2008 

The list conm1and with no variable list provided will list all the variables. The clean 
option eliminates dividers and separators. 

The tabulate command lists each distinct value of the data and the number of 
times it occurs. It is useful for data that do not have too many distinctive values. For 
education, we have 

• Tabulate all values taken by a single variable 
tabulate education 

COMPLETED 
EDUCATION Freq. Percent Cum . 

0 82 1 .  9 1  1 . 9 1  
1 7 0 . 16 2 .07  
2 20 0 . 47 2.54 
3 32 0 . 75 3 .29  
4 26 0 . 6 1  3 .89  
5 30 0. 70  4 .59  
6 123 2 .87  7 .46  
7 35 0 .82  8 .28  
8 78 1. 82 10 .09 
9 117 2 .73 12 .82 

10 167 3 . 8 9  1 6 . 7 1  
1 1  217 5. 06 2 1 . 77 
12 1 , 510 35 .20 56 .97  
13 263 6 . 13 63 . 10  
14 432 10 .07  73 .17  
15  172 4 . 0 1  77 .18  
1 6  535 12 . 47 89 .65  
17 317 7 . 39 97 . 04 
99 127 2 . 9 6  l.oo.oo 

Total 4 ,  290 100.00 
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Note that the variable label rather than the variable name is used as a header. The 
values are generally plausible, with 35% of the sample having a highest grade completed 
of exactly 12 years (high school graduate). The 7% of observations with 17 years most 
likely indicates a postgraduate degree (a college degree is only 16 years) . The value 99 
for 3% of the sample most likely is a missing-data code. Surprisingly, 2% appear to 
have completed no years of schooling. As we explain next, these are also observations 
with missing data. 

2.4.4 Using 'original documentation 

At this stage, it is really necessary to go to the original documentation. 

The mus02psid92mcb . pdf fi le, generated as part of the data extraction from the 
PSID web site, states that for the er30748 variable a value of 0 means "inappropriate" 
for various reasons given in the code book; the values 1 - 16 are the highest grade or year 
of school completed; 17 is at least some graduate work; and 99 denotes not applicable 
(NA) or did not know (DK). 

Clearly, the education values of both 0 and 99  denote missing values. Without 
using the codebook, we may have misinterpreted the value of 0 as meaning zero years 
of schooling. 

2.4.5 Missing values 

It is best at  this stage to flag missing values and to keep all observations rather than 
to immediately drop observations with missing data. In later analysis, only those ob­
servations with data missing on variables essential to the analysis need to be dropped. 
The characteristics of individuals with missing data can be compared with those having 
complete data. Data with a missing value are recoded with a missing-value code. 

For education, the missing-data values 0 or 99 are replae:ed by . (a period), which 
is the default Stata missing-value code. Rather than create a new variable, we modify 
the current variable by using replace, as follows: 

. • Replace missing values Yith missing-data code 
. replace education = . if education == 0 I education == 99 
(209 real changes mad e ,  209 to missing) 

Using the double equality and the symbol I for the logical operator or is detailed in 
section 1 .3 .5 .  As an example of the results, we list observations 46-48: 

• Listing of variable including missing value 
. list education in 46/48, clean 

educat-n 
46. 12 
47 .  
48 .  16 

Evidently, the original data on  education for ·the 47th observation equaled 0 or 99. 
This has been changed to missing. 
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Subsequent commands using the education variable will drop observations with 
missing values. For example, 

• Example of data analysis Yith some missing values 
summarize education age 

Variable Dbs Mean Std. Dev. Min Max 

education 4081 12 . 5533 2 . 963696 1 17 
age 4290 38. 37995 5. 650311 30 50 

For education, only the 4,081 nonmissing values are used, whereas for age, all 4,290 of 
the original observations are available. 

If desired, you can use more than one missing-value code. This can be useful if you 
want to keep track of reasons why a variable is missing. The extended missing codes 
are . a, . b, . . .  , . z. For example, we could instead have typed 

• Assign more than one missing code 
replace education = . a  if education == 0 
replace education = . b  if education == 99 

When we want to apply multiple missing codes to a variable, it is more convenient 
to use the mvdecode command, which is similar to the recode command (discussed 
in section 2.4.7), which changes variable values or ranges of values into missing-value 
codes. The reverse command, mvencode, changes missing values to numeric values. 

Care is needed once missing values are used. In particular, missing values are treated 
as large numbers, higher than any other number. The ordering is that all numbers are 
less than . , which is less than . a, and so on. The command 

• This command Yill include missing values 
list education in 40/60 if education > 1 6 ,  clean 

educat-n 
4 5. 17 
47.  
60 . 17 

lists the missing value for observation 4 7 in addition to the two values of 17. If this is 
not desired, we should instead use 

• This command Yill not include missing values 
list education in 40/60 if education > 16 & education < . , clean 

educat-n 
45 .  17 
60.  17 

Now observation 47 with the missing observation has been excluded. 

The issue of missing values also arises for earnings and hours. From the code book, 
we see that a zero value may mean missing for various reasons, or it may be a tn1e zero 
if the person did not work. True zeros are indicated by er30749=0 or 2, but we did 
not extract this variable. For such reasons, it is not unusual to have to extract data 
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several times. Rather than extract this additional variable, as a shortcut we note that 
earnings and hours a:re missing for the same reasons that education is missing. Thus 

. • Replace missing values 1o1ith missing-data code 

. replace earnings � . if education >� . 
(209 real changes made, 209 to missing) 
. replace hours � . if education >� . 
(209 real changes made , 209 to missing) 

2.4.6 imputing missing data 

The standard approach in microeconometrics is to drop observations with missing val­
ues, called listwise deletion. The loss of observations generally leads to le::;s precise 
estimation and inference. More importantly, it may lead to sample-selection bias in 
regression if the retained observations have unrepresentative values of the dependent 
variable conditional on regressors. 

An alternative to dropping observations is to impute missing values. The impute 
command uses predictions from regression to impute. The ipolate command uses 
interpolation methods. We do not cover these commands because the::;e imputation 
method::; have limitations, and the norm in microeconometric::; ::;tudie::; i::; to u::;e only the 
original data. 

A more promising approach, though one more advanced, is multiple imputation. 
This produces J\.1 different imputed datasets (e.g., J\.1 = 20), fits the model lli times, 
and performs inference that allows for the uncertainty in both estimation and data 
imputation. For implementation, see the user-written ice  and hotdeck commands. You 
can find more information in Cameron and Trivedi (2005) and from findit multiple 
imputation. 

2.4. 7 Transforming data (generate, replace, egen, recode) 

After handling missing values, we have the following for the key variable::;: 

• Summarize cleaned up data 
suttlmarize sex age education earnings 

Variable Dbs Mean Std. Dev. Min Max 

sex 4290 0 
age 4290 38 . 37995 5 .  650311 30 50 

education 4081 1 2 . 5533 2 . 963696 17 
earnings 4081 28706 .65 32279 . 1 2  0 999999 

We now turn to recoding existing variables and creating new variables. The basic 
commands are generate and replace. It can be more convenient, however, to use the 
additional commands recode, egen, and tabulate. These are often used in conjunction 
with the if qualifier and the by :  prefix. We present many examples throughout the 
book. 
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The generate and replace commands 

The generate command is used to create new variables , often using standard mathe­
matical functions. The synta..' of the command is 

generate [ type ] newvar = exp [ if ] [ in ] 

where for numeric data the default type is float, but this can be changed, for example, 
to double. 

It is good practice to assign a unique identifier to each observation if one does not 
already exist. A natural choice is to use the current observa".;ion number stored as the 
system variable _n. 

• Create identifier using generate command 
generate id � _n 

We use this identifier for simplicity, though for these data the er30001 and er30002 
variables when combined provide a unique PSID identifier. 

The following command creates a new variable for the nat'.tral logarithm of earnings: 

. • Create neY variable using generate command 

. generate lnearns � ln(earnings) 
(498 missing values generated) 

Missing values for ln (earnings) are generated whenever earnings data are missing. 
Additionally, missing values arise when earnings ::; 0 because it is then not possible to 
take on the logarithm. 

The replace command is used to replace some or all values of an existing variable. 
We already illustrated tbis when we created rnissirig-values codes. 

The egen command 

The egen command is an extension to generate that enables creation of variables that 
would be difficult to create using generate. For example, suppose we want to create a 
variable that for e<1.ch ooservation eqtt.:'lls sample average earnings provided that sample 
earnings are nonmissing. The command 

. • Create neY variable using egen command 

. egon aveearnings = mean(earnings) if earnings < . 
(209 missing values generated) 

creates a variable equal to the average of earning'S for those observations not missing 
data on earnings. 
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The recode command 
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The r ecode command is an extension to replace. that recodes categorical variables and 
generates a new variable if the generate 0 option is used. The conunand 

. • Replace existing data using the recede command 

. recede education (1/11=1)  (12=2) (13/15=3) (16/17=4) , generate (edcat) ', 

(4074 differences betYeen education and edcat) 

creates a new. variable, edcat, that takes on a value of 1, 2, 3, or 4 corresponding to, 
respectively, less than high school gTaduate, high school graduate, some college, and 
college graduate or higher. The edcat variable is set to missing if education does not 
lie in any of the ranges given in the recode command. 

The by prefix 

The by varlist : prefix repeats a command for each group of observations for which the 
variables in varlist are the same. The data must first be sorted by varlist. This can 
be done by using the sort command, which orders the observations in ascending order 
according to the variable(s) given in the command. 

The sort command and the by prefix are more compactly combined into the bysort 
prefix. For example, suppose we want to create for each individual a variable that equals 
the sample average earnings for all persons with that individual's years of education. 
Then we type 

. • Create nell variable using bysort : prefix 

. bysort education: egen aveearnsbyed = mean(earnings) 
(209 missing values generated) 
. sort id 

The final command, one that retun1s the ordering of the observation to the original 
ordering, is not' required. But it could make a difference in subsequent analysis if, for 
example, we were t() work with c,. subsample of the first 1,000 observations. 

Indicator variables 

Consider creating a variable indicating whether earnings are positive. While there are 
several ways to proceed, we only describe our recommended method. 

The most direct way is to use generate with logical operators: 

. • Create indicator variable using generate· command Yith logical operators 

. generate dl = earnings > 0 if earnings < . 
(209 missing values generated) 

The expression dl = earnings > 0 creates an indicator variable equal to 1 if the con­
dition holds and 0 otherwise. Because missing values are treated as large numbers, we 
add the condition if earnings < . so that in those cases d1 is set equal to missing. 
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Using summarize, 

summarize d1 

Variable I 
d1 1 

Dbs Mean 

4081 . 929184 

Clwpter 2 Data management and graphics 

Std. Dev. Min Max 

. 2565486 c 

we can see that about 93% of the individuals in this sample had some earnings in 1992. 
We can also see that we have 0.929184 x 4081 = 3792 observations with a value of 1 ,  
289 observations with a value o f  0, and 209 missing observations. 

Set of ind icator variables 

A complete set of mutually exclusive categorical indicator dummy variables can be 
created in several ways. 

For example, suppose we want to create mutually exclusive indicator variables for 
less than high school graduate, high school gTacluate, some college, and college graduate 
or more. The starting point is the edcat variable, created earlier, which takes on the 
values 1-4_ 

We can use tabulate with the generate 0 option. 

• Create a set of indicator variables using tabulate Yith generat e ( )  option 
quietly tabulate edcat , generate (eddummy) 
summarize eddummy* 

Variable Dbs Mean Std. Dev. Min Max 

eddummy1 4081 . 2087724 .4064812 0 
eddummy2 4081 .3700074 .4828655 0 
eddummy3 4081 . 2 124479 .4090902 0 
eddummy4 4081 . 2087724 .4064812 0 

The four means sum to one, as expected for four mutually exclusive categorie::;. Note 
that if edcat had taken on values 4, 5, 7, and 9, rather than 1-4, it would still generate 
variables numbered eddummy1-eddummy4. 

An alternative method is to use the xi command. For example, 

* Create a set of indicator variables using command xi 
xi i . edcat, noomit 
summarize _I* 

Variable Dbs Mean Std. Dev. 

_Iedcat_1 4081 . 2087724 .4064812 
_Iedcat_2 4081 .3700074 .4828655 
_Iedcat_3 4081 .2124479 .4090902 
_Iedcat_4 4081 . 2087724 .4064812 

Min 

0 
0 
0 
0 

Max 

The created categorical variables are given the name edca t with the prefix _I .  The suffix 
numbering corresponds exactly to the distinct values taken by edcat, here 1-4. The 
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noomi t option is added because the default is to omit the lowest value category, so here 
_Iedcat_1 would have been dropped. The prefix option allows a prefix other than _I 
to be specified. This is necessary if xi will be used again. 

More often, xi is used as a prefix to a command, in .which case the variable list 
includes i .  varna me, where varname is a categorical varial:>le that is to appear as a set 
of categorical indicators. For example, 

• Comm�d Yith a variable list that includes indicators created using x i :  
x i :  summarize i . edcat 

i .  edcat Iedcat_1-4 (naturally coded; _Iedcat_1 omitted) 

Variable Dbs Mean Std. Dev. Min Max 

_Iedcat_2 
_Ied<;at_3 

Iedcat_4 

4081 
4081 
4081 

.3700074 

. 2124479 

.2087724 

.4828655 

.4090902 

.4064812 

0 
0 
0 

This is especially convenient in regression commands. We can simply include i .  edca t 
in the regressor list, so there is no need to first create the set of indicator variables; see 
chapter 8.5.4 for an example. 

interactions 

Interactive variables can be created in the obvious manner. For example, to create 
an interaction between the binary earning'S indicator d1 and the continuous variable 
education, type 

. • Create interactive variable using generate commands 

. generate d1education � d1•education 
(209 missing values generated) 

It can be much simpler to use the xi command, especially if the categorical variable 
takes on more than two values. For example, we can generate a complete set of in­
teractions between the categorical variable edcat (with four categories) and earnings 
(continuous) by typing 

• Create set of interactions betyeen cat variable and set of indicators 
drop _Iedcat_• 

xi i . edcat•earnings , noomit 
i . edcat•earni-s _IedcXearni_# 

summarize I •  
Variable Dbs Mean 

_Iedcat_1 4081 .2087724 
_Iedcat_2 4081 .3700074 

Iedcat_3 4081 . 2124479 
_Iedcat_4 4081 .2087724 

IedcXearn-1 4081 3146.368 

IedcXearn-2 4081 8757 . 823 
IedcXearn-3 4081 6419 . 347 
IedcXearn-4 4081 10383 . 1 1  

(coded as above) 

Std. Dev. 

.4064812 

. 4828'655 

. 4090902 

. 4064812 
8286. 325 

15710 .76  
16453 . 14 
32316.32 

Min 

0 
0 
0 
0 
0 

0 
0 
0 

Max 

1 
80000 

215000 
270000 
999999 
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Another example is to interact a categorical variable with another set of indicators. 
For example, to interact variable dl with edcat, type 

* Create a set of interactions betYeen a categorical and a set of indicators 
drop _ I* 

xi i .  edcat • i .  d 1 ,  noomi t 
i .  edcat•i .d1  IedcXd1 _#_# (coded as above) 

summarize .... I* 
Variable Dbs Mean Std. Dev. Hin Max 

Iedcat_1 4081 .2087724 .4064812 0 
_Iedcat_2 4081 . 3700074 .4828655 0 

Iedcat_3 4081 .2124479 .4090902 0 
Iedcat_4 4081 .2087724 .4064812 0 

Id1_0 4081 . 070816 .2565486 0 

Id1_1 4081 .929184 .2565486 0 
IedcXd1 1 0 4081 . 0316099 . 1749806 0 
IedcXd1 1 1 4081 . 1771625 .3818529 0 

_ledcXd1_2_0 4081 .0279343 . 1648049 0 
IedcXd1 2 1 4081 .342073 .474462 0 

IedcXd1 3 0 4081 .0098015 . 0985283 0 
IedcXd1 3 1 4081 .2026464 .4020205 0 

_IedcXd1 4 0 4081 . 0014702 . 03832 0 
_IedcXd1_4_1 4081 . 2073021 . 4054235 0 

Again this is especially convenient in regression commands because it can obviate 
the need to first create the set of interactions. 

Demeaning 

Suppose we want to include a quadratic in age as a regressor. The marginal effect of age 
is much easier to interpret if we use the demeaned variables (age-age) and (age-age)2 
as regressors. 

• Create demeaned variables 
egen double a veage = mean(age) 
generate double agedemean = age - aveage 
generate double agesqdemean r agedemean-2 

summarize agedemean agesqdemean 
Variable Obs Mean 

agedemean I agesqdemean 
4290 
4290 

2 . 32e-15 
3 1 . 91857 

Std. Dev. Min Max 

5 . 650311 - 8 . 379953 1 1 . 62005 
32. 53392 . 1 443646 135.0255 

We expect the agedemean variable to have an average of zero. We specified double 
t o  obtain additional precision i n  the floating-point calculations. I n  the case at hand, 
the mean of agedemean is on the order of 1 0-15 instead of 10-6 ,  which is what single­
precision calculations would yield. 
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2.4.8 Saving data 

At this stage, the dataset may be ready for saving. The save command creates a Stata 
data fi le. For example, 

. * Save as Sta�a data file 

. save mus02psid92m .dta, replace 
file mus02psid92m.dta saved 

The replace option means that an existing dataset with the same name, if it exists, will 
be overwritten. The . dta extension is unnecessary because it is the default extension. 

The related command saveold saves a data file that can be read by versions 8 and 
9 of Stata. 

The data can also be saved in another format that can be read by programs other 
than Stata. The outsheet command allows saving as a text file in a spreadsheet format. 
For example, 

* Save as comma-separated values spreadsheet 
outsheet age education eddummy• earnings d1 hours using mus02psid92m . csv,  

> comma replace 

Note the use of the wildcard * in eddummy. The outsheet command expands this 
to eddummy1 -eddu=y4 per the rules for wildcards, given in section 1.3.4. The comma 
option leads to a . csv fi le with comma-separated variable names in the first line. The 
first two lines in mus02psid92m. csv are then 

age, education,eddummy1 , eddummy 2,  eddummy 3 ,eddummy4 ,earnings ,d 1, hours 
40 , 9 , 1 , 0 , 0 , 0 , 22000 , 1 , 2340 

A space-delimited formatted text fi.le can also be created by using the outfile 
command: 

. • Save as formatted text (ascii) file 

. outfile age education edaummy• earnings d1 hours using mus02psid92m .asc ,  
> replace -

The first line in mus02psid92m . asc is then 

40 9 
2340 

0 0 0 22000 

This fi le will take up a lot of space; less space is taken if the comma option is used. The 
format of the file can be specified using Stata's dictionary format. 

2.4.9 Selecting the sample 

Most commands will automatically drop missing values in implementing a given com­
mand. We may want to drop additional observations, for example, to restrict analysis 
to a particular age group. 



52 Cbapter 2 Data management and graphics 

This can be done by adding an appropriate if qualifier after the command. For 
example, if we want to summarize data for only those individuals 35-44 years old, then 

• Select the sample used in a single command using the if qualifier 
summarize earnings lnearns if age >= 35 & age <= 44 

Variable Obs Mean Std. Dev. Min Max 

earnings 
lnearns 

2114 
1983 

30131 .05 
1 0 . 04658 

37660. 1 1  0 999999 
. 9001594 4 . 787492 13. 81551 

Different samples are being used here for the two variables, because for the 131 obser­
vations with zero earnings, we have data on earnings but not on lnearns. The if 
qualifier uses logical operators, defi11ed in section 1.3.5. 

However, for most purposes, we would want to use a consistent sample. For example, 
if separate earnings regressions were run in levels and in logs, we would usually want to 
use the same sample in the two regTessions. 

The drop and keep commands allow sample selection for the rest of the analysis. 
The keep command explicitly selects the subsample to be retained. Alternatively, we 
can use the drop command, in which case the subsample retained is the portion not 
dropped. The sample dropped or kept can be determined by using an if  qualifier, a 
variable list, or by defi.ning a range of observations. 

For the current e."<ample, we use 

. • Select the sample using command keep 

. keep if (lnearns ! =  . )  & (age >= 35 & age <= 44) 
(2307 observations deleted) 

summarize earnings lnearns 
Variable Obs 

earnings 
lnearns 

1983 
1983 

Mean 

32121 . 5 5  
1 0 . 04658 

Std. Dev. Min Max 

38053 .31  120 999999 
.9001594 4 . 787492 1 3 . 81 551 

This command keeps the data provided: lnearns is nonmissing and 35 ::; age ::; 44. 
Note that now earnings and lnearns are summarized for the same 1,983 observations. 

As a second example, the commands 

• Select the sample using keep and drop commands 
use mus02psid92m .dta,  clear 
keep lnearns age 
drop in 1/1000 

(1000 observations deleted) 

will lead to a sample that contains data on all but the first one thousand observations 
for just the two variables lnearns and age. The use mus02psid92m . dt a command is 
added because the previous example had already dropped some of the data. 
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Useful manipulations of datasets include reordering observations or variables, temporar­
ily changing the dataset but then returning to the original dataset, breaking one obser­
vation into several observations (and vice versa) , and combining more than one dataset. 

2.5.1 Ordering observations and variables 

Some commands, such as those using the by pre5x, require sorted observations. The 
sort command orders observations in ascending order according to the variable(s) in 
the command. The gsort command allows ordering to be in descending order. 

You can also reo�der the variables by using the order command. This can be useful 
if, for example, you want to distribute a dataset to others with the most important 
variables appearing as the 5rst variables in the dataset. 

2.5.2 Preserving and restoring a dataset 

In some cases, it is desirable to temporarily change the dataset , perform some calcu­
lation, and then return the dataset to its original form. An example involving the 
computation of marginal effects is presented in section 10.5 .4 .  The preserve command 
preserves the data, and the restore command restores the data to the form it had 
immediately before preserve. 

• Commands preserve and restore illustrated 
use mus02psid92m .dta, clear 
list age in 1/1 

. pre'serve 
. replace age = age + 1000 
age was byte now int 
(4290 real changes made) 

list age in 1/1 

restore 
list age in 1/1 

As desired, the data have been returned to original values. 
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2.5.3 Wide and long forms for a dataset 

Some datasets may combine several observations into a single observation. For example, 
a single household observation may contain data for several household members, or a 
single individual observation may have data for each of several years. This format for 
data is called wide form. If instead these data are broken out so that an observation 
is for a distinct household member, or for a distinct individual-year pair, the data are 
said to be in long form. 

The reshape command is detailed in section 8 . 1 1 .  It converts data from wide form 
to long form and vice versa. This is necessary if an estimation command requires data 
to be in long form, say, but the original dataset is in wide form. The distinction is 
important especially for analysis of panel data and multinomial data. 

2.5 .4 Merging datasets 

The merge command combines two datasets to create a wider dataset, i.e., new variables 
from the second dataset are added to existing variables of the first dataset. Common 
examples are data on the same individuals obtained from two separate sources that then 
need to be combined, and data on supplementary variables or additional years of data. 

Merging two datasets involves adding information from a dataset on disk to a dataset 
in memory. The dataset in memory is known as the master dataset. 

Merging two datasets is straightforward if the datasets have the same number of 
observations and the merge is a line-to-line merge. Then line 10, for example, of one 
dataset is combined with line 10 of the other dataset to create a longer line 10. We 
consider instead a match-merge, where observations in the two datasets are combined 
if they have the same values for one or more identifying variables that are used to 
determine the match. In either case, when a match is made if a variable appears in 
both datasets, then the master dataset value is retained unless it is missing, in which 
case it is replaced by the value in the second dataset. If a variable exists only in the 
second dataset, then :t is added as a variable to the master dataset. 

To demonstrate a match-merge, we create two datasets from the dataset used in 
this chapter. The first dataset comprises every third observation with data on id,  
education, and earnings: 

• Create first dataset Yith every third observation 
. use mus02psid92m . dta,  clear 
. keep if mod(_n , 3 )  = =  0 
(2860 observations deleted) 

keep id education earnings 
list in 1/4,  clean 

educat-n earnings 
1 .  16 38708 
2 .  1 2  3265 
3 .  1 1  19426 
4 .  1 1  30000 

id 
3 
6 
9 

12 
quietly save merge1 .dta,  replace 
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The keep if modCn , 3 )  == 0 command keeps an observation if  the observation number 
(_n) is exactly divisible by 3, so every third observation is kept. Because id=_n for these 
data, by saving every third obse!'vation we are saving observations with id equal to 3, 
6, 9, . . . .  

The second dataset comprises every second observation with data on id, education, 
and hours: 

• Create second dataset Yith every second observation 
use mus02psid92m . dta, clear 

keep if mod(_n ,2 )  =� 0 
(2145 observations deleted) 

keep id education hours 
list in 1/4,  clean 

educat-n hours 
1 .  12 2008 
2 .  12 2200 
3 .  12 552 
4 .  17 3750 

id 
2 
4 
6 
8 

quietly save merge2.dta, replace 

Now we are saving observations with id equal to 2, 4, 6, . . . . 

Now we merge the two datasets by using the merge command. 

In our case, the clatasets differ in both the observations included and the variables 
included, though there is considerable overlap. vVe perform a match-merge on id to 
obtain 

• Merge tYo datasets Yith some observations and variables different 
clear 
use merge 1 .  dta 
sort id 
merge id using merge2.dta 
sort id 

list in 1/4·; · clean 

educat-n earnings 
1 .  12 
2 .  1 6  38708 
3 .  12 
4 .  12 3265 

id hours _merge 
2 2008 2 
3 1 
4 2200 2 
6 552 3 

Recall that observations from the master dataset have id equal to :3, 6, 9, . . .  , and 
observations from the second dataset have id equal to 2, 4, 6, . . . .  Data for education 
and earnings are always available because they are in the master dataset. But obser­
vations for hours come from the second dataset; they are available when id is 2, 4, 6 ,  
. . . and are missing otherwise. 

· 

merge creates a variable . .  merge, that takes on a value of 1 if the variables for an 
observation all come from the master dataset, a value of 2 if they all come from only 
the second dataset, and a value of 3 if for an observation some variables come from 
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the master and some from the second dataset. After using :nerge, you should tabulate 
.merge and check that the results match your expectations. For the example, we obtain 
the expected results: 

tab _merge 
_merge Freq. Percent Cum. 

715 2 5.00  25 .00  
2 1 , 430 50.00 75.00 
3 715 25.00 100 .00 

Total 2 , 860 100 .00 

There are several options when using merge. The update option varies the action 
merge takes when an observation i::; matched. By default, the master dataset i::; held 
inviolate-if update is specified, values from the master dataset are retained if the same 
variables are found in both datasets. However, the values from the merging dataset are 
used in cases where the variable is missing in the master dataset. The replace option, 
allowed only with the update option, specifies that even if the master dataset contains 
nonmissing values, they are to be replaced with corresponding v-alues from the merging 
dataset when corresponding values are not equal. A nonmissing value, however, will 
never be replaced with a missing value. 

2.5.5 Appending datasets 

The append command creates a longer dataset, with the observations from the second 
dataset appended after all the observations from the first dataset. If the same variable 
has different names in the .two datasets, the variable name in one of the datasets should 
be changed by using the rename command so that the names match. 

• Append tYo datasets Yith some observations and variables different 
clear 
use merge 1 .  dta 

append using merge2 . dta 
sort id 
list in 1/4, clean 

educat-n earnings 
1 .  12 
2 .  1 6  38708 
3 .  1 2  
4 .  1 2  3265 

id hours 
2 2008 
3 
4 2200 
6 

Now merge2 . dta is appended to the end of mergei . dta. The combined dataset has 
observations 3, 6, 9, . . .  , 4290 followed by observations 2, 4, 6, . . . , 4290. We then sort 
on id. Now both every second and every third observation is included, �o after sorting 
we have observations 2, 3, 4, 6, 8, 9, . . . .  Note, however, that no attempt has been made 
to merge the datasets. In particular, for the observation with id = 6, the hours data 
are missing. This is because this observation comes from the master dataset, which did 
not include hours as a variable, and there is no attempt to inerge the data. 
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In this example, to take full advantage of the data, we would need to merge the two 
datasets using the first dataset as the master, merge the two datasets using the second 
dataset as the master, and then append the two datasets. 

2.6 Graphical display of data 

Graphs visually demonstrate important features of the data. Different types of data 
require distinct graph formats to bring out these features. We emphasize methods for 
numerical data taking many values, particularly, nonparametric methods. 

2.6.1 Stata graph commands 

The Stata gTaph commands begin with the word graph ( i n  some cases, this is optional) 
followed by the graph plottype, usually twoway. We cover several leading examples 
but ignore the plottypes bar and pie  for categorical data. 

Example graph commands 

The basic graph commands are very short and simple to use. For example, 

use mus02psid92m.d ta, clear 

tYOYay scatter lnearns hours 

produces a scatterplot of lnearns on hours, shown in figure 2 . 1 .  Most graph commands 
support the if and in qualifiers, and some support weights. 

;!: -
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Figure 2 . 1 .  A basic scatterplot of log earnings on hours 

In practice, however, customizing is often desirable. For example, we may want to 
display the relationship between lnearns and hours by showing both the data scatter-
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plot and the ordinary least-squares (OLS) fi tted line on the same graph. Additionally, 
we may want to change the size of the scatterplot data points, change the width of the 
regression line, and provide a title for the graph. We type 

. * More advanced graphics command Yith tYo plots and Yith several options 

. graph tYOYay (scatter lnearns hours , msize(small) )  
> (lfit lnearns hours ,  lYidth(medthick) ) ,  
> title ( " Scatterplot and OLS fitted line")  

The two separate components sea tter and lfi  t are specified separately within paren­
theses. Each of these commands is given with one option, after the comma but within 
the relevant parentheses. The msize (small) option makes the scatterplot dots smaller 
than the default, and the lwidth(medthick) option makes the OLS fi.tted line thicker 
than the default. The titl e ( )  option for twoway appears after the last comma. The 
gTaph produced is shown in figure 2.2 .  

Scatterplot and OLS fitted line ::! ·  
: 

� -�----------�----------�----------� 20.00 4000 5000 ANN WORK HRS 
I o !nonms -- Flt1cd vduc5 I 

Figure 2 .2. A more elaborate scatterplot of log earnings on hours 

We often use lengthy graph commands that span multiple lines to produce template 
graphs that are better looking than those produced with default settings. In particular, 
these commands add titles and rescale the points, lines, and axes to a suitable size 
because the gTaphs printed in this book are printed in a much smaller space than a full­
page graph in landscape mode. These templates can be modifi.ed for other applications 
by changing variable names and title text. 

Saving and exporting graphs 

Once a graph is created, it can be saved. Stata uses the term save to mean saving the 
graph in Stata's internal graph format, as a file with the . gph extension. This can be 
d one by using the saving( )  option in a graph command or by typing graph save after 
the gTaph is created. When saved in this way, the graphs can be reaccessed and further 
manipulated at a later date. 



2 .6. 1 Stata graph commands 59 

Two or more Stata graphs can be combined into a single figure by using the graph 
combine command. For example, we save the first graph as graph1 . gph, save the second 
graph as graph2 . gpl: , and type the command 

• Combine graphs saved as graph1 . gph and graph2. gph 
graph combine graph1 graph2 

(output omitted ) 

Section 3.2. 7 _provides an example. 

The Stata internal graph format ( . gph) is not recognized by other programs, such 
as word processors. To save a graph in an external format, you would use the graph 
export command. For example, 

• Save graph as a 
'
windo1o1s meta-file 

graph export mygraph.1o1mf 
(output omitted) 

Various formats are available, including PostScript ( . ps  ) , Encapsulated PostScript 
( . eps ) , Windows Metafile ( . wmf) , PDF ( . pd f ) , and Portable Network Graphics ( . png) . 
The best format to select depends in part on what word processor is used; some trial 
and error may be needed. 

Learning how to use graph commands 

The Stata graph commands are extremely rich and provide an exceptional range of user 
control through a multitude of options. 

A good way to learn the possibilities is to create a graph interactively in Stata. For 
example, from the menus, select Graphics > Twoway graph (scatter, line, etc.) . 
In the Plots tab of the resulting dialog box, select Create . . .  , choose Scatter, provide 
a Y variable and an X variable, and then click on Marker properties. From the 
Symbol drop-down list, change the default to, say, Triangle. Similarly, cycle through 
the other options <:�J:ld change the default settings to something else. 

Once an initial graph is created, the point-and-click Stata Graph Editor allows 
further customizing of the graph, such as adding text and arrows wherever desired. 
This is an exceptionally powerful tool that we do not pursue here; for a summary, see 
[G] graph editor. The Graph Recorder can even save sequences of changes to apply 
to similar graphs created from different samples. 

Even given familiarity with Stata's graph commands, you may need to tweak a graph 
considerably to make it useful. For example, any graph that analyzes the earnings 
variable using all observations will run into problems because one observation has a 
large outlying value of $999,999. Possibilities in t_hat case are to drop outliers, plot with 
the yscale Clog) option, or use log earnings instead. 
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2.6.2 Box-and-whisker plot 

The graph box command produces a box-and-whisker plot that is a graphical way 
to display data on a single series. The boxes cover the interquartile range, from the 
lower quartile to the upper quartile. The whiskers, denoted by horizontal lines, extend 
to cover most or all the range of the data. Stata places the upper whisker at the 
upper quartile plus 1 . 5  times the interquartile range, or at the maximum of the data 
if this is smaller. Similarly, the lower whisker is the lower quartile minus 1 . 5  times the 
interquartile range, or the minimum should this be larger. Any data values outside the 
whiskers are represented with dots. Box-and-whisker plots can be especially useful for 
identifying outliers. 

The essential command for a box-and-whisker plot of the hours variable is 

• Simple box-and-Yhisker plot 
graph box hours 

(output omitted ) 

We want to present separate box plots of hours for each of four education groups 
by using the over 0 option. To make the plot more intelligible, we first provide labels 
for the four education categories as follows: 

. use mus02psid92m .dta,  clear 

. label define edtype 1 "< High School" 2 "High School" 3 "Some College" 
> 4 "College Degree" 

. label values edcat edtype 

The scale ( 1 .  2) graph option is added for readability; it increases the size of text, 
markers, and line widths (by a multiple 1 . 2 ) .  The marker ()  option is added to reduce 
the size of quantities within the box; the ytitle 0 option is used to present the title; 
and the yscale C ti tlegap C *5 ) )  option is added to increase the gap between the y-axis 
title and the tick labels. We have 

. • Box and Yhisker plot of single variable over several categories 

. graph box hours, over(edcat) scale ( 1 . 2) marker ( l , msize (vsmall) )  
> ytitle( "Annual hours YOrked by education") yscale(titlegap ( • 5) )  

The result is given in  figure 2 .3 .  The labels for edcat, rather than the values, are 
automatically given, making the graph much more readable. The filled-in boxes present 
the interquartile range, the intermediate line denotes the median, and data outside the 
whiskers appear as dots. For these data, annual hours are clearly lower for the lowest 
schooling group, and there are quite a few outliers. About 30 individuals appear to 
work in excess of 4,000 hours per year. 
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Figure 2.3 .  Box-and-whisker plots of annual hours for four categories of educational 
attainment 

2.6.3 Histogram 

The probability mass function or density function can be estimated using a histogram 
produced by the histogram command. The command can be used with if and in 
qualifiers and with weights. The key options are width (#)  to set the bin width, 
bin(#) to set the number of bins, start (#)  to set the lower limit of the first bin, 
and discrete to indicate that the data are discrete. The default number of bins is 
min( .../N, 10 In N/ In 10). Other options overlay a fi.tted normal density (the normal 
option) or a kernel density estimate (the kdensi ty option). 

For discrete data taking relatively few values, there is usually no need to use the 
options. 

· 

For continuous data or for discrete data taking many values, it can be necessary 
to use options because the Stata defaults set bin widths that are not nicely rounded 
numbers and the number of bins might also not be desirable. For example, the output 
from histogram lnearns states that there are 35 bins, a bin width of 0.268, and a start 
value of 4.43. A better choice may be 

. * Histogram Yith bin Yidth and start value set 

. histogram lnearns , Yidth ( 0.25 )  start ( 4.0 )  
(bin�40, start�4 , Yidth� .25) 

(Continued on next page) 
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Figure 2.4. A histogram for log earnings 

2.6.4 Kernel density plot 

For continuous data taking many values, a better alternative to the histogram is  a kernel 
density plot. This provides a smoother version of the histogram in two ways: First, it 
directly connects the midpoints of the histogram rather than forming the histogram 
step function. Second, rather than giving each entry in a bin equal weight , it gives more 
weight to data that are closest to the point of evaluation. 

Let f(x) denote the density. The kernel density estimate of f(x) at x = x0 is 

f(xo) = .2_ ""� K (Xi - xo ) 
Nh u.,=l h 

(2 . 1 )  

where K(- )  i s  a kernel function that places greater weight on points Xi close to  x0 •  
More precisely, K(z) i s  symmetric around zero, integrates to one, and either K(z)  = 0 
if lzl 2: z0 (for some zo) or z -+ 0 as z -+ oo. A histogram with a bin width of 
2h evaluated at x0 can be shown to be the special case K (z) = l/2 if l z l  < 1, and 
K (z) = 0 otherwise. 

A kernel density plot is obtained by choosing a kernel function, K(- ) ; choosing a 
width, h; evaluating }(xo) at a range of values of x0; and plotting f(x0 ) against these 
xo values. 

The kdensi ty command produces a kernel density estimate. The command can 
be used with if and in qualifiers and with weights. The default kernel function is 
the Epanechnikov, which sets K (z) = (3/4)(1 - z2/5)/"1!'5 if l z l  < \15, and K (z) = 0 
otherwise. The kerne 1 C )  option allows other kernels to be chosen, but unless the width 
is relatively small, the choice of kernel makes little difference. The default window 
width or bandwidth is h = 0.9m/n115 , where m = min( .s,, iqr,/1 .349) and iqr, is 
the interquartile range of x .  The bwidth (#)  option allows a different width (h) to be 
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specified, with larger choices of h leading to smoother density plots. The n ( #) option 
changes the number of evaluation points, x0, from the default of min(N, 50) .  Other 
options overlay a fitted normal density (the normal option) or a fitted t density (the 
student (#)  option). 

The output from kdensi ty lnearns states that the Epanechnikov kernel is used and 
the bandwidth equals 0 .1227. If we desire a smoother density estimate with a bandwidth 
of 0 .2 ,  one overlaid by a fitted normal density, we type the command 

* Kernel density plot Yith bandYidth set and fitted normal density overlaid 
kdensity lnearns , bYidth ( 0 . 20) normal n(4000) 

which produces the gTaph in figure 2 .5 .  This graph shows that the kernel density is 
more peake_d than the normal and is o;omewhat skewed. 

t 0 

Kernel density estimate 

lnoorns 1-- Kornol donslty ostlmoto I -- Normal donslly 

kllf£1il'l "' opl:i.nflC:hnlkov, �mlwH:Ith "- a 2000 

Figure 2 .5 .  The estimated density of log earnings 

The following code instead presents a histogram overlaid by a kernel density estimate. 
The histogram bin width is set to 0.25,  the kernel density bandwidth is set to 0.2 using 
the kdenopts ( ) option, and the kernel density plot line thickness is increased using the 
lwidth(medthick) option. Other options used here were explained in section 2 .6 .2 .  ·we 
have 

* Histogram and nonparametric kernel density estimate 
histogram lnearns if lnearns > 0 ,  Yidth( 0 . 25)  kdensity 

> kdenopts (bYidth(0 .2 )  lYidth(medthick) )  
> plotregion(style (none ) )  scale ( 1 .2)  
> title(" Histogram and density for log earnings " )  
> x title("Log annual earnings " ,  size (medla:rge ) )  xscale(titlegap(•5 ) )  
> ytitle ( " Histogram and density" , size (medlarge) )  yscale (titlegap(•5) )  
(bin=38 ,  start=4 .4308167, Yidth= .25) 
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Histogram and density for log earnings 

Log annual earnings 

Figure 2.6. Histogram and kernel density plot for natural logarithm of earnings 

The result is given in figure 2.6. Both the histogram and the kernel density estimate 
indicate that the natural logarithm of earnings has a density that is mildly left-skewed. 
A similar figure for the level of earnings is very right-skewed. 

2.6.5 Twoway scatterplots and fitted lines 

As we saw in figure 2.1 , scatterplots provide a quick look at the relationship between 
two variables. 

For scatterplots with discrete data that take on few vakes, it can be necessary to 
use the j itter()  option. This option adds random noise so that points are not plotted 
on top of one another; see section 14.6.4 for an example. 

It can be useful to additionally provide a fitted curve. Stata provides several pos­
sibilities for estimating a global relationship between y against x, where by global we 
mean that a single relationship is estimated for all observations, and then for plotting 
the fitted values of y against x.  

The twoway lfi t command does so for a fitted OLS regression line, the twoway 
qfi t command does so for a fitted quadratic regression curve, and the twoway fpfi t 
command does so for a curve fitted by fractional polynomial regression. The related 
twoway commands lfi  tci,  qfi tci, and fpfi tci additionally provide confidence bands 
for predicting the conditional mean E(ylx) (by using the stdp option) or for forecasting 
of the actual value of y :x  (by using the stdf option) . 

For example, we may want to provide a scatterplot and :E.tted quadratic with confi­
dence bands for the forecast value of y lx  (the result is shown in figure 2.7) : 



2.6.6 Lowess, kernel, local ·linear, and nearest-neighbor regression 

* Two-way scatterplot and quadratic regression curve with 95/. ci for y l x  
twoway (qfitci lnearns hour s ,  stdf) (scatter lnearns hours , msize( small ) )  
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Figure 2.7 . Twoway scatterplot and fitted quadrat ic with confidence bands 

2.6.6 lowess, kernel, local linear, and nearest-neighbor regression 
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An alternative curve-fitting approach is to use nonparametric methods that fit a local 
relationship between y and x, where by local we mean that separate fitted relationships 
are obtained at different values of x. There are several methods. All depend on a 
bandwidth parameter or smoothing parameter. There are well-established methods 
to automatically select the bandwidth parameter, but these choices in practice can 
undersmooth or oversmooth the data so that the bandwidth then needs to be set by 
using the bwid thO option. 

An easily understood example is a median-band plot. The range of x is broken 
into, say, 20 intervals; the medians of y and x in each interval are obtained; and the 
20 medians of y an;· plotted against the 20 medians of x, with connecting lines between 
the points. The twoway mband command does this, and the related twoway mspline 
command uses a cubic spline to obtain a smoother version of the median-band plot. 

Most nonparametric methods instead use variants of local regression. Consider the 
regression model y = m(x) + u,  where x is a scalar and the conditional mean function 
m(-) is not specified. A local regTession estimate of m(x) at x = xo is a local weighted 
average of y;, i = 1, . . . , N, that places great weight on observations for which X; is close 
to x0 and little or no weight on observations for which X; is far from x0• Formally, 

N 
m(xo) = � .  w(x;., xo , h)y; L....., ,=l 

where the weights w(x.i, xo, h) sum over i to one and decrease as the distance between 
X; and xo increases. As .the bandwidth parameter h increases, more weight is placed on 
observations for which x, is close to Xo·  
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A plot is obtained by choosing a weighting function, w(x.,, xo, h) ;  choosing a band­
width, h; evaluating m( xo) at a range of values of xo; and plotting m( xo) against these 
xo values. 

The kth-nearest-neighbor estimator uses just the k observations for which x; is clos­
est to x0 and equally weights these k closest values. This estimator can be obtained by 
using the user-written t:nnreg command (Salgado-Ugarte, Shimizu, and Taniuchi 1996) .  

Kernel regTession :1ses the weight w(x, , xo , h) = K{(x.; - xo)/h}/ l:�1 K{ (x; -
x0)/h}, where K( · )  is a kernel function defined after (2 . 1 ) .  This estimator can be 
obtained by using the user-written kernreg command (Salgado-Ugarte, Shimizu, and 
Taniuchi 1996). It can also be obtained by using the lpoly command, which we present 
next. 

The kernel regression estimate at x = xo can equivalently be obtained by minimizing 
L:,. K { (xi-xo)/ h} (Y; -a0)2 ,  which is weighted regression on a constant where the kernel 
weights are largest for observations with x; close to xo. The local linear estimator 
additionally includes a slope coe�cient and at x = x0 minimizes 

""""' N ( X·i - Xo ) ., 
� ·- I< -·-1- {y; - ao - /3o(x ; - xo) } -'·-1 ). (2 .2) 

The local polynomial estimator of degree p more generally uses a polynomial of degree p 

in (x, - x0) in (2.2) .  This estimator is obtained by using lpoly. The degre e ( # )  option 
specifies the degree p, the kerne l ( )  option specifies the kernel, the bwidth ( # )  option 
specifies the kernel bandwidth h, and the generate ( )  option saves the evaluation points 
xo and the estimates m(x0). The local linear estimator with p � 1 does much better 
than the preceding methods at estimating m(xo) at values of xo near the endpoints of 
the range of x, as it allows for any trends near the endpoint:;. 

The locally weighted scatterplot smoothing estimator (lowess) is a variation of the 
local linear estimator that uses a variable bandwidth, a tricubic kernel, and down weights 
observations with large residuals (using a method that greatly increases the computa­
tional burden). This estimator is obtained by using the lowess command. The band­
width gives the fraction of the observations used to calculate m(xo) in the middle of the 
data, with a smaller fraction used towards the endpoints. The default value of 0.8 can 
'be changed by using che bwid th ( # )  option, so unlike the other methods, a smoother 
plot is obtained by increasing the bandwidth. 

The following example illustrates the relationship between log earnings and hours 
worked. The one graph includes a scatterplot (sea tter ) , a fitted lowess curve (lowess ) , 
and a local linear curve (lpoly). The command is lengthy because of the detailed 
formatting commands used to produce a nicely labeled and formatted gTaph. The 
msize( tiny) option is used to decrease the size of the dots in the scatterplot. The 
1 width (med thick) option is used to increase the thickness of lines, and the clstyle (p 1 )  
option changes the style ofthe line for lowess. The titl e ( )  option provides the overall 
title for the graph. The xtitle ( )  and ytitl e O  options provide titles for the x axis 
and y axis, and the size (medlarge) option defines the size of the text for these titles. 
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The legend ( )  options place the graph legend at  four o'clock (pos (4) ) with text size 
small and provide the legend labels. We have 

. • Scatterplot Yith loYess and local linear nonparametric regression 

. graph tYOYay ( s catter lnearns hour s ,  msize(tiny ) )  
> (loYess lnearns hour s ,  clstyle(pl) lYidth(medthi"ck))  
> (lpoly lnearns hours, kerne l(epan2) degree(l)  lYidth(medthick) 
> bYidth (500) ) ,  plotregion (style (none) ) 
> titl e ( "  Scatterplot, loYess, and local linear regression") 
> xtitle ( " Annual hour s " ,  size(medlarge) )  
> ytitle( "Natural logarithm of annual earnings " ,  size(medlarge) )  
> legend( pos(4) ring (O)  col ( l ) )  legend(size (small) )  
> legend(labe ::.. ( l  "Actual Data") label(2 "LoYes s " )  label(3  "Local linear " ) )  

Scatterplot, lowess. and local linear regression 
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Figure 2.8. Scatterplot, lowess, and local linear curves for natural logarithm of earnings 
plotted against hours 

From figure 2.8, thescatterplot, fitted OLS line, and nonparametric regression all in­
dicate that log earnings increase with hours until about 2 ,500 hours and that a quadratic 
relationship may be appropriate. The graph uses the default bandwidth setting for 
lowess and greatly increases the lpoly bandwidth from its automatically selected value 
of 84.17 to 500. Even so, the local linear curve is too variable at high hours where the 
data are sparse. At low hours, however, the lowess estimator overpredicts while the 
local linear estimator does not. 

2.6. 7 Multiple scatterplots 

The graph rna trix command provides separate bivariate scatterplots between several 
variables. Here we produce bivariate scatterplots (shown in figure 2.9) of lnearns, 
hours,  and age for each of the four education categories: 

• Multiple scatterplots 
label variable age "Age" 

label variable · lnearns "Log earnings" 
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label variable hours "Annual hours" 
graDh matrix lnearns hours age.  bv (edcat) msize(sma.ll) 

Grophs by RECODE of education (COMPLETED EDUCATION) 

.: Htgh School . · · 

0 200C4000JOOO 

Figure 2.9. Multiple scatterplots for each level of education 

Stata does not provide three-dimensional graphs, such as that for a nonparametric 
bivariate density estimate or for nonparametric regTession of one variable on two other 
variables. 

2 .7 Stata resources 

The key data-management references are [U] Users Guide and [o] Data Management 
Reference Manual. Useful online help categories include 1) double ,  string, and 
format for data types; 2) clear, use,  insheet, infile, and outsheet for data in­
pu� � summarize, list ,  label, tabulate, generate , egen, keep, drop, recode, by, 
sort, merge, append, and collapse for data management; and 4) graph, graph box,  
histogram, kdensi ty, twoway, lowess,  and graph rna trix for graphical analysis. 

The Stata graphics commands were greatly enhanced in version 8 and are still rel­
atively underutilized. The Stata Graph Editor is new to version 10; see [G] graph 
editor. A Visual Glide to Stata Graphics by Mitchell (2008) provides many hundreds 
of template gTaphs with the underlying Stata code and an explanation for each. 

2 .8 Exercises 
1. Type the command display %10 . Sf 123 . 321 .  Compare the results with those 

you obtain when you change the format %10 . Sf to, respectively, %10 .  5e ,  %10 . 5g, 
%-10 . 5f, %10  , 5f ,  and when you do not specify a format. 
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2 .  Consider the example of section 2.3 except with the variables reordered. Specif­
ically, the variables are in the order age, name ,  income, and female. The three 
observations are 29 "Barry" 40 . 990 0; 30 " Carrie" 37 . 000  1 ;  and 31 "Gary" 
48 . 000 0. Use input to read these data, along with names, into Stata and list 
the results. Use a text editor to create a comma-separated values file that includes 
variable names in the first line, read this file into Stata by using insheet, and 
list the results. Then drop the first line in the text file, read in the data by using 
inshee� with variable names assig11ed, and list the results. Finally, replace the 
commas in the text file with blanks, read the data in by using infix, and list the 
results. 

3 .  Consider the dataset in section 2.4. The er32049 variable is the last known 
marital status. Rename this variable as marsta tus, give the variable the label 
"marital status" , and tabulate marsta tus. From the code book, marital status is 
married ( 1) ,  never married (2 ) ,  widowed ( 3) ,  divorced or annulment ( 4) ,  separated 
(5 ) ,  not answered or do not know (8) ,  and no marital history collected (9) . Set 
marsta tus to missing where appropriate. Use label define and label values to 
provide descriptions for the remaining categories, and tabulate marsta tus. Create 
a binary indicator variable equal to 1 if the last known marital otatm; il:; married, 
and equal to 0 otherwise, with appropriate handling of any missing data. Provide 
a summary of earnings by marital status. Create a set of indicator variables for 
marital status based on marsta tus. Create a set of variables that interact these 
marital status indicators with earnings. 

4. Consider the dataset in section 2.6. Create a box-and-whisker plot of earnings (in 
levels) for all the data and for each year of educational attainment (use variable 
education). Create a histogram of earnings (in levels) using 100 bins and a 
kernel density estimate. Do earnings in levels appear to be right-skewed? Create 
a scatterplot of earnings against education. Provide a single figure that Ul:;eS 
sea tterplot, lfi t, and lowess of earnings against education. Add titles for 
the axes and graph heading. 

5. Consider the dataset in section 2.6 .  Create kernel density plots for lnearns using 
the kernel (epan2) option with kernel K(z) = (3/4) (1 - z2 /5) for [ z [  < 1, and 
using the kernel ( epan2) option with kernel K(z) = 1/2 for [ z [  < 1. Repeat with 
the bandwidth increased from the default to 0.3. What makes a bigger difference, 
choice of kernel or choice of bandwidth? The comparison is easier if the four 
graphs are saved using the saving( )  option and then combined using the graph 
combine command. 

6. Consider the dataset in section 2.6 .  Perform lowess regression of lnearns on hours 
using the default bandwidth and using bandwidth of 0.01. Does the bandwidth 
make a difference? A moving average of y after data are sorted by x is a simple 
case of nonparametric regTession of y on x. Sort the data by hours. Create a 
centered 15-period moving average of lnearns with ith observation yma., = 1/25 
�;��212 y,+j . This is easiest using forvalues. Plot this moving average against 
hours using the twoway connected graph command. Compare to the lowess plot. 
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3. 1 I rotroductioro 

Linear regression analysis is often the starting point of an empirical investigation. Be­
cause of its relative simplicity, it is useful for illustrating the different steps of a typical 
modeling cycle that involves an initial specification of the model followed by estimation, 
diagnostic checks, and model respecification. The purpose of such a linear regression 
analysis may be to summarize the data, generate conditional predictions, or test and 
evaluate the role of specific regressors. We will illustrate these aspects using a specific 
data example. 

This chapter is limited to basic regression analysis on cross-section data of a contin­
uous dependent variable. The setup is for a single equation and exogenous regressors. 
Some standard complications of linear regression, such as misspecification of the condi­
tional mean and model errors that are heteroskedastic, will be considered. In particular, 
we model the natural logarithm of medical expenditures instead of the level. We will 
ignore other various aspects of the data that can lead to more sophisticated nonlinear 
models presented in later chapters. 

3.2 Data and data summary 

The first step is to decide what dataset will be used. In turn, this decision depends on 
the population of interest and the research question itself. We discussed how to convert 
a raw dataset to � form amenaole to regression analysis in chapter 2. In this section. 
we present ways to summarize and gain some understanding of the data, a necessary 
step before any regression analysis. 

3.2.1 Data description 

We analyze medical expenditures of individuals 6.5 years and older who qualify for 
i1ealth care under the U.S .  Medicare program. The original data source is the Medical 
Expenditure Panel Survey (MEPS). 

Medicare does not cover all medical expenses. For example, copayments for medical 
services and expenses of prescribed pharmaceutical drugs were not covered for the time 
period studied here. About half of eligible individuals therefore purchase supplementary 
insurance in the private market that provides insurance coverage against various out­
of-pocket expenses. 
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In this chapter, we consider the impact of this supplementary insurance on total an­

nual 
medical expenditures of an individual, measured in dollars. A formal investigation 

must control for the influence of other factors that also determine individual medical 
expenditure, notably, sociodemographic factors such as age, gender, education and in­
come, geographical location, and health-status measures such as self-assessed health 

and 
presence of chronic or limiting conditions. In this chapter, as in other chapters, 

we 
in:;tead deliberately use a short list of regressors. This permits shorter output and 

:;impler discussion of the results, an advantage because our intention is to simply explain 

the 
methods and tools available in Stata. 

3.2.2 
Variable description 

Given the Stata dataset for analysis, we begin by using the describe command to list 
various features of the variables to be used in the linear regression. The command with­

out 
a variable list describes all the variables in the dataset. Here we resttict attention 

to 
the variables used in this chapter. 

• Variable description for medical expenditure dataset 
use mus03dat a . dta 

describe totexp ltotexp posexp suppins phylim actlim totchr age female income 
storage display value 

variable name type format label variable label 

totexp 
ltotoxp 
posexp 
suppins 
phylim 
act lim 
totchr 
age 
female 
income 

double 'l.12 .0g 
float /.9 .0g 
float /.9.0g 
float /.9.0g 
double 'l.12.0g 
double 'l.12.0g 
double 'l.12.0g 
double r. 12 .0g 
double 'l. 12.0g 
double 'l.12.0g 

Total medical expenditure 
ln(totexp) if totexp > 0 
=1 if total expenditure > 0 
=1 if has supp priv insurance 
=1 if has functional limitation 
=1 if has activity limitation 
# of chronic problems 
Age 
= 1  if female 
annual household income/1000 

The 
variable types and format columns indicate that all the data are numeric. In this 

case, some variables are stored in single precision (float) and some in double precision 

(dou
ble) .  From the variable labels, we expect totexp to be nonnegative; 1 totexp to  

be 
missing if totexp equals zero; posexp, suppins, phylim, · act lim, and female to  

be 
0 or 1 ;  totchr to be a nonnegative integer; age to  be positive; and income to be 

negative or positive. Note that the integer variables could have been stored much more 
compactly as integer or byte .  The variable labels provide a short description that is 
helpful but may not fully describe the variable. For example, the key reg,Tessor suppins 

W<1S 
created by aggTegating across several types ofprivate supplementary insurance. No 

labels for the values taken by the categorical variables have been provided. 
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3.2.3 Summary statistics 

It is essential in any data analysis to first check the data by using the summarize 
command. 

• S=mary sta t=.stics for medical expenditure dataset 
summarize totexp ltotexp posexp suppins phylim actlim totchr age female income 

Variable Obs Mean Std. Dev. Min Max 

totexp 3064 7030 . 889 11852.75 0 125610 
ltotexp 2955 8 . 059866 1 . 367592 1 . 098612 1 1 . 74094 
posexp 3064 . 9 644256 . 1852568 0 1 

suppins 3064 . 5812663 .4934321 0 
phylim 3064 .4255875 .4945125 0 

actlim 3064 .2836162 . 4508263 0 
totchr 3064 1. 754243 1 . 307197 0 7 

age 3064 74.17167 6 . 372938 65 90 
female 3064 . 5796345 .4936982 0 
income 3064 22. 47472 22.53491 -1 312.46 

On average, 96% of individuals incur medical eAlJenditures during a year; 58% have 
supplementary insurance; 43% have functional limitations; 28% have activity limita­
tions; and 58% are female, as the elderly population is disproportionately female be­
cause of the greater longevity of women. The only variable to have missing data is 
1 totexp, the natural logarithm of totexp, which is missing for the (3064 - 2955) = 109 
observations with totexp = 0. 

All variables have the expected range, except that income is negative. To see how 
many observations on income are negative, we use the tabulate command, restricting 
attention to nonpositive observations to limit output. 

• Tabulate variable 
tabulate income if income <= 0 

annual 
household 

income/1000 Freq.  Percent Clllll. 

-1 1 . 14 1 . 14 
0 87 98 .86  100.00 

Total 88 100 .00  

Only one observation i s  negative, and negative income is  possible for income from self­
employment or investment. We include the observat.ion in the analysis here, though 
checking the original data source may be warranted. 

Much of the subsequent regression analysis will drop the 109 observations with zero 
medical expenditures, . so in a research paper, it would be best to report summary 
statistics without these observations. 
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3.2.4 More-detailed summary statistics 

Additional descriptive analysis of key variables, especially the dependent variable, is 
useful. For totexp, the level of medical expenditures, summarize , detail yields 

* Detailed summary statistics of a single variable 
summarize totexp , detail 

Total medical expenditure 

Percentiles Smallest 
1/. 0 0 
5/. 112 0 

10/. 393 0 Dbs 3064 
25/. 1271 0 Sum of Wgt. 3064 

50/. 3134 . 5  M8an 7030 . 889 
Largest Std.  Dev. 11852.75 

75/. 7151 104823 
90/. 17050 108256 Variance 1 . 40e+08 
95/. 27367 123611 Skeuness 4 . 1 65058 
99/. 62346 125610 Kurtosis 2 6 . 26796 

Medical expenditures vary greatly across individuals, with a standard deviation of 
11,853, which is almost twice the mean. The median of 3, 134 is much smaller than 
the mean of 7,031, reflecting the skewness of the data. For variable x, the skewness 
statistic is a scale-free measure of skewness that estimates E{(x - p,)3}/<J312, the third 
central moment standardized by the second central moment. The skewness is zero for 
symmetrically distributed data. The value h�re of 4 . 16 indicates considerable right 
skewness. The kurtosis statistic is an estimate of E{(x - J.t)"1 }/<J4 , the fourth central 
mm._nent standardized by the second central moment . The reference value is 3, the value 
for normally distributed data. The much higher value here of 26.26 indicates that the 
tails are much thicker than those of a normal distribution. You can obtain additional 
summary statistics by using the cen tile command to obtain other percentiles and by 
using the table command, which is explained in section 3.2.5. 

We conclude that the distribution of the dependent variable is considerably skewed 
and has thick tails. These complications often arise for commonly studied individual­
level economic variables such as expenditures, income, earnings, wages, and house prices. 
It is possible that including regressors will eliminate the skewness, but in practice, much 
of the variation in the data will be left unexplained (R2 < 0.3 is common for individual­
level data) and skewness and excess kurtosis will remain. 

Such skewed, thick-tailed data suggest a model with multiplicative errors instead of 
additive errors. A standard solution is to transform the dependent variable by taking 
the natural logarithm. Here this is complicated by the presence of 109 zero-valued 
observations. vVe take the expedient approach of dropping tne zero observations from 
analysis in either logs or levels. This should make little difference here because only 
3.6% of the sample is then dropped. A better approach, using two-part or selection 
models, is covered in chapter 16. 

The output for tabsta t in section 3.2 .5 reveals that taking the natural logarithm 
for these data essentially eliminates the skewness and excess kurtosis. 
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The user-written fsum command (Wolfe 2002) is an enhancement of su=arize that 
enables formatting the output and including additional information such as percentiles 
and variable labels. The user-written outsum command (Papps 2006) produces a text 
file of means and standard deviations for one or more subsets of the data, e.g. , one 
column for the full sample, one for a male subsample, and one for a female subsample. 

3.2.5 Tables for data 

One-way tables can be created by using the table command, which produces just 
frequencies, or the tabulate command, which additionally produces percentages and 
cumulative percentages; an example was given in section 3.2 . 3. 

Two-way tables can also be created by using these commands. For frequencies, ,mly 
table produces clean output. For example, 

• TYo-yay table of frequencies 
table female totchr 

=1 if 
female 

0 

0 
# of chronic problems 

2 3 4 5 

239 415 323 201 82 
313 466 493 305 140 

23 
46 

6 

4 
1 1  

7 

1 
2 

provides frequencies for a two-way tabulation of gender against the number of chronic 
conditions. The tabulate command is much richer. For example, 

• TYo-yay table Yith roY and column percentages and Pearson chi-squared 
tabulate female suppins, roY col chi2 

Key 

frequency 
roY percentage 

column percentage 

=1 if has supp priv 
=1 if insurance 
female 0 

0 488 800 
37.89 62 . 1 1  
38 .04 44.92 

795 981 
44.76 55 .24 
6 1 . 9 6  55 . 08 

Total 1 , 283 1 , 781 
41 .87  58 . 13  

100.00 100.00 

Pearson chi2( 1)  = 14.4991 

Total 

1 , 288 
100 .00 
42 . 04 

1 ,  776 
100 .00 
57 .96  

3 , 064 
10 0 . 00. 
100.00 

Pr � 0 . 000 
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Comparing the row percentages for this sample, we see that while a woman is more 
likely to have supplemental insurance than not, the probability that a woman in this 
sample has purchased supplemental insurance is lower than t!:J.e probability that a man 
in this sample has purchased supplemental insurance. Although we do not have the 
information to draw these inferences for the population, the results for Pearson's chi­
squared test soundly reject the null hypothesis that these variables are independent. 
Other tests of association are available. The related command tab2 will produce all 
possible two-way tables that can be obtained from a list of several variables. 

For multiway tables, it is best to use table. For the example at hand, we have 

• Three-way table of frequencies 
table female totcbr suppins 

= 1  if h a s  supp priv insurance and # of chronic 
problems 

=1 if 0 
female 0 2 3 4 5 6 7 

0 102 165 121 68 25 6 
135 212 233 134 56 22 2 

= 1 i f  has supp priv insurance and # of cbronic 
problems 

=1 if 1 
female 0 2 3 4 5 6 7 

0 I 137 250 202 133 57 17 3 
1 178 254 260 171 84 24 10  

An alternative is  to  use tabulate with the by prefix, but the results are not as neat as 
those from table. 

The preceding tabulations will produce voluminous output if one of the variables 
being tabulated takes on many values. Then it is much better to use table with the 
content s ( )  option to present tables that give key summary statistics for that variable, 
such as the mean and standard deviation. Such tabulations can be useful even when 
variables take on few values. For example, when summarizing the number of chronic 
problems by gender, table yields 

• One-way table of summary statistics 
. table female, contents(N  totcbr mean totcbr sd totcbr p50 totcbr) 

=1 if 
female 

0 

N (totcbr) mean(totchr) 

1 , 288 1 . 659937888 
1 , 776 1 . 822635135 

sd(totcbr) med(totchr) 

1 .  261175 1 
1 .  335776 2 



3.2.5 Tables for data 77 

Women on average have more chronic problems (1 .82 versus 1.66 for men) . The option 
content sO can produce many other statistics, including the minimum, maximum, and 
key percentiles. 

The table command with the contents ( )  option can additionally produce two-way 
and multiway tables of summary statistics. As an example, 

• Two-way table of summary statistics 
table female suppins, contents ( N  totchr mean totchr) 

-1 if 
female 

-1 if has supp priv 
insurance 

0 

0 488 
1 .  530737705 

795 

800 
1 . 73875 

981 
1 . 803773585 1 . 837920489 

shows that those with supplementary insurance on average have more chronic problems. 
This is especially so for males ( 1 .7 4 versus 1.53) . 

The tabulate , su=arize ()  command can be used to produce one-way and two­
way tables with means, standard deviations, and frequencies. This is a small subset of 
the statistics that can be produced using table, so we might as well use table. 

The tabsta t command provides a table of summary statistics that permits more 
flexibility than su=arize. The following output presents summary statistics on medical 
expenditures and the natural logarithm of expenditures that are useful in determining 
skewness and kurtosis. 

• Summary statistics obtained using command tabstat 
tabstat totexp l totexp, stat (count mean p50 sd skew kurt) col (stat) 

variable N mean p50 sd ske�omes s kurtosis 

totexp 3064 7030. 889 3134 . 5  11852.75 4 . 165058 26. 26796 
ltotexp 2955 8 . 059866 8 . 1 11928 1 . 367592 - . 3857887 3 . 842263 

This reproduces infor;:nation given in section 3.2.4 and shows that taking the natural 
logarithm eliminates most skewness and kurtosis. The col (stat )  option presents the 
results with summary statistics given in the columns and each variable being given in 
a separate row. Without this option, we would have summary statistics in rows and 
variables in the columns. A two-way table of summary statistics can be obtained by 
using the by()  option. 

( Continued on next page) 
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3.2.6 Statistical tests 

The ttest command can be used to test hypotheses about the population mean of a 
single variable (Ho : ll = tt* for speci:E.ed value ;t*) and to test the equality of means 
(Ho : !!I = 1J2) . For rr_ore general analysis of variance and analysis of covariance, the 
oneway and anova commands can be used, and several other tests exist for more special­
ized examples such as testing the equality of proportions. These commands are rarely 
used in microeconometrics because they can be recast as a special case of regression 
with an intercept and appropriate indicator variables. Furthermore, regression has the 
advantage of reliance on less restrictive distributional assumptions, provided samples 
are large enough for asymptotic theory to provide a good approximation. 

For example, consider testing the equality of mean medical expenditures for those 
with and without supplementary health insurance. The ttest totexp, by( suppins) 
unequal command performs the test but makes the restrictive assumption of a com­
mon variance for all those with suppins=O and a (possibly different) common variance 
for all those with suppins=l. An alternative method is to perform ordinary least­
squares (OLS) regression of totexp on an intercept and suppins and then test whether 
suppins has coefficient zero. Using this latter method, we can permit. all observations 
to have a different variance by using the vee (robust) option for regress to obtain 
heteroskedastic-consistent standard errors; see section 3.3.4. 

3.2.  7 Data plots 

It is useful to plot a histogram or a density estimate of the dependent variable. Here 
we use the kdensi ty command, which provides a kernel estimate of the density. 

The data are highly skewed, with a 97th percentile of approximately $40,000 and a 
maximum of $1 ,000,000. The kdensity totexp command will therefore bunch 97% of 
the density in the first 4% of the x axis. One possibility is to type kdensity totexp 
if totexp < 40000, but this produces a kernel density estimate assuming the data 
are truncated at $40,000. Instead, we use command kdensi ty totexp, we save the 
evaluation points in kx1 and the kernel density estimates in kd1, and then we line-plot 
kdl against kxl. 

We do this for both the level and the natural logarithm of medical expenditures, and 
we use graph combine to produce a figure that includes both density graphs (shown in 
figure 3 . 1 ) .  We have 

• Kernel density plots with adjustment for highly skewed data 
kdensity totexp if pos0xp= = l ,  generate (kxl kd1) n(SOO) 
graph twoway (line kdl kxl) if kxl < 40000, name (levels) 

kdensity ltotexp if posexp= = l ,  generate (kx2 kd2) n(500) 
graph twoway (line kd2 k x2) if kx2 < ln(40000) , name(logs) 
graph combine levels logs, iscale ( 1 . 0 )  
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Figure 3 . 1 .  Compari:;on of densities of level and natural logarithm of medical expendi­
tures 

Only positive exper.ditures are considered, and for graph rP.adahility, the very long 
right tail of totexp has been trnncatecl at $40,000. In figure 3 . 1 ,  the distribution of 
totexp is very right-skewed, whereas that of 1 totexp is fairly symmetric. 

3.3 Regression in i�veis a nd �ogs 

We present the linear reg1·ession model, first in levels and then for a transformed de­
pendent variable, here in logs. 

3.3.1 Basic regression theory 

We begin by introducing terminology used throughout the rest of tbis book. Let e 
denote the vector of parameters to be estimated, and let 8 denote an estimator of e. 
Ideally, the distribution of 8 is centered on e with small variance, for precision, and a 
known distribution, to permit statistical inference. We restrict analysis to estimators 
that are consistent for e, meaning that in infinitely large samples, 8 equals e aside 
from negligible random variation. This is denoted by 8 .£. e or more formnlly by 8 .£. 
8o, where eo denotes the unknown "true" parameter value. A necessary condition for 
consistency is correct model specification or, in some leading cases, correct specification 
of key components of the model, most notably the' conditional mean. 



80 Chapter 3 Linear regression basics 

Under additional assumptions, the estimators considered in this book are asymptot­
ically normally distributed, meaning that their distribution is well approximated by the 
multivariate normal in large samples. This is denoted by 

where Var(e) denotes the (asymptotic) variance-covariance matrix of the estimator 
(veE). More efficient estimators have smaller VOEs. The VOE depends on unknown 
parameters, so we use an estimate of the VOE, denoted by V(e) .  Standard errors of the 
parameter estimates are obtained as the square root of diagonal entries in V(e). Differ­
ent assumptions about the data-generating proce::;::; (DGP), ::;uch as hetero::;kedasticity, 
can lead to different estimates of the VOE. 

Test statistics based on asymptotic normal re::;ults lead to the use of the standard 
normal distribution and chi-squared distribution to compute critical values and p-values. 
For some estimators, notably, the OLS estimator, tests are instead based on the t dis­
tribution and the F distribution. This makes essentially no difference in large samples 
with, say, degrees of freedom greater than 100, but it may provide a better approxima­
tion in smaller samples. 

3.3.2 OLS regression and matrix algebra 

The goal of linear regres::;ion is to e::;timate the parameter::; of the linear conditional mean 

E(ylx) = x' {3 = (31x1 + (Jzxz + · · · + {3 KXK (3 . 1 )  

where usually an intercept i s  included so that x 1  = 1 .  Here x is a J( x 1 column vector 
with the jth entry-the jth regressor x1-and {3 is a J{ x 1 column vector with the jth 
entry (Jj . 

Sometimes E(ylx) i::; of direct interest for prediction. More often, however, econo­
metric::; studies are interested in one or more of the associated marginal effects (ME::;), 

8E(ylx) 
_ 

:3 ·  
a - I  J Xj 

for the jth regressor. For example, we are interested in the marginal effect of supple­
mentary private health insurance on medical expenditm·es. An attraction of the linear 
model is that estimated iVIES are given directly by estimates of the slope coefficients. 

The linear regression model ::;pecifies an additive error ::;o that , for the typical ith 
observation, 

y.;, = x;p + u;,  i = 1 ,  . . . , N 

The OLS estimator minimizes the sum of squared errors, 2::;[::,1 (y, - x;f3f. 
Matrix notation provides a compact way to represent the estimator and variance 

matrix formulas that involve sums of products and cross products. We define the N x 1 
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column vector y to �ave the ith entry yi , and we define the N x [{ regTessor matrix X 
to have the ith row x; . Then the OLS estimator can be written in several ways, with 

j3 = (X'X)- 1X'y 

= ("-'� X;x:) - l  '\.'N XiYi L._....,oo: l L...,,,= 1 [ ��1 xi.; L�1 X1.;x2; 
' N N 

� =:�• x,,xu 2::,�, xl, 

Li=1 X!{i.Xh 

We define all vectors as column vectors, with a transpose if row vectors are desired. 
Dy contrast, Stata commands and Mata commands define vectors as row vectors. so in 
parts of Stata and Mata code, we need to take a transpose to conform to the notation 
in the book. 

3.3.3 Properties of the OLS estimator 

The properties of any estimator vary with the assumptions made about the DGP. For 
the linear regression model, this reduces to assumptions about the regression error ·u;. . 

The starting point for analysis is to assume that u; satisfies the following classical 
conditions: 

1 .  E(u, lxi )  = 0 (exogeneity of regressors) 

2. E(u;lx1 ) = CJ2 (conditional homoskedasticity) 

:3. E(u.;uJ ix; . xj) = 0, i :f j, (conditionally uncorrelated observations) 

Assumption 1 is essential for consistent estimation of {3 and implies that the condi­
tional mean given in (3 .1 ) is correctly specified. This means that the conditional mean h; 
linear and that all relevant variables have been included in the regression. Assumption 1 
is relaxed in chapter 6. 
� Assumptions 2 and :3 determine the form of the VCE of {3. Assumptions 1-3 lead to 
{3 being asymptotically normally distributed with the default estimator of the VCE 

Vdcrault{t3) = s 2(X'X) - 1 

where 
(3.2) 

and 11;. = Yi - x]3. Under assmnptions 1-3, the OLS estimator is fully efficient. If, 
additionally, u, is normally distributed, then "t statistics" are exactly t distributed. This 
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fourth assumption is not made, but it is common to continue to use the t distribution 
in the hope that it provides a better approximation than the standard normal in fi nite 
samples. 

When assumptions 2 and 3 are relaxed, OLS is no longer fully efficient. In chapter 5 ,  
we present examples of more-efficient feasible generalized least-squares (FGLS) estima­
tion. In the current chapter, we continue to use the OLS estimator, as is often done in 
practice, but we use alternative estimates of the VCE that are valid when assumption 
2, assumption 3, or both are rela.\:ed. 

3.3.4 Heteroskedasticity-robust standard errors 

Given assumptions 1 and 3, but not 2, we have heteroskedastic uncorrelated errors. 
Then a robust estimator, or more precisely a heteroskedastici<;y-robust estimator, of the 
VCE of the OLS estimator is 

�obust (,6) = (X'X) - l (NN_ k L; u;x;x:) (X'X) - l (3.3) 

For crm;t>-section data that are independent, this estimator, introduced by White ( 1980) , 
has supplanted the default variance matri..x estimate in most applied work because het­
eroskedasticity is the norm, and in that case, the default estimate of the VCE is incorrect . 

In Stata, a robust estimate of the VCE i� obtained by n�ing the vee (robust) option 
of the regress command, as illustrated in section 3.4 .2 .  Related options are vee (he2) 
and vee (he3) , which may provide better heteroskedasticity-robust estimates of the VCE 
when the sample size is small; see [R] regress. The robust estimator of the VCE has been 
extended to other estimators and models, and a feature of Stata is the vee (robust) op­
tion, which is applicable for many estimation commands. Some user-written commands 
use robust in place of vee (robus t ) .  

3.3.5 Cluster-robust standard errors 

When errors for different observations are correlated, assumption :3 is violated. Then 
both default and robust estimates of the VCE are invalid. For time-series data, this is 
the case if errors are serially correlated, and the newey command should be used. For 
cross-section data, this can arise when errors are clustered. 

Clustered or grouped errors are errors that are correlated within a cluster or group 
and are uncorrelated across clusters. A simple exatnple of clustering arises when sam­
pling is of independent units but errors for individuals within the unit are correlated. 
For example, 100 independent villages may be sampled, wib. several people from each 
village surveyed. Then, if a regression model overpredicts y for one village member, 
it is likely to overpredict for other members of the same village, indicating positive 
correlation. Similar comments apply when sampling is of households with several indi­
viduals in each household. Another leading example is panel data with independence 
over individuals but with correlation over time for a given individual. 
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Given assumption 1 ,  but not 2 or 3, a cluster-robust estimator of the VCE of the 
OLS estimator is 

� (7-i) (X'X) -1 ( G N - 1 "'  X � �� X' )  (X'X) - 1 
Vciustcr v = 

G _ l N _ k L_;0 gUg ug a 

where g = 1, . . .  , G denotes the cluster (such as village) ,  ii9 is the vector of residuals 
for the observations in the gth cluster, and Xg is a matrix of the regressors for the 
observations ' in the gth cluster. The key assumptions made are error independence 
across clusters and bat the number of clusters G ---> oo. 

Cluster-robust standard errors can be computed by using the vce( cluster clust­
vaT) option in Stata, where clusters are defined by the different values taken by the 
clustvaT variable. The estimate of the VCE is in fact heteroskedasticity-robust and 
cluster-robust ,  because there is no restriction on Cov( Ug.; , Uad ) . . The cluster VCE esti­
mate can be applied to many estimators and models; see section 9 .6 .  

Cluster-robust standard errors must be used when data are clustered. For a scalar 
regressor x, a rule of thumb is that cluster-robust standard errors are jl + PxPu (M - 1 )  
times the incorrect default standard errors, where p .£ i s  the within-clut>ter correlation 
coefficient of the regret>sor, Pu. is the within-cluster correlation coefficient of the errm·, 
and 1\1 is the average cluster size. 

It can be nece::>t>ary to ut>e clut>ter-robust standard errors even where it is not im­
mediately obvious. This is particularly the case when a regressor is an aggregated or 
macro variable, because then Px = 1. For example, suppose we use data from the U.S. 
Current Population Survey and regTess individual earnings on individual characteristics 
and a state-level regressor that does not vary within a state. Then, if there are many 
individuals in each stat-e so M is large, even slight error correlation for individuals 
in the same state can lead to gTeat downward bias in default standard errors and in 
heteroskedasticity-robust standard errors. Clustering can also be induced by the desig11 
of sample surveys. This topic is pursued in section 5 . . 5. 

3.3.6 Regression in logs 

The medical expenditure data are very right-skewed. Then a linear model in levels can 
provide very poor predictions because it restricts the effects of regressors to be additive. 
For example, aging 10 years is assumed to increase medical expenditures by the sam� 
amount regardless of observed health status. Instead, it is more reasonable to assume 
that aging 10 years has a multiplicative effect. For example, it may increase medical 
expenditures by 20%. 

We begin with an exponential mean model for positive expenditures, with error 
that is also multiplicative, so y,_ = exp(x�/3)E ;. · Defining c:, = exp(tt; ) ,  we have y,_ 
exp(x:,6 + u, ) , and taking the natural logarithm, we fit the log-linear model 

ln y; = x';,6 + u; 
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by OLS regression of ln y on x. The conditional mean of ln y is being modeled, rather 
than the conditional mean of y. In particular, 

E(ln yfx) = x' f3 

assuming w is independent with conditional mean zero. 

Parameter interpretation requires care. For regression of ln y on x, the coefficient i3J 
measures the effect of a change in regressor Xj on E(lnyfx) ,  but ultimate interest lies 
instead on the effect on E(yfx). Some algebra shows that f3J measures the proportionate 
change in E(yfx) as Xj changes, called a semielasticity, rather than the level of change 
in E(yfx). For example, if /3j = 0.02, then a one-unit change in Xj is associated with a 
proportionate increase of 0.02, or 2%, in E(yfx) .  

Prediction of E(yfx) is substantially more difficult because i t  can be shown that 
E(lnyfx) "I exp(x' {3). This is pursued in section 3.6.3. 

3.4 Basic regression analysis 

We ut>e regress to run an OLS regTession of the natural logarithm of medical expendi­
tures, 1 totexp, on suppins and several demographic and health-status measures. Using 
ln y rather than y as the dependent variable lead� to no change in the implementation of 
OLS but, as already noted, will change the interpretation of coefficients and predictions. 

Many of the details we provide in this section are applicable to all Stata estimation 
commands, not just to regress. 

3.4.1 Correlations 

Before regression, it ca..1 be useful to investigate pairwise correlations of the dependent 
variables and key regressor variables by using correlate. We have 

• Pairwise correlations for dependent variable and regressor variables 
. correlate ltotexp suppins phylim actlim totchr age female income 
(obs=2955) 

ltotexp suppins phylim actlim totchr age 

ltotexp 1 .  0000 
suppins 0 . 0941 1 . 0000 
phylim 0 . 2924 -0 . 0243 1 . 0000 
actlim 0 . 2888 - 0 . 0675 0 . 5904 1 . 0000 
totchr 0 . 4283 0 .  0124 0 . 3334 0 . 3260 1 . 0000 

age 0 . 0858 -0 . 1226 0 . 2538 0 . 2394 0 . 0904 1 . 0000 
female -0 . 0058 - 0 . 0796 0. 0943 0 . 0499 0 . 0557 0 . 0774 
income 0 . 0023 0 . 1943 -0 . 1 142 -0 . 1483 - 0 . 0816 -0 . 1542 

female income 

female 1 .  0000 
income -0 . 1312 1 . 0000 
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Niedical expenditures are most highly correlated with the health-status measures phylim, 
actlim, and totchr. The regressors are only weakly correlated with each other, aside 
from the health-status measures. Note that correlate restricts analysis to the 2,955 
observations where data are available for all variables in the variable list. The related 
command pwcorr, not demonstrated, with the sig option gives the statistical signifi­
cance of the correlations. 

3.4.2 The regress command 

The regress command performs OLS regression and yields an analysis-of-variance table, 
goodness-of-fit statistics, coefficient estimates, standard errors, t statistics, p-values, and 
confidence intervals. The synta..x of the command is 

regress depvar- [ indepvar-s ] [ if ] [ in ] [ weight ] [ , options J 

Other Stata estimation commands have similar syntaxes. The output from regress 
is similar to that from many linear regression packages. 

For independent cross-section data, the standard approach is to use the vee (robust) 
option, which gives standard errors that are valid even if model errors are heteroskedas­
tic; see section 3.3.4. In that case, the analysis-of-variance table, based on the assump­
tion of homoskedasticity, is dropped from the output. We obtain 

. • DLS regression with heteroskedasticity-robust standard errors 

. regress ltotexp suppins phylim actlim totchr age female income , vce (robust) 

Linear regression Number of obs = 2955 
F( 7 ,  2947) 126.97 
Prob > F 0 . 0000 
R-squared 0 . 2289 
Root MSE 1 .  2023 

Robust 
ltotexp Coef. Std. Err. t P> l t i [95l', Conf . Interval] 

suppins - .  .2556428 . 0465982 5 . 49 0 .000  . 1642744 . 3470112 
phylim . 3020598 . 057705 5 . 2 3  0 .  000 . 1889136 . 4 15206 
act lim . 3560054 . 0634066 5 . 61 0 . 000 . 2316797 .4803311 
totchr . 3758201 . 0187185 20 . 08 0 . 000 .3391175 . 4 125228 

age . 0038016 . 0037028 1 . 03 0 .305 - . 0034587 . 011062 
female - . 0843275 . 045654 - 1 . 85 0 . 065 - . 1738444 .0051894 
income . 0025498 .00 10468 . . 2 .44  0 .015  .0004973 . 0046023 

cons 6 . 703737 . 2825751 23.72 0.  000 6 . 149673 7 .  257802 

The regressors are jointly statistically significant, because the overall F statistic of 
126.97 has a p-value of 0.000. At the same time, much of the variation is unexplained 
with R2 = 0.2289. The root MSE statistic reports s ,  the standard error of the regression, 
defined in (3.2) . By using a two-sided test at level 0.0.5, all regressors are individually 
statistically significant because p < 0.05, aside from age and female. The strong 
statistical insignificance of age may be due to sample restriction to elderly people and 
the inclusion of several health-status measures that capture well the health effect of age. 
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Statistical significance of coefficients is easily established. More important is the eco­
nomic significance of coefficients, meaning the measured impact of regressors on medical 
expenditures. This is straightforward for regression in levels, because we can directly 
use the estimated coefficients. :iut here the regression is in logs. From section 3.3.6, in 
the log-linear model; parameters need to be interpreted as semielasticities. For example, 
the coefficient on suppins is 0.256. This means that private supplementary insurance 
is associated with a 0.256 proportionate rise, or a 25.6% rise, in medical expenditures. 
Similarly, large effects are obtained for the health-status measures, whereas health ex­
penditures for women are 8.4% lower than those for men after controlling for other 
characteristics. The income coefficient of 0.0025 suggests a very small effect , but this 
is misleading. The standard deviation of income is 22, so a 1-standard deviation in 
income leads to a 0.055 proportionate rise, or 5 . . 5% rise, in medical expenditures. 

MEs in nonlinear models are discussed in more detail in section 10.6. The preceding 
interpretations are based on calculus methods that consider very small changes in the 
regressor. For larger changes in the regressor, the finite-difference method is more 
appropriate. Then the interpretation in the log-linear model is similar to that for the 
exponential conditional mean model; see section 10.6.4. For example, the estimated 
effect of going from no supplementary insurance (supp ins=O) to having supplementary 
insurance (suppins=l) is more precisely a 100 x (e0·25G - 1) , or 29 .2%, rise. 

The regress command provides additional results that are not listed. In particular, 
the estimate of the VCE is stored in the matrix e (V) . Ways to acce."-S this and other 
stored results from regression have been given in section 1.6. Various postestimation 
commands enable prediction, computation of residuals, hypothesis testing, and model 
specification tests. Many of these are illustrated in subsequent sections. Two useful 
commands are 

• Display stored results and list available postestimation commands 
ereturn list 

(output omitted ) 

help regress postestimation 
(output omitted) 

3.4.3 Hypothesis tests 

The test command performs hypothesis tests using the Wald test procedure that uses 
the estimated model coefficients and VCE. We present some leading examples here, with 
a more extensive discussion deferred to section 12 .3 . The F statistic version of the Wald 
test is used after regress, whereas for many other estimators the chi-squared version 
is instead used. 

A common test is one of equality of coefficients. For example, consider testing that 
having a functional limitation has the same impact on medical expenditures as having 
an activity limitation. The test of Ho : .@phylim = .6actlim against Ha. : .@phylim 'f .6actlim is 
implemented as 



8.4.4 Tables of output from several regressions 

• Wald test of equality of coefficients 
quietly regress ltotexp suppins phylim actlim totchr age female 

> income , vce (robust) 

test phylim = actlim 
( 1) phylim - actlim = 0 

F( 1 .  2947) = 0 . 2 7  
Prob > F = 0 . 6054 
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Becau::;e p = 0.61 > 0.05, we do not reject the null hypothesis at the 5% significance 
level . There is ito ::;tatistically significant difference between the coefficients of the two 
variables. 

The model can also be fitted ::;ubject to constraints. For example, to obtain the 
least-squares estimates subject to ;3phylim = i3actlim, we define the constraint using 
constraint define and then fi.t the model using cnsreg for constrained regression 
with the constraints ( )  option. See exercise 2 at the end of this chapter for an exam­
ple. 

Another common test is one of the joint statistical significance of a subset of the 
regressors. A test of the joint signifi cance of the health-status measures is one of Ho : 
,13phylim = 0, P'actlim = 0, JJtotchr = 0 against Ha. : at least one is nonzero. This is 
implemented a� 

. • Joint test of statistical significance o f  several variables 

. test phylim actlim totchr 
( 1) phylim = 0 
( 2) actlim = 0 
( 3) totchr = 0 

F( 3, 2947) 272.36 
Prob > F = 0 . 0000 

These three variables are jointly statistically significant at the 0.0.5 level because p = 
0.000 < 0.05. 

3.4.4 Tables of output from several regressions 

It is very useful to be able to tabulate key results from multiple regressions for both 
one's own analysis and final report writing. 

The estimates store command after regression leads to results in e 0 being as­
sociated with a user-provided model name and preserved even if subsequent models 
are fi tted. Given one or more such sets of stored estimates, estimates table presents 
a table of regTession coefficients (the default) and, optionally, additional results. The 
estimates stats command lists the sample size and several likelihood-based statistics. 

We compare the original regression model with .a variant that replaces income with 
educyr. The example uses several of the available options for estimates table. 
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. • Store and then tabulate results from multiple regressions 

. quietly regress ltotexp suppins phylim actlim totchr age female income, 
> vee (robust) 

. estimates store REGl 

. quietly regress ltotexp suppins phylim actlim totchr age female educyr , 
> vee (robust) 

estimates store REG2 
estimates table REGl REG2, b(/.9.4f)  se stats(N  r2 F 11) 

> keep(suppins income educyr) 

Variable REGl REG2 

suppins 0 .  2556 0 . 2063 
0 .  0466 0 .  0471 

income 0 . 0025 
0 .0010  

educyr 0 .  0480 
0 . 0070 

N 2955.0000 2955.0000 
r2 0 . 2289 0 . 2406 

F 126. 9723 132. 5337 
11 -4. 73e+03 -4. 71e+03 

legend: b/se 

This table presents coefficients (b) and standard errors ( se ) , with other available options 
including t statistics (t) and p-values (p). The statistics given are the sample size, 
the R2, the overall F statistic (based on the robust estimate of the VCE), and the 
log likelihood (based on the strong assumption of normal homoskedastic errors ) .  The 
keep ()  option, like the drop ( ) option, provides a way to tabulate results for just the key 
regressors of interest. Here educyr is a much stronger predictor than income, because it 
is more highly statistically significant and R2 is higher, and there is considerable change 
in the coefficient of suppins. 

3.4.5 Even better tables of regression output 

The preceding table is very useful for model comparison but has several limitations. It 
would be more readable if the standard errors appeared in parentheses. It would be . 
beneficial to be able to report a p-value for the overall F statistic. Also some work may 
be needed to import the table into a table format in external software such as Excel, 
Word, or �TEX. 

The user-written est tab command (Jann 2007) provides a way to do this, following 
the estimates store command. A cleaner version of the previous table is given by 
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. • Tabulate results using user-written command esttab to produce cleaner output 

. esttab REG1 REG2 , ·b( %10 .4f )  se scalars(N r2 F ll) mtitles 
> keep(suppins income educyr) title("  Model comparison of REG1-REG2 " )  

Model comparison o f  REG1-REG2 

suppins 

income 

educyr 

N 
r2 
F 
ll 

(1 )  
REGl 

0 .  2556•** 
( 0 . 0466) 

0 . 0025• 
( 0 . 0010) 

2955 
0 . 2289 

126. 9723 
-4733 .4476 

Standard errors in parentheses 

(2) 
REG2 

0 . 2063•** 
( 0 . 0471) 

0 . 0480•** 
( 0 . 0070) 

2955 
0 . 2406 

132. 5337 
-4710. 9578 

• p<O .OS ,  •• p<O . C 1 ,  •••  p<0 .001  
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Now standard errors are in parentheses, the strength of statistical significance is given 
using stars that can be suppressed by using the nostar option, and a title is added. 

The table can be written to a file that, for example, creates a table in �'I£X. 

• Write tabulated results to a file in latex table format 
quietly esttab REG1 REG2 using mus03table.tex,  replace b(/.10.4f)  se 

> scalars(N r2 F ll) mtitles keep( suppins age income educyr _cons) 
> title( "Model comparison of REG1-REG2 " )  

Other formats include . rtf for rich text format (Word) , . csv for comma-separated 
values, and . txt for fLxed and tab-delimited text. 

As mentioned earlier, this table would be better if the p-value for the overall F 
statistic were provided. This is not stored in e ( ) . However, it is possible to calculate 
the p-value given other variables in e ( ) . The user-written estadd command (.Jann 2005) 
allows adding this computed p-value to stored results that can then be tabulated with 
esttab. We demonstrate this for a smaller table to minimize output. 

• Add a user-calculated statistic to the table 
estimates drop REG1 REG2 

quietly regress ltotexp suppins phylim actlim totchr age female income, 
> vce (robust) 

estadd scalar pvalue � Ftail ( e (df_r) , e (df_m) , e (F ) )  
(output omitted) 

estimates store REG1 
quietly regress ltotexp suppins phylim actliW totchr age female educyr, 

> vee (robust) 
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estadd scalar pvalue = Ftail ( e (df_r) , e (df_m) , e ( F ) )  
(output omitted) 

estimates store REG2 

esttab REG1 REG2 , b(/.10 .4f)  se scalars(F pvalue) mtitles keep(suppins) 

( 1 )  (2) 
REG1 REG2 

suppins 0 .  2556*** 0 . 2063*** 
(0 . 0466) ( 0. 04 71) 

N 2955 2955 
F 126. 9723 132. 5337 
pvalue 0 . 0000 0 . 0000 

Standard errors in parentheses 
* p<0 . 0 5 ,  * *  p<0 . 0 1 ,  *** p<0.001 

The estimates drop command saves memory by dropping stored estimates that are no 
longer needed. In particular, for large samples the sample inclusion indicator e (sample)  
can take up much memory. 

Related user-written commands by Jann (2005, 2007) are est out, a richer but more 
complicated version of esttab, and eststo, which extends estimates store. Several 
P.l'l.rlic:r n::>er-written commands, notably, outreg, also create tables of regression output 
but are generally no longer being updated by their authors. The user-written reformat 
command (Brady 2002) allows formatting of the usual table of output from a single 
estimation command. 

3 .5  Specification ana lysis 

The fitted model has R2 = 0.23, which is reasonable for cross-section data, and most re­
gressors are highly statistically significant with the expected coefficient signs. Therefore, 
it is tempting to begin interpreting the results. 

However, before doing so, it is useful to subject this regression to some additional 
scrutiny because a badly misspecified model may lead to erroneous inferences. We 
consider several specification tests, with the notable exception of testing for regressor 
exogeneity, which is deferred to chapter 6. 

3.5 .1  Specification tests and model diagnostics 

In microeconometrics, the most common approach to deciding on the adequacy of a 
model is a Wald-test approach that fi ts a richer model and determines whether the data 
support the need for a richer model. For example, we may add additional regressors t o  
the model and test whether they have a zero coefficient. 
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Stata also presents the  user with an impressive and bewildering menu of choices of 
diagnostic checks for the currently fitted regression; see [R] regress postestimation. 
Some are specific to OLS regression, whereas others apply to most regression models. 
Some are visual aids such as plots of residuals against fitted values. Some are diagnostic 
statistics such as influence statistics that indicate the relative importance of individual 
observations. And some are formal tests that test for the failure of one or more assump­
tions of the model. We briefly present plots and diag11ostic statistics, before giving a 
lengthier treatment of specification tests. 

3.5.2 Residual diagnostic plots 

Diagnostic plots are used less in microeconometrics than in some other branches of 
statistics, for several reasons. First, economic theory and previous research provide a 
lot of guidance as to the likely key regressors and functional form for a model. Studies 
rely on this and shy away from excessive data mining. Secondly, microeconometric 
studies typically use large datasets and regressions with many variables. Many variables 
potentially lead to many diagnostic plots, and many observations make it less likely 
that any single observation will be very influential, unless data for that observation are 
seriously miscoded. 

We consider various residual plots that can aid in outlier detection, where an outlier 
is an observation poorly predicted by the model. One way to do this is to plot actual 
values agcunst fitted values of the dependent variable. The postestimation command 
rvfplot gives a transformation of this, plotting the residuals ui = Yi - fj; against the 
fi tted values Yi = x;/3. We have 

. * Plot of residuals against fitted values 

. quietly regress ltotexp suppins phylim actlim totchr age female income , 
> vce (robust ) -

. rvfplot 

0 
0 � ��----�--------r-------r-----�, 1 

9 
Flttod value::; 

1 0  1 1  

Figure 3 .2 .  Residuals plotted against fitted values after OLS regression 
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Figure 3.2 does not indicate any extreme outliers, though the three observations 
with a residual less than -5 may be worth investigating. To do so, we need to generate 
u by using the predict command, detailed in section 3.6, and we need to list some 
details on those observations with u < -5 . We have 

• Details on the outlier residuals 
predict uhat , residual 

predict yhat , xb 

list totexp ltotexp yhat uhat if uhat < -5 ,  clean 

1 .  
2 .  

totexp ltotexp yhat 
3 1 . 098612 7 . 254341 
6 1 . 791759 7 . 513358 

uhat 
-6 . 155728 
- 5 . 721598 

3 .  9 2 . 197225 7 . 631211 -5 .433987 

The three outlying residuals are for three observations with the very smallest total an­
nual medical expenditures of, respectively, $3 , $6, and $9 . The model evidently greatly 
overpredicts for these observations, with the predicted logarithm of total expenditures 
(yhat) much greater than ltotexp. 

Stata provides several other residual plots. The rvpplot postestimation command 
plots residuals against an individual regressor. The avplot command provides an added­
variable plot, or partial regression plot, that is a useful visual aid to outlier detection. 
Other commands give component-plus-residual plots that aid detection of nonlinearities 
and leverage plots. For details and additional references, see [R] regress postestima­
tion. 

3.5.3 I nfluential observations 

Some observations may have unusual iniluence in determining parameter estimates and 
resulting model predictions. 

Influential observations can be detected using one of several measures that are large 
if the residual is large, the leverage measure is large, or both. The leverage measure 
of the ith observation, denoted by h;, equals the ith diagonal entry in the so-called 
hat matrix H = X(X'X) -l X. If h, is large, then y,, has a big influence on its OLS 
prediction y; because y = Hy. Different measures, including h., can be obtained by 
using different options of predict. 

· 

A commonly used measure is dfits; , which can be shown to equal the (scaled) differ­
ence between predictions of y, with and without the ith observation in the OLS regression 
(so dfits means difference in fits) . Large absolute values of dfits indicate an influential 
data point. One can plot dfi ts and investigate further observz.tions with outlying values 
of dfits. A rule of thumb is that observations with ]dfitsl > 2 VkfH may be worthy of 
further investigation, though for large datasets this rule can suggest that many obser­
vations are influential. 

The dfi ts option of predict can be used after regress provided that regression 
is with default standard errors because the underlying theory presumes homoskedastic 
errors. We have 
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• Compute dfits that combines outliers and leverage 
quietly regress ltotexp suppins phylim actlim totchr age female income 
predict dfits, dfits 

scalar threshold � 2•sqrt ( ( e (df_m)+1)/e(N) )  
display "dfits threshold = " /.6.3f threshold 

dfits threshold = 0 . 104 

tabstat dfits, stat (min pi p5 p95 p99 max) format (/.9.3f)  col(stat) 
variable min p 1 p5 p95 p99 max 

dfits -0 .421 -0 . 147 - 0 . 083 0 . 085 0 . 127 0 .221  

list dfits totexp ltotexp yhat uhat if a bs(dfi ts) > 2•threshold & e( sample ) , 
> clean 

dfits totexp ltotexp yhat uhat 
1 .  . - .  2319179 3 1 . 098612 7 . 254341 - 6 . 155728 
2 .  - . 3002994 6 1 .  791759 7 . 5 13358 - 5 . 721598 
3 .  - . 2765266 9 2 . 197225 7 . 631211 -5. 433987 

10 .  - . 2 170063 30 3 . 401197 8 . 348724 -4 . 947527 
42 .  - . 2612321 103 4 . 634729 7 . 57982 -2 . 945091 
44 .  - . 4212185 110 4 . 70048 8 . 9 93904 -4. 293423 

108.  - . 2326284 228 5 . 429346 7 .971406 -2. 54206 
114 .  - . 2447627 239 5 .  476463 7 . 946239 -2 . 469776 
137. - . 2 177336 283 5 . 645447 7 . 929719 -2 . 284273 
2 1 1 .  - . 2 1 1344 415 6 . 028278 8 . 028338 -2. 00006 

2925. . 2207284 62346 1 1 . 04045 8 . 660131 2 . 380323 
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Here over 2% of the sample has lcl fits l  greater than the suggested threshold of 0.104. 
But only 11 observations have ldfi tsl gTeater than two times the threshold. These 
correspond to observations with relatively low expenditures, or in one case, relatively 
high expenditures . . vVe conclude that no observation has unusual influence. 

3.5.4 Specification tests 

Formal model-specification tests have two limitations. First , a test for the failure of 
a specific model assumption may not be robust with respect to the failure of another 
assumption that is -Ii.ot under test. For example, the rejection of the null hypothesis 
of homoskedasticity may be due to a misspecified functional form for the conditional 
mean. An example is given in section 3 . .5.5. Second, with a very large sample, even 
trivial deviations from the null hypothesis of correct specification will cause the test to 
reject the null hypothesis. For example, if a previously omitted regressor has a very 
small coefficient, say, 0.000001, then with an infinitely large sample the estimate will be 
sufficiently precise that we will always reject the null of zero coefficient. 

Test of omitted variables 

The most common specification test is to include additional regressors and test whether 
they are statistically significant by using a Wald test of the null hypothesis that the 
coefficient is zero. The additional regTessor may be a variable not already included, a 
transformation of a variable(s) already included such as a quadratic in age, or a quadratic 
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with interaction terms in age and education. If groups of regressors are included, such 
as a set of region dummies, test can be used after regress to perform a joint test of 
statistical significance. 

In some branches of biostatistics, it is common to include only regressors with p < 
0.05. In rnicroeconometrilli, it is common instead to additionally include regressors that 
are statistically insignificant if economic theory or conventional practice includes the 
variable as a control. This reduces the likelihood of inconsistent parameter estimation 
due to omitted-variables bias at the expense of reduced precision in estimation. 

Test of the Box-Cox model 

A common specifi cation-testing approach is to fit a richer model that tests the current 
model as a special case and perform a Wald test of the parameter restrictions that lead 
to the simpler model. The preceding omitted-variable test is an example. 

Here we consider a test specific to the current example. We want to decide whether 
a regression model for medic;:\l expenditures is better in logs than in levels. There is no 
obvious way to compare the two models because they have different dependent variables. 
However, the Box-Cox transform leads to a richer model that includes the linear and 
log-linear models as special cases. Specifically, we fit the model with the transformed 
dependent variable 

( ()) - yf - 1 
'(3 g Yi , = --8- = x; + u.; 

where () and (3 are estimated under the assumption that Ui � N(O, 0"2) .  Three leading 
cases are 1) g(y, ()) = y - 1 if e = 1 ;  2) g(y, ()) = __lny if () = 0; and 3) g(y, ()) = 1 - 1/y 
if () = -1 . The log-linear model is supported if () is close to 0, and the linear model is 
supported if e = 1. 

The Box-Cox transformation introduces a nonlinearity and an additional unknown 
parameter e into the model. This moves the modeling exercise into the domain of 
nonlinear models. The model is straightforward to fi t, however, because Stata provides 
the boxcox command to fit the model. We obtain 

. • Boxcox model �ith lhs variable transformed 
. boxcox totexp suppins phylim actlim totchr age female income if totexp>O, nolog 
Fitting comparison model 

Fitting full model 

Log likelihood = -28518. 267 

totexp 

/theta 

Cocf . Std. Err. 

. 0758956 . 0 096386 

Number of obs 
LR chi2(7) 
Prob > chi2 

2955 
773.02 

0 . 000 

z P> l z l  [95/. Conf . Interval] 

7 . 87 0 . 000 . 0570042 .0947869 
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Estimates of scale-variant parameters 

Coef . 

No trans 
suppins . 4459618 
pbylim .577317 
act lim . 6905939 
totcbr . 6754338 

�ge . 0051321 
female - . 1767976 
income . 0044039 

cons 8 . 930566 

/sigma 2 . 189679 

Te<::t Restricted LR statistic P-value 
HO: log likelihood chi2 Prob > chi2 

theta � -1 -37454.643 17872.75 0 . 000 
theta � 0 -28550 .353 64 . 17  0 . 000 
theta � -31762.809 6489 .08  0 . 000 

The null hypothesis of (] = 0 is strongly rejected, so the log-linear model is rejected. 
However, the Box-Cox model with general (] is difficult to interpret and use, and the 
estimate of e = 0.0759 gives much greater support for a log-linear model (8 = 0) than 
the linear model (8 = 1 ) .  Thus we prefer to use the log-linear model. 

Test of the functional form of the conditional mean 

The linear regression model specifies that the conditional mean of the dependent variable 
(whether measured in levels or in logs) equals x�(J. A standard test that this is the 
correct specification is a variable augmentation test. A common approach is to add 
powers of fj, = x;/3 , the fitted vabe of the dependent variable, as regressors and a test 
for the statistical significance of the powers. 

The estat ovtest postestimation command provides a RESET test that regTesses y 
on x and 1?, fP, and ft , and jointly tests that the coefficients off?, f?, and f/ are zero. 
We have 

. • Variable augmentation test of conditional mean using estat ovtest 

. quietly regress ltotexp suppins phylim actl)m totchr age female income , 
> vee (robust) 

. estat ovtest 
Ramsey RESET test using powers of the fitted values of ltotexp 

Ho: model has no omitted variables 
F ( 3 ,  2944) � 9 . 04 

Prob > F � 0 . 0000 

The model is strongly rejected because p = 0.000. 
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An alternative, simpler test is provided by the link test command. This regTesses y 
on fj and fP,  where now the original model regressors x are omitted, and it tests whether 
the coefficient of fP is zero. vVe have 

. • Link test of functional form of conditional -mean 

. quietly regress ltotexp suppins phylim actlim totchr age female income , 
> vce (robust) 

link test 
Source ss df MS 

Model 1301. 41696 2 650. 708481 
Residual 4223. 47242 2952 1 .  43071559 

Total 5524. 88938 2954 1 . 87030785 

ltotexp Coef . Std. Err. t 

_hat 4 . 429216 . 6779517 6 . 53 
_hatsq - . 2084091 .0411515 -5 .06 

cons -14 .01127 2 . 779936 -5 . 04 

P> l t l  

0 .000  
0 .  000 
0 . 000 

Number of obs 2955 
F(  2 ,  2952) 454 . 8 1  
Prob > F 0 . 0000 
R-squared 0 . 2356 
Adj R-squared = 0 . 2350 
Root MSE 1 . 1961 

[95/. Conf . Interval] 

3 . 09991 5 . 758522 
- . 2890976 - . 1277206 
-19 . 46208 -8. 56046 

Again the null hypothesis that the conditional mean i::; correctly specified is rejected. 
A likely rea::;on is that so few regre::;sors were included in the model. for pedagogical 
reasons. 

The two preceding commands had different formats. The first test used the estat 
ovtest command, where estat produces various statistics following estimation and the 
particular statistics available vary with the previous estimation command. The second 
test used linktest, which is available for a wider range of models. 

Heteroskedasticity test 

One consequence of heteroskedasticity is that default OLS standard errors are incorrect. 
This can be readily corrected and guarded against by routinely using heteroskeda::;ticity­
robust standard errors. 

Nonetheles[:;, there may be interest in formally te[:;ting whether heteroskedasticity is 
present . For example, the retransformation methods for the log-linear model used in 
b"ection 3.6.3 assume homosked astic errors. In section 5.3, we present diagnostic plots 
for heteroskedasticity. Here we instead present a formal test. 

A quite general model of heteroskedasticity is 
Var(yix) = h(a1 + z' a2) 

where h( - )  is a positive monotonic function such as e;-..1J ( -) and the variables in z are 
functions of the variables in x. Tests for heteroskedasticity are tests of 

Ho : az = 0 

and can be shown to be independent of the choice of function h( · ) . We reject H 0 at 
the a level if the test statistic exceeds the a critical value of a chi-squared distributivn 

J 
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with degrees of freedom equal to the number of components of z. The test is performed 
by using the estat hettest postestimation command. The simplest version is the 
Breusch-Pagan Lagrange multiplier test, which is equal to N times the uncentered 
explained sum of squares from the regression of the squared residuals on an intercept 
and z. We use the iid option to obtain a different versimi of the test that relaxes the 
default assumption that the errors are normally distributed. 

Several choices of the components of z are possible. By far, the best choice is to 
use variables that are a priori likely determinants of heteroskedasticity. For example, in 
regressing the level of earnings on several regressors including years of schooling, it is 
likely that those with many years of schooling have the greatest variability in earnings. 
Such candidates rarely exist. Instead, standard choices are to use the OLS fitted value 
y, the default for estat hettest, or to use all the regressors so z = x. White's test 
for heteroskedasticity is equivalent to letting z equal unique terms in the products and 
cross products of the terms in x. 

We consider z = fj and z = x. Then we have 

* Heteroskedasticity tests using estat hettest and option iid 
quietly regress l totexp suppins phylim actlim totchr age female ]ncome 
estat hettest ,  iid 

Breusch-Pagan I Cook-Weisberg test for heteroskedasticity 
Ho: Constant variance 
Variables :  fitted values of ltotexp 
chi2 (1 )  32 . 87 
Prob > chi2 = 0 . 0000 

estat hettest suppins phylim actlim totcbr age female income , iid 

Breusch-Pagan I Cook-Weisberg test for heteroskedasticity 
Ho:  Constant variance 
Variables :  snppins phylim actlim totcbr age female income 
chi2(7) 9 3 . 1 3  
Prob > chi2 = 0 . 0000 

Both versions of the test, with z = fj and with z = x, have p = 0.0000 and strongly 
reject homoskedasticity. 

Omnibus test 

An alternative to separate tests of rnisspecification is an omnibus test, which is a joint 
test of misspecification in several directions. A leading example is the information ma­
trix (IM) test (see section 12 .7) ,  which is a test for correct specification of a fully para­
metric model based on whether the IM equality holds. For linear regression with normal 
homoskedastic errors, the IM test can be shown to be a joint test of heteroskedasticity, 
skewness, and nonnormal kurtosis compared with the null hypothesis of homoskedas­
ticity, symmetry, and kurtosis coefficient of 3; see Hall (1987). 

The estat imtest postestimation command computes the joint IM test and also 
splits it into its three components. We obtain 
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* Information matrix test 
quietly regress l totexp suppins phylim actlim totchr age female income 
estat imtest 

Cameron & Trivedi ' s  decomposition of IM-test 

Source chi2 d.f p 

Heteroskedasticity 139.90 31 0 . 0000 
Ske!Jiless 3 5 . 11 7 0 . 0000 
Kurtosis 11 ,,96 0 . 0005 

Total 186.97 39 0 . 0000 

The overall joint IM test rejects the model assumption that y � N(x' ,B, a2I), because 
p = 0.0000 in the Total row. The decomposition indicates that all three assumptions 
of homoskedasticity, synunetry, and normal kmtosis are rejected. Note, however, that 
the decomposition assumes correct specification of the conditional mean. If instead the 
mean is misspecified, then that could be the cause of rejection of the model by the IM 
test . 

3.5.5 Tests have power an more than one d irection 

Tests can have power in more than one direction, so that if a test targeted to a particular 
type of model misspecification rejects a model, it is not necessarily the case that this 
particular type of model misspecification is the tmderlying problem. For example , a test 
of heteroskedasticity may reject homoskedasticity, even though the underlying cause 
of rejection is that the conditional mean is misspecified rather than that errors are 
heteroskedastic. 

To illustrate tbls example, we use the following simulation exercise. The DGP is one 
with homoskedastic normal errors 

Yi = exp( l + 0.25 X Xi + 4 X x? )  + U-i, 

X; � U(O, 1 ) ,  Ui � N(O, 1) 
We instead fit a model with a misspecified conditional mean function: 

We consider a simulation with a sample size of 50. We generate the regressors and 
the dependent variable by using commands detailed in section 4.2. We obtain 

• Simulation to show tests have power in more than one direction 
clear all 
set obs 50 

obs was 0 ,  now 50 

set seed 10101 
. generate x = runiformO II x - uniform ( 0 , 1 )  
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generate u = rnormal ()  // u _ N(0 , 1) 
generate y = exp( l" + 0 . 25•x + 4•x"2) + u 

generate xsq = x-2 
regress y :x xsq 

Source ss df MS Number of 
F( 2 ,  

Model 76293.9057 2 38146. 9528 Prob > F 
Residual 10654. 8492 47 226. 698919 R-squared 

obs 50 
47) 168.27 

0 . 0000 
0 . 8775 

Adj R-squared = 0 . 8722 
Total 86948. 7549 49 1774. 46438 Root MSE 1 5 . 057 

y Coef. Std. Err .  t P> l t l  [95/. Conf.  Interval] 

X -228. 8379 29 . 3865 -7 .79 0 . 000 -287 . 9559 -169.7199 
xsq 342.7992 28.71815 11 . 94  0 . 000 285 .0258 400. 5727 

_cons 28. 68793 6 . 605434 4 . 34 0 . 000 1 5 . 39951 4 1 . 97635 
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The misspecified model seems to fit the data very well with highly statistically significant 
regressors and an R2 of 0.88. 

Now consider a test for heteroskedasticity: 

, • Test for heteroskedasticity 
, estat hettest 
Breusch-Pagan I Cook-Weisberg test for heteroskedasticity 

Ho: Constant variance 
Variable s :  fitted values of y 

chi2( 1 )  22 . 70 
Prob > chi2 = 0 . 0000 

This test strongly suggests·that the errors are heteroskedastic because p = 0.0000, even 
though the DGP had homoskedastic errors. 

The problem is that the regTession function itself was misspecified. A RESET test 
yields 

• Test for misspecified conditional mean 
esta t ovtest 

Ramsey RESET test using powers of the fitted values of y 
Ho: model has no omitted variables 

F(3 ,  44) = 270 2 . 1 6  
Prob > F = 0 . 0000 

This strongly rejects correct specifi cation of the conditional mean because p = 0.0000. 

Going the other way, could misspecification of other features of the model lead to 
rejection of the conditional mean, even though the conditional mean itself was cor­
rectly specified? This is an econometrically subtle question. The answer, in general , is 
yes. However, for the linear regression model, this is not the case essentially because 
consistency of the OLS estimator requires only that the conditional mean be correctly 
specified. 
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3.  6 Prediction 

For the linear regression model, the estimator of the conditional mean of y given x = Xp, E(ylxp) = x�{3, is the conditional predictor y = �(3. We focus here on prediction for 
each observation in the sample. We begin with prediction from a linear model for medical 
expenditures, because this is straightforward, before turning to the log-linear model. 

Further details on prediction are presented in section 3. 7, where weighted average 
prediction is discussed, and in sections 10.5 and 10.6, where many methods are pre­
sented. 

3.6.1 In-sample prediction 

The most common type of prediction is in-sample, where evaluation is at the observed 
regressor values for each observation. Then Yi = x�(3 predicts E(yilxi) for i =  1, . . . , N. 

To do this, we use predict after regress .  The syntax for predict is 

predict [ type ] newvar [ if ] [ in ]  [ , options ] 

The user always provides a name for the created variable, nevrJar. The default option is 
the prediction y,,. Other options yield residuals (usual, standardized, and studentized), 
several leverage and infbential observation measures, predicted values, and associated 
standard errors of prediction. We have already used some of these options in section 3.5. 
The predict command can also be used for out-of-sample prediction. When used for 
in-sample prediction, it is good practice to add the if e (sample) qualifier, because this 
ensures that prediction is for the same sample as· that used in estimation. 

We consider prediction based on a linear regression model in levels rather than logs. 
We begin by reporting the regression results with totexp as the dependent variable. 

• Change dependent variable to level of positive medical expenditures 
use mus03data.d ta ,  clear 
keep if totexp > 0 

(109 observations deleted) 
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. regress totexp suppins phylim actlim totchr age female income , vce (robust) 
Linear regre ssion Number of obs 2955 

F (  7 ,  2947) 40 .58 
Prob > F 0 .  0000 
R-squared 0 . 1163 
Root MSE 11285 

Robust 
totexp Coef . Std. Err. t P> l t l  [95/. Conf . Interval] 

suppins 724.8632 427.3045 1. 70 0 . 090 -112 . 9824 1562 . 709 
phylim 2389 .019  544.3493 4 . 39 0 . 000 1321.675 3456 .362 
act lim 3900.491 705. 2244 5 . 53 0 . 000 2517.708 5283.273 
totcbr 1844.377 186. 8938 9 . 87 0 . 000 1477 .921  2210 . 832 

.age -85 .36264 3 7 . 8 1868 -2 .26 0 . 024 -159.5163 -11 . 20892 
female -1383.29 432 . 4759 -3 . 20 0 .  001 -2231. 275 -535. 3044 
income 6 . 46894 8 . 570658 0 . 75 0 .450 - 1 0 . 33614 23. 27402 

cons 8358.954 2847 .802 2 . 94 0 . 003 2775 .07 13942.84 

We then predict the level of medical expenditures: 

. * Prediction in model linear in levels 

. predict yhatlovcls 
(option xb assumed ; fitted values )  

summarize totexp ybatlcvels 
Variable 

totexp 
ybatlevels 

Dbs 

2955 
2955 

Mean 

7290. 235 
7290 . 235 

Std. Dev. Min 

11990.84 3 
4089. 624 -236.3781 

Max 

125610 
22559 
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The summary statistics show that on average the predicted value yhatlevels equals 
the dependent variable. This suggests that the predictor does a good job. But this is 
misleading because this is always the case after OLS regression in a model with an inter­
cept, since then residuals sum to zero implying L: y; = L fk  The standard deviation 
of yhatlevels is $4,090, so there is some variation in the predicted values. 

For this example, a more discriminating test is to compare the median predicted 
and actual values. We have 

* Compare median prediction and median actual value 
tabstat totexp ybatlevel s ,  stat (count p50) col(stat) 

variable 

totexp 
yhatlevels 

N p50 

2955 3334 
2955 6464.692 

There is considerable difference between the two, a consequence of the right-skewness 
of the original data, which the linear regression model does not capture. 

The stdp option provides the standard error of the prediction, and the stdf option 
provides the standard error of the prediction for each sample observation, provided the 
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original estimation command used the default VCE. We therefore reestimate without 
vee (robust) and use predict to obtain 

• Compute standard errors of prediction and forecast Yith default VCE 
quietly regress totexp suppins phylim actlim totchr age female income 

predict yhatstdp , stdp . 
predict yhatstdf , stdf 
summarize yhatstdp yhatstdf 

Variable 

yhatstdp I yhatstdf 

Dbs 

2955 
2955 

Mean 

572 . 7  
11300.52 

Std.  Dev. :ol in  Max 

129. 6575 393. 5964 2813.983 
10. 50946 11292.12 11630.8 

The first quantity views x'.73 as an estimate of the conditional mean <f3 and is quite 
precisely estimated because the average standard deviation is $573 compared with an 
average prediction of $7,290. The second quantity views x'.73 as an estimate of the actual 
value Y·i and is very imprecisely estimated because Yi. = x'.f3 + u, ,  and the error u, here 
has relatively large variance since the levels equation has s = 1 1285. 

More generally, microeconometric models predict poorly for a given individual, as 
evidenced by the typically low values of R2 obtained from regression on cross-section 
data. The::;e same models may nonetheless predict the conditional mean well, and it is 
this latter quantity that is needed for policy analysis that focuses on average behavior. 

3.6.2 Marginal effects 

The mfx postestimation command calculates MEs and elasticities evaluated at sample 
mean::;, along with associated standard errors and confidence intervals where relevant. 
The default is to obtain these for the quantity that is the default for predict. For 
many estimation commands, including regress, this is the conditional mean. Then 
mfx computes for each continuous regressor 8E(y]x)/ 8x, and for 0/1 indicator variables 
6E(yjx), evaluated at f3 = 73 and x = X:. 

For the linear model, the estimated ME of the jth regressor is jJJ , so there is no need 
to use mfx. But mfx can also be used to compute elasticities and semielasticities. For 
example, the eyex option computes the elasticity 8yf8x x (xfy) , evaluated at sample 
means, which equals jjj x ("x JIY) for the linear model. We have 

. • Comput.e elasticity for a specified regressor 

. quietly regress totexp suppins phylim actlim totchr age female income, 
> vce (robust) 
. mfx, varlist (totcbr) eyex 

Elasticities after regress 
y = Fitted values (predict) 

7290. 2352 

variable ey/ex Std. Err. z P> l z l  95/. c .  I .  

totchr . 457613 . 04481 10 .21  0 .000  .369793 . 545433 

X 

1 .  8088 
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A 1% increase in chronic problems is  associated with a 0.46% increase in medical ex­
penditures. The varlist (totchr) option restricts results to just the regressor totchr. 

The predict 0 option of mfx allows the computation of MEs for the other quantities 
that can be produced using predict. 

3.6.3 Prediction in logs: The retransformation problem 

Tl"ansformingthe dependent variable by taking the natural logarithm complicates pre­
diction. It is ea.:,:y to predict E(ln y lx) ,  but we are instead interested in E(ylx) because 
we want to predict the level of medical expenditures rather than the natural logarithm. 
The obvious procedure of predicting In y and taking the exponential is wrong because 
exp{E(ln y)_} i- E(y), just as, for example, jE(y2) i- E(y) .  

The log-linear model lny = x'f3 + u implies that y = exp(x'f3)exp(u). I t  follows 
that 

E(y; lx; ) = exp(x:f3)E{ exp( Ui) } 
The simplest prediction is exp(x:,B) ,  but this is wrong because it ignores the multiple 
E{exp(ui ) } .  I f it is assumed that u; � N(O, u'2"), then it can be shown that E{ exp(ui )}  = 
exp(0.5o·2 ) ,  which can be estimated by exp(0.5i72) , where 0: 2 i::; an  unbiased e::;timator 
of the log-linear regression model error. A weaker assumption is to assume that u; 
i s  independent and identically distributed, i n  which case we c.an c.om;istently eo:timate 
E{exp(u, ) }  by the sample average N-1 :2:::.:1 exp(uj ) ;  see Duan (1983). 

Applying these methods to the medical expe1�diture data yields 

* Prediction i� levels from a logarithmic model 
quietly regress lt3texp suppins phylim actlim totchr age female income 
quietly predict lyhat 
generate yhatYrong = exp(lyhat) 
generate yhatnormal = exp(lyhat) *exp ( O . S*e (rmse) -2 )  
quietly predict uhat , residual 
generate expuhat = exp(uhat) 
quietly summarize expuhat 

generate yhatd·.1an = r(mean)*exp(lyhat) 
summarize totexp yhatYrong yhatnormal yhatduan yhatlevels 

Variable Dbs Mean Std. Dev. Min 

totexp 2955 7290 .235 11990.84 3 
yhatYrong 2955 4004. 453 3303.555 959.5991 

yhatnormal 2955 8249 .927 6805.945 1976.955 
yhatduan 2955 8005.522 6604 : 318 1918 .387 

yhatlevels ' 2955 7290 .235 4089. 624 -236.3781 

Max 

125610 
37726.22 
77723 . 13 
75420 .57 

22559 

Ignoring the retransformation bias leads to a very poor prediction, because yhatwrong 
has a mean of $4,004 compared with the sample mean of $7,290. The two alterna­
tive methods yield much closer average values o($8,250 and $8,006. Furthermore, the 
predictions from log regression, compared with those in levels, have the desirable fea-
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ture of always being positive and have greater variability. The standard deviation of 
yhatnorma1, for example, is $6,806 compared with $4,090 from the levels model. 

3.6.4 Prediction exercise 

There are several ways that predictions can be used to simulate the effects of a policy 
experiment. We consider the effect of a binary treatment, whether a person has supple­
mentary insurance, on medical expenditure. Here we base our predictions on estimates 
that assume supplementary insurance is exogenous. A more thorough analysis could 
instead use methods that more realistically permit insurance to be endogenous. As we 
discuss in section 6 .2 . 1 ,  a variable is endogenous if it is related to the error term. Our 
analysis here assumes that supplementary insurance is not related to the error term. 

An obvious comparison is to compare the difference in sample means (1h � y0) , 
where the subscript 1 denotes those with supplementary insurance and the subscript 
0 denotes those without supplementary insurance. This measure does not control for 
individual characteristics. A measure that does control for individual characteristics is 
the difference in mean predictions G/1 � y0) ,  where, for example , y1 denotes the average 
prediction for those with health insurance. 

We implement the first two approaches for the complete sample based on OLS re­
gTession in levels and in logs. vVe obtain 

• Predicted effect of supplementary insurance: methods 1 and 2 
bysort suppin s :  summarize totexp yhatlevels yhatduan 

-> suppins � 0 
Variable Dbs Mean Std. Dev. 11in Max 

totexp 1207 6824.303 11425 .94 9 104823 
yhatlevels 1207 6824.303 4077 .064 -236.3781 20131.43 

yhatduan 1207 6745 .959 5365.255 1918. 387 54981 . 73 

-> suppins � 1 
Variable Dbs Moan Std. Dev. l1in Max 

totexp 1748 7611 .963  12358.83 3 125610 
yhatlevels 1748 7611 .963 4068.397 502. 9237 22559 

yhatduan . 1748 8875 .255 7212.993 2518.538 75420.57 

The average difference is  $788 (from 7612 � 6824) using either the difference in  sample 
means or the difference in fi tted values from the linear model. Equality of the two 
is a consequence of OLS regTession and prediction using the estimation sample. The 
log-linear model, using the prediction based on Duan's method, gives a larger average 
difference of $2,129 (from 8875 � 6746). 

A third measure is the difference between the mean predictions, one with suppins 
set to 1 for all observations and one with suppins = 0. For the linear model, this is 
simply the estimated coefficient of suppins, which is $725. 



3 . 7 Sampling weigbts 105 

For the log-linear model, we need to make separate predictions for each individual 
with suppins set to 1 and with suppins set to 0. For simplicity, we make predictions 
in levels from the log-linear model assuming normally distributed errors. To make these 
changes and after the analysis have suppins returned to its original sample values, we 
use preserve and :restore (see section 2.5.2) . We obtain· 

• Predicted effect of supplementary insuranc e :  method 3 for log-linear model 
quietly regress ltotexp suppins phylim actlim totcbr age female income 
preserv.e 

quietly replace su ppins = 1 
quietly predict lyhat1 

generate yhatnormal1 = exp(lyhat1 ) •exp(0. 5•e (rmse ) " 2 )  

quietly replace suppins = 0 
quietly predict lyhatO 

generate yhatnormalO = exp(lyhatO) •exp ( 0 . 5•e (rmse) -2) 
generate treateffect = yhatnormal1 - yhatnormalO 
summarize yhatnormal1 yhatnormalO treateffect 

Variable Obs Mean Std. D ev.  Min Max 

yhatnormall 
yhatnormalO 
treateffect 

. restore 

2955 
2955 
2955 

9077 . 072 
7029 . 453 
2047 . 6 1 9  

7313.963 2552. 825 77723 . 13 
5664 .069 1976.955 60190.23 
1649. 894 575. 8701 17532 . 9 1  

While the average treatment effect of  $2,048 i s  considerably larger than that obtained 
by using the difference in sample means of the linear model, it is comparable to the 
estimate produced by Duan's method. 

3.7 Sampling weights 

The analysis to date has presumed simple random sampling, where sample observations 
have been drawn from the population with equal probability. In practice, however, 
many microeconometric studies llSe data from surveys that are not representative of 
the population. Instead, groups of key intere::;t to policy makers that would have too 
few observations in a purely random sample are oversampled, with other groups then 
undersampled. Examples are individuals from racial minorities or those with low income 
or living in sparsely populated states. 

As explained below, weights should be used for estimation of population means and 
for postregression prediction and computation of MEs. However, in most cases, the 
regTession itself can be fitted without weights, as is the norm in microeconometric::>. If 
weighted analysis is desired, it can be done .using standard commands with a weighting 
option, which is the approach of this section and the standard approach in microecono­
metrics. Alternatively, one can use survey commands as detailed in section 5.5. 
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3.7 .1  Weights 

Sampling weights are provided by most survey datasets. These are called probability 
weights or pweights in Stata, though some others call them inverse-probability weights 
because they are inversely proportional to the probability of inclusion of the sample. A 
pweight of 1,400 in a survey of the U .S. population, for example, means that the obser­
vation is representative of 1,400 U.S. residents and the probability of this observation 
being included in the sample is 1/1400. 

Most estimation commands allow probability weighted estimators that are obtained 
by adding [pweight=weight] , where weight is the name of the weighting variable. 

To illustrate the use of sampling weights, we create an artificial weighting variable 
(sampling weights are available for the lv!EPS data but were not included in the data, 
extract used in this chapter) . We manufacture weights that increase the weight given to  
those with more chronic problems. In  practice, such weights might arise if the original 
sampling framework oversampled people with few chronic problems and tmdersampled 
people with many chronic problems. In this section, we analyze levels of e:h.rpenditures, 
including expenditures of zero. Specifically, 

• Create artificial sampling Yeights 
use mus03data.d ta, clear 

generate sYght = totchr-2 + 0 . 5  
summarize sYgh t 

Variable Dbs Mean 

SYght I 3064 5 . 285574 

Std. Dev. Min Max 

6 . 029423 . 5  4 9 . 5  

What matters in subsequent analysis is the relative values of the sampling weights rather 
than the absolute values. The sampling weight variable swght takes on values from 0.5 
to 49.5 ,  so weighted analysis will give some observations as much as 49.5/0.5 = 99 times 
the weight given to others. 

Stata offers three other types of weights that for most analyses can be ignored. 
Analytical weights, called aweights, are used for the quite different purpose of compen­
sating for different observations having different variances that are known up to scale; 
see section 5.3.4. For duplicated observations, fweights provide the munber of dupli­
cated observations. So-called importance weights, or iweights, are sometimes used in 
more advanced progTamming. · 

3. 7.2 Weighted mean 

If an estimate of a population mean is desired, then we should clearly weight. In this 
example, by oversampling those with few chronic problems, we will have oversampled 
people who on average have low medical expenditmes, so that the unweighted sample 
mean will understate population mean medical expenditures. 
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Let Wi be the population weight for individual i. Then, by defining W = L;;-:1 w; 

to be the sum of the weights, the weighted mean Yw is 

1 N 
Yw = 

W 2...::: Wi.Yi i.= l 
with variance estimator (assuming independent observations) V(Y"w) = {1/W(W - 1 ) }  ��� Wi(Y, - Yw ) 2 . These formulas reduce to  those for the unweighted mean i f  equal 
weights are used. 

The weighted mean downweights oversampled observations because they will have a 
value of pweights (and hence w; ) that is smaller than that for most observations. We 
have 

• Calculate the �eighted mean 
mean totexp [pYeight=�Yght] 

Mean estimation Number of obs 3064 

totexp 

Mean Std. Err . 

10670 . 8 3  428 . 5148 

[95/. Conf . Interval] 

9830.62 11511 .03  

The weighted mean of $ 10,671 is much larger than the unweightcd mean of $7,031 (see 
section 3.2.4) because the unweighted mean does not adjust for the oversampling of 
individuals with few chronic problems. 

3.7.3 Weighted regression 

The weighted least-squares estimator for the regression of Yi on Xi with the weights Wi 
is given by 

The OLS estimator is the special case of equal weights with w; = Wj for all i and j .  
The default estimator of  the VCE i s  a weighted version of the heteroskedasticity-robust 
version in (3.3) , which assumes independent observations. If observations are clustered, 
then the option vce(cluster clustvar) should be used. 

Although the weighted estimator is easily obtained, for legitimate reasons many 
microeconometric analyses do not use weighted regression even where sampling weights 
are available. We provide a brief explanation of this conceptually difficult issue. For a 
more complete discussion, see Cameron and Trivedi (2005, 818-82 1) .  

Weighted regression should be used if  a censuS parameter estimate is  desired. For 
example, suppose we want to obtain an estimate for the U.S.  population of the average 
change in earnings associated with one more year of schooling. Then, if disadvantaged 
minorities are oversampled, we most likely will understate the earnings increase, because 
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disadvantaged minorities are likely to have earnings that are lower than average for their 
given level of schooling. A second example is when a&,o-rega;;e state-level data are used 
in a natural experiment setting, where the goal is to measure the effect of an exogenous 
policy change that affects some states and not other states. Intuitively, the impact on 
more populous states should be given more weight . Note that these estimates are being 
given a correlative rather than a causal interpretation. 

Weighted regression is not needed if we make the stronger assumptions that the DGP 
is the specified model Yi = x'.f3 + Ui and sufficient controls are assumed to be added 
so that the error E(u; jx;) = 0. This approach, called a control-function approach 
or a model approach, is the approach usually taken in microeconometric studies that 
emphasize a causal interpretation of regression. Under the assumption that E( u , jx,) = 
0, the weighted least-squares estimator will be consistent for f3 for any choice of weights 
including equal weights, and if u, is homoskedastic, the most efficient estimator is the 
OLS estimator, which uses equal weights. For the assumption that E(ui jx ,) = 0 to be 
reasonable, the determinants of the sampling frame should be included in the controls x and should not be directly determined by the dependent variable y. 

These points carry over directly to nonlinear regression models. In most cases, mi­
croeconometric analyses take on a model approach. In that. case, unweighted estimation 
i� appropriate, with any weighting based on efficiency grounds. If a census-parameter 
approach is being taken, however, then it is necessary to weight. 

For our data example, we obtain 

. • Perform 1.1eighted regression 

. regress totexp suppins phylim actlim totchr age female income [pYeight=sygbt] 
(sum of 1.1gt is 1 .  6195e+04) 
Linear regression Nwnber of obs 3064 

F (  7 ,  3056) 14 .08  
Prob > F 0 . 0000 
R-squared 0 . 0977 
Root MSE 13824 

Robust 
totexp Coef . Std. Err. t P> l t l  [95/. Conf. Interval] 

suppins 278. 1578 825. 6959 0 .34  0 . 736 -1340.818 1897 .133 
phylim 2484.52 933.7116 2 . 6 6  0 . 008 653.7541 4315.286 
actlim 4271 .154 1024. 686 4 . 17 0 . 000 2262 . 0 1 1  6280 .296 
totchr 1819.929 349. 2234 5 . 2 1  0 . 0 0 0  1135 .193 2504 .666 

age -59.3125 68 . 01237 -0 . 87 0 . 383 -192.6671 74.04212 
female -2654 .432 911 . 6422 - 2 . 9 1  0 . 004 -4441 .926 -866. 9381 
income 5 . 042348 1 6 . 6509 0 .30 0 .762 -27. 60575 37 . 69045 

cons 7336. 758 5263.377 1 . 39 0 . 163 -2983 . 359 17656.87 

The estimated coefficients of all statistically significant variables aside from f emale are 
within 10% of those from unweighted regression (not given for brevity) . Big differences 
between weighted and unweighted regression would indicate that E( u.ijx.i) =f. 0 because 
of model misspecifi cation. Note that robust standard errors are reported by default. 
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3.7.4 Weighted prediction and M Es 

After regression, unweighted prediction will provide an estimate of the sample-average 
value of the dependent variable. We may instead want to estimate the population-mean 
value of the dependent variable. Then sampling weights ·should be used in forming an 
average prediction. 

This point is particularly easy to see for OLS regression. Because 1/ N l:;(Y·i. -fj;) = 0, since in-sample residuals sum to zero if an intercept is included, the average 
prediction 1/N 2::., Yi equals the sample mean fj. But given an unrepresentative sample, 
the unweighted sample mean fj may be a poor estimate of the population mean. Instead, 
we should use the weighted average prediction 1/N l::,: w/if., ,  even if fj; is obtained by 
using unweighted regression. 

For this to be useful, however, the prediction should be based on a model that 
includes as regressors variables that control for the unrepresentative sampling. 

For our example, we obtain the weighted prediction by typing 

• Weighted prediction 
quietly predict yhatYol s  
mean yhatYols [pYeight=syght] , noheader 

yhatYols 

Mean Std. Err. 

10670.83 138. 0828 

[95Yo Conf. Interval] 

10400 .08  10941.57 

mean yhatYols , noheader II unYeighted prediction 

yhatYols 

Mean Std. Err. 

7135.206 78 . 57376 

[95/. Conf . Interval] 

698 1 . 144 7289 .269 

The population mean for medical expenditures is predicted to be $10,671 using weighted 
prediction, whereas the unweighted prediction gives a much lower value of $7,135. 

Weights similarly should be used in computing average MEs. For the linear model, 
the standard ME EJE(y dXi )  /OXij equals /3j for all observations, so weighting will make 
no difference in computing the marginal effect . Weighting will make a difference for 
averages of other marginal effects, such as elasticities, and for IVIEs in nonlinear models. 

3.8 OLS using Mata 

Stata offers two different ways to perform computations using matrices: Stata matrix 
commands and Mata functions (which are discussed, respectively, in appendices A 
and B) .  

Mata, introduced in Stata 9, i s  much richer. We illustrate the use of  Mata by using 
the same OLS regression as that in section 3.4.2 . 
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The progTam is written for the dependent variable provided in the local macro y and 
the regressors in the local macro xlist. We begin by reading in the data and defining 
the local macros. 

• OLS with White robust standard errors using Mata 
use mus03data.dta, clear 

keep if totexp > 0 II Analysis for positive medical expenditures only 
(109 observations deleted) 

generate cons = 1 

local y ltotexp 

local xlist suppins phylim actlim totchr age female income cons 

We then move into Mata. The st_view()  Mata function is used to transfer the Stata 
data variables to Mata matrices y and X, with tokens ( " " ) added to convert 'xlist · 
to a comma-separated list with each entry in double quotes, necessary for st_ view C ) .  

The key part of the program forms {3 = (X'X)- 1X'y and V({j) = (N/ N - K) 
(X'X)-1 (�.i urx;x�) (X'X)- 1 . The cross-product function cros s ( X , X) is used to form 
X'X because this handles missing values and is more efficient than the more obvious X '  X. 
The matrix inverse is formed by using cholinv O because this is the fastest method in 
the special case that the matrix is  symmetric positive definite. We calculate the K x K 
matrix L; urxix; as l::, (u.,x;) ' (u;x;) = A' A, where the N X K matrix A has an ith 
row equal to u;x;. Now u;:< equals the ith row of the N X 1 residual vector u times the 
ith row of the N x K regressor matrix X, so A can be computed by element-by-element 
multiplication of u by X, or ( e : *X ) ,  where e is u. Alternatively, L; u;x,x; = X'DX, 
where D is an N X N diagonal matrix with entries u;, but the matrix D becomes 
exceptionally large, unnecessarily so, for a large N.  

The Mata program concludes by using st . .ma trix ( ) to pass the estimated {3 and 
V({j) back to Stata. 

mata 
--------------------- mata (type end to exit) --

11 Create y vector and X matrix from Stata dataset 
st_ view ( y= . , . , " ·  y · " )  I I y is nx1 

st_ vie" Cx� . ,  . , tokens ( "  · xlist · " ) )  I I X is nxk 
XXinv = cholinv(cross ( X , X ) )  

b = XXinv•cross(X ,y )  
o = y - X•b 
n = roYs(X) 

k � cols(X) 

s2 = (e "e )l (n-k) 

II XXinv is inverse of x · x  
I I b = [ (X"X)--1)  • x ·y 

vdef = s2•XXinv II default VCE not used here 

VYhite = XXinv• ( (e : •X) " ( e :•X) • nl(n-k)) •XXinv II robust VCE 
st_matri x( "b " , b " )  

st_matrix ( "V" , VYhite) 
end 

II pass results from Mata to Stata 
II pass results from Mata to Stata 
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Once back in Stata, we use ereturn to  display the results in a format similar to  that 
for built-in commands, first assigning names to the cohunns and rows of b and V . 

. • Use Stata ereturn display to present nicely formatted results 
matrix colnames b � "xlist ' 
matrix colnames V = "xlist·  
matrix roYnames V = "xlist' 
ereturn post b V 
ereturn display 

Coef . Std. Err. z P> l z l  [95/. Conf . 

sup pins .2556428 . 0465982 5 . 49 0 .000 . 1643119 
phylim . 3020598 . 057705 5 . 23 0 .  000 . 18896 
ac:tlim .3560054 . 0634066 5 . 6 1  0 . 000 . 2317308 
totchr .3758201 . 0187185 20 .08 0 . 000 . 3391326 

age . 0038016 . 0037028 1 . 03 0 . 305 - .  0034558 
female - . 0843275 . 045654 -1 .85  0 . 065 - . 1738076 
income . 0025498 .0010468 2 . 44 0 . 015 . 0004981 

cons 6. 703737 .2825751 23.72 0 . 000 6 . 1499 

Interval] 

. 3469736 

.4 151595 
. 48028 

.4125077 
.011059 

.0051526 

. 0046015 
7 . 257575 

The results are exactly the same as those given in section 3.4.2. when we used regress 
with the vee (robust) option. 

3.9 Stata resources 

The key Stata references are [u] User's Guide and [R] regress ,  [R] regress postes­
timation, [R] estimates, [R] predict, and [R] test. A useful user-written command 
is estout. The material in this chapter appears in many econometrics texts, such as 
Greene (2008). 

3.10 Exerdses 

1. Fit the model in section 3.4 using only the first 100 observations. Compute stan­
dard errors in three ways: default, heteroskedastic, and cluster-robust where 
clustering is on the number of chronic problems. Use estimates to produce a 
table with three sets of coefficients and standard errors, and comment on any 
appreciable differences in the standard errors. Construct a similar table for three 
alternative sets of heteroskedasticity-robust standard errors, obtained by using the 
vee (robust) , vee (hc2 ) ,  and vee (hc3) options, and comment on any differences 
between the different estimates of the standard errors. 

2. Fit the model in section 3.4 with robust standard errors reported. Test at 5% 
the joint significance of the demogTaphic variables age, female, and income. Test 
the hypothesis that being male (rather than female) has the same impact on 
medical expenditures as aging 10 years. Fit the model under the constraint that 
/3phylim = f3actlim by first typing constraint 1 phylim = actlim and then by using 
cnsreg with the constraint s ( l )  option. 
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3. Fit the model in section 3.5 ,  and implement the RESET test manually by regressing 
y on x and ff, f?, and ft and jointly testing that the coefficients of ff,  f?,  and ?r 
are zero. To get the same results as estat ovtest, do you need to use default or 
robust estimates of the VCE in this regression? Comment. Similarly, implement 
linktest by regressing y on fj and fl" and testing that the coefficient of fl" is 
zero. To get the same results as linktest, do you need to use default or robust 
estimates of the VCE in this regression? Comment. 

4. Fit the model in section 3.5 ,  and perform the standard Lagrange multiplier test 
for heteroskedasticity by using estat hettest with z = x. Then implement the 
te&t manually as 0.5 times the explained sum of squares from the regTession of y; 
on an intercept and z,., where Yi = {u; /(1/ N) Lj U:J} - 1 and u; is the residual 
from the original OLS regression. Next use estat hettest with the iid option 
and show that this test is obtained as N x R2, where R2 is obtained from the 
regression of uz on an intercept and Zi· 

5. Fit the model in section 3.6 on levels, except use all observations rather than 
those with just positive expenditures, and report robust standard errors. Predict 
medical expenditures. Use correlate to obtain the correlation coefficient between 
the actual and fitted value and show that, upon squaring, tbjs equals R2. Show 
that the linear model mfx without options reproduces the OLS coefficients. Now 
use mfx with an appropriate option to obtain the income elasticity of medical 
expenditures evaluated at sample means. 

6. Fit the model in section 3.6 on levels, using the first 2,000 observations. Use these 
estimates to predict medical expenditures for the remaining 1 ,064 observations, 
and compare these with the actual values. Note that the model predicts very 
poorly in pa.rt because the data were ordered by totexp. 
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4. 1 Introduction 

Simulation by Monte Carlo experimentation is a useful and powerful methodology for 
investigating the properties of econometric estimators and tests. The power of the 
methodology derives from being able to define and control the statistical environment 
in which the investigator specifies the data-generating process (DGP) and generates data 
used in subsequent experiments. 

Monte Carlo experiments can be used to verify that valid methods of statistical 
inference are being used. An obvious example is checking a new computer program or 
algorithm. Another example is investigating the robustness of an established estimation 
or test procedure to deviations from ::;etting::; where the properties of the procedure are 
known. 

Even when valid methods are used, they often rely on asymptotic results. We may 
want to check whether these provide a good approximation in samples of the size typi­
cally available to the investigators. Also asymptotically equivalent procedures may have 
different properties in fi.nite samples. Monte Carlo experiments enable fi nite-sample 
comparisons. 

This chapter deals with the basic elements common to Monte Carlo experiments: 
computer generation of random numbers that mimic the theoretical properties of real­
izations of random variables; commands for repeated execution of a set of instructions; 
and machinery for saving, stori11g, and processing the simulation output, generated in 
an experiment, to obtain the summary measures that are used to evaluate the proper­
ties of the procedures under study. We provide a series of examples to illustrate various 
aspects of Monte Carlo analyses. 

The chapter appears early in the book. Simulation is a powerful pedagogic tool for 
exposition and illustration of statistical concepts. At the simplest level, we can use 
pseudorandom samples to illustrate distributional features of artificial data. The goal 
of this chapter is to use simulation to study the distributional and moment properties 
of statistics in certain idealized statistical environments. Another possible use of the 
Monte Carlo methodology is to check the correctness of computer code. Many applied 
studies use methods complex enough that it is .  easy to make mistakes. Often these 
mistakes could be detected by an appropriate simulation exercise. We believe that sim­
ulation is greatly underutilized, even though Monte Carlo experimentation is relatively 
straightforward in Stata. 

113 
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4.2 Pseudorandom-number generators: Introduction 
Suppose we want to use simulation to study the properties of the ordinary least-squares 
estimator ( OLS) estimator in the linear regression model with normal errors. Then, 
at the minimum, we need to make draws from a specified normal distribution. The 
literature on (pseudo) random-number generation contains many methods of generating 
such sequences of numbers. When we use packaged functions, we usually do not need to 
know the details of the method. Yet the match between the theoretical and the sample 
properties of the draws does depend upon such details. 

Stata introduced a new suite of fa::;t and easy-to-use random-number functions (gen­
erators) in micl-2008. The::;e functions begin with the letter r (from random) and can be  
readily installed v ia  an update to ver::;ion 10 .  The suite include::; the uniform, normal, 
binomial, gamma, and Poi::>son functions that we will u::;e in thi::; chapter, as well as 
several others that we do not use. The functions for generating pseudorandom numbers 
are summarized in help functions. 

To a large extent, these new functions obviate the previous methods of using one's 
own generators or user-written commands to generate pseudorandom numbers other 
than the uniform. Nonetheless, there can sometimes be a need to make draws from 
distributions that are not included in the suite. For these draws, the uniform distribution 
is often the starting point. The new runif ormO function generates exactly the same 
uniform draws as unifom ( ) , which it replaces. 

4.2 .1  Uniform random-number generation 

The term random-number generation is an oxymoron. It is more accurate to use the 
term pseudorandom numbers. Pseudorandom-number generators use deterministic de­
vices to produce long chains of numbers that mimic the realizations from some target 
distribution. For uniform random numbers, the target distribution is the uniform dis­
tribution from 0 to 1, for which any value between 0 and 1 is equally likely. Given such 
a sequence, methods exist for mapping these into sequences of nonuniform draws from 
desired distributions such as the normal. 

A standard simple generator for uniform draws uses the deterministic rule X J = (kX j-l + c) mod m, j = 1, . . . , J, where the modulus operator a mod b forms the 
remainder when a is divided by b, to produce a sequence of J integers between 0 and 
m. Then Rj = Xj/m is a sequence of J numbers betweer. 0 and 1 .  If computation is 
done using 32-bit integer arithmetic, then m = 231 - 1 and the maximum periodicity is 
231 - 1 � 2 . 1  x 109 ,  but it is easy to select poor values of k, c, and X0 so that the cycle 
repeats much more often than that. 

This g·enerator is implemented using Stata function runif o m ( ) ,  a 32-bit KISS gen­
erator that uses good values of k and c. The initial value for the cycle, X 0, is called 
the seed. The default is to have this set by Stata, based on the computer clock. For 
reproducibility of results, however, it is best to actually set the initial seed by using set 
seed. Then, if the program is rerun at a later time or by a different researcher, the 
same results will be obtained. 
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To obtain and display one draw from the uniform, type 

• Single draY of a uniform number 
set seed 10101 
scalar u = runiform ( )  
display u 

. 16796649 
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This number is  internally stored at much greater precision than the eight displayed 
digits. 

The following code obtains 1,000 d1·aws from the wuform distribution and then 
provides some details on these draws: 

• 100 0 draYs of uniform numbers 
quietly set obs 1000 
set seed 10101 
generate x = runiformO 

list x in 1/5 ,  clean 
X 

1 .  . 1679665 
2. .3197621 
3 .  . 791 1349 
4 .  . 7193382 
5 .  . 5408687 

summarize x 
Variable 1 Obs 

1000 

Mean 

. 5 150332 

Std. Dev. Min Max 

. 2934123 .0002845 . 9993234 

The 1 ,000 draws have a mean of 0 .515 and a standard deviation of 0.293, close to the 
theoretical values of 0.5 and Jl7l2 = 0.289. A histogram, not given, has ten equal­
width bins with heights that range from 0 .8  to 1 .2 ,  close to the theory of equal heights 
of 1.0. 

The draws should be serially uncorrelated, despite a deterministic rule being used 
to generate the draws. To verify this, we create a time-identifier variable, t, equal to 
the observation number (_n), and we use tsset to declare the data to be time series 
with time-identifier t. vVe could then use the corrgram, ac, and pac commands to 
test whether autocorrelations and partial autocorrelations are zero. We more simply 
use pwcorr to produce the fi.rst three autocorrelations, where L2 . x is the x variable 
lagged twice and the star ( 0 .  05) option puts a star on correlations that are statistically 
significantly different from zero at level 0.05. 

• First three autocorrelations for  the uniform draYs 
generate t = _n 
tsset t 

time variable :  t ,  1 to 1000 
delta: 1 unit 
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p1.1corr x L . x  L 2 . x  L 3 . x ,  star ( 0 . 0 5 )  

X L . x  L2 .x  L3 .x  

X 1 .  0000 
L . x  -0.0185 1 . 0000 

L2 .x  - 0 . 0047 -0 .0199 1 .  0000 
L3 .x  0 . 0116  - 0 . 0059 -0 . 0207 1 . 0000 

The autocorrelations are low, and none are statistically different from zero at the 0.05 
level. Uniform random-number generators used by packages s·,tch as Stata are, of course, 
subjected to much more stringent tests than these. 

4 .2 .2  Draws from normal 

For simulations of standard estimators such as OLS ,  nonlinear least squares (NLS), and 
instrumental variables (rv), all that is needed are draws from the uniform and normal 
distributions, because normal errors are a natural starting point and the most common 
choices of distribution for generated regressors are normal and uniform. 

The command for making draws from the standard normal has the following simple 
syntax: 

generate varna me = rnormal ( )  

To make draws from N(m,s2 ) ,  the corresponding command is  

generate varna m e  = rnormal ( m ,  s) 

Note that s > 0 is the standard deviation. The arguments m and s can be numbers or 
variables. 

Draws from the standard normal distribution also can be obtained as a transforma­
tion of draws from the uniform by using the inverse probability transformation method 
explained in section 4.4.1 ;  that is, by using 

generate varname = invnormal(runiform () ) 

where the new function runifomO replaces uniform ()  in the older versions. 

The following code generates and summarizes three pseudorandom variables with 
1,000 observations each. The pseudorandom variables have Cistributions uniform(O, 1 ) , 
standard normal, and normal with a mean of 5 and a standard deviation of 2 .  

• normal and uniform 
clear 

quietly set obs 1000 
set seed 10101 
generate uniform = runiformO 

II set the seed 

I I uniform ( 0 , 1 )  



4.2.3 Draws from t, chi-squared, F, gamma, and beta 

generate stnormal . �  rnormal ( )  

generate norm5and2 � rnormal (5 ,2 )  
I I  N ( 0 , 1 )  

tabstat uniform stnormal norm5and2 ,  stat(mean s d  skeY kurt min max) col( stat) 
variable 

uniform 
stnormal 

uorm5and2 · 

mean sd skeYness kurtosis ' min 

. 5 150332 .2934123 - . 0899003 1 . 318878 .0002845 . 9993234 

.0 109413 1 . 010856 . 0680232 3 . 130058 -2 . 978147 3 . 730844 
4 . 995458 1 . 970729 - . 0282467 3 . 050581 -3 . 027987 10 . 80905 
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The sample mean and other sample statistics are random variables; therefore, their 
values will, in general, differ from the true population values. As the number of obser­
vations grows, each sample statistic will converge to the population parameter because 
each sample statistic is a consistent estimator for the population parameter. 

For norm5and2, the sample mean and standard deviation are very close to the the­
oretical values of 5 and 2. Output from tabstat gives a skewness statistic of -0.028 
and a kurtosis statistic of 3.051, close to 0 and 3, respectively. 

For draws from the truncated normal, see section 4.4.4, and for draws from the 
multivariate normal, see section 4.4.5. 

4.2.3 Draws from t, chi-squared, F, gamma, and beta 

Stata's library of functions contains a number of generators that allow the user to draw 
directly from a number of common continuous distributions. The function formats are 
similar to that of the rnormal O hmction, and the argument (s) can be a number or a 
variable. 

Let t(n) denote Students' t distribution with n degrees of freedom, x2(m) denote 
the chi-squared distribution with m degrees of freedom, and F(h,  n) denote the F dis­
tribution with h and n degrees of freedom. Draws from t( n) and x2 (h) can be made 
directly by using the rt (dfl and r.:hi2 (dj) functions. We then generate F(h, n) draws 
by transformation because a function for drawing directly from the F distribution is 
not available. 

The following example generates draws from t ( lO ) ,  x2(10) ,  and F(lO ,  5 ) .  

* t ,  chi-squared, and F Yith constant degrees o f  freedom 
clear 

quietly set obs 2000 
set seed 10101 
generate x t  � rt(10)  

generate xc = rchi2 (10)  
generate xfn = rchi2 ( 1 0)I10 

generate xfd = rchi2 (10)15  
genorate xf = xfnlxfd 

II result xt - t ( 10 )  

II  result xc - chisquared(10) 

II result " numerator of F ( 1 0 , 5 )  
II result denominator o f  F ( 10 ,5 )  

II result xf - F(10 ,5 )  
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summarize xt XC Xf 

Variable Dbs Moan Std. Dev.  Min Max 

xt 2000 .0295636 1 . 118426 - 5 . 390713 4 . 290518 
XC 2000 9 . 967206 4 . 530771 . 7512587 35. 23849 
xf 2000 1 . 637549 2 . 134448 . 0511289 34. 40774 

The t(10) draws have a sample mean and a standard deviation close to the theoretical 
v-alues of 0 and v/10/(10 - 2) = 1.118; the x2(10) draws have a sample mean and 
a standard deviation close to the theoretical v-alues of 10 and J25 = 4.4 72; and the 
F(10, .5) draws have a sample mean close to the theoretical value of .5/(5 - 2 ) = 1 .  7. 
The sample standard deviation of2 .134 differs from the theoretical standard deviation 
of )2 x .sz x 13/(10 x 32 x 1 ) = 2. 687. This is because of randomness, and a much 
larger number of draws eliminates this divergence . 

Using rbeta(a ,  b) , we can draw froin a two-parameter beta with the shape param­
eters a, b > 0, mean a/(a + b) , and variance ab/(a + b)2 (a + b + 1 ) . Using rgamma(a ,b  ) , 
we can draw from a two-parameter gamma with the shape parameter a > 0 ,  scale 
parameter b > 0, mean ab, and variance ab2 • 

4.2.4 Draws from binomial, Poisson, and negative binomial 

Stata functions also generate draws from some leading dbcrete distributiont>. Again the 
argument(s) can be a number or a variable: 

Let Bin( n,p) denote the binomial distribution with positive integer n trials (n) and 
success probability p, 0 < p < 1, and let Poisson(m) denote the Poisson distribution 
with the mean or rate parameter m. The rbinomial(n,p) function generates random 
draws from the binomiai distribution, and the rpoisson(m) function makes draws from 
the Poisson distribution. 

We demonstrate these ftmctions with an argument that is a variable so that the 
parameters differ across draws. 

Independent (but not identically distributed) draws from binomial 

As illustration, we consider draws from the binomial distribution, when both the prob­
ability p and the number of trials n may vary over i. 

• Discrete r v " s :  binomia� 
set seed 10101 
generate p1 = runiform ()  I I here p1-uniform ( 0 , 1 )  

generate trials = ceil (10•runiform ( ) )  I I  here # tria�s varies btYn 1 & 1 0  
generate xbin = rbinomial (trials ,p1 )  II  draYs from binomial (n,p1)  



4.2.4 Dmws from binomial, Poisson, and negative binomial 

summarize p1 trials xbin 
Variable 

p1 
trials 

xbin 

Dbs 

2000 
2000 
2000 

Mean 

.5155468 
5 .438 
2 . 753 

Std. Dev. Min Max 

.2874989 . OOQ2845 . 9995974 
2 . 887616 10 
2 . 434328 0 10  
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The DGP setup implies that the number of trials n i s  a random variable with an expected 
value of 5 .5 and that the probability p is a random variable with an expected value of 
0.5. Thus we expect that xbin has a mean of 5 .5  x 0 . .5 = 2 .75 , and this is approximately 
the case here. 

Independent (but not identically distributed} draws from Poisson 

For simulating a Poisson regression DGP, denoted y � Poisson(.u ), we need to make 
draws that are independent but not identically distributed, with the mean .u varying 
across draws because of regTessors. 

We do so in two ways. First, let ,U; equal xb=4+2*X with x=rt.inif orm ( ) . Then 
4 < Jl.i < 6. Second, let p; equal xb times xg where xg=rgamma ( l , l ) ,  which yields 
a draw from the gamma distribution with a mean of 1 x 1 = 1 and a variance of 
1 x 1 2  = 1 .  Then IJ; > 0. In both cases, the setup can be shown to be such that the 
ultimate draw has a mean of 5, but the variance differs from 5 for the independent and 
identically distlibuted (i .i .d.) Poisson because in neither case are the draws from an 
identical distribution. We obtain 

• Discrete rv ·s :  independent poisson and negbin draws 
set seed 10101 

generate xb= 4 + 2•runiform0 
generate x g  = rgamma ( 1 , 1 )  
generate xbh = xb•xg 
generate xp = rpoisson(5) 

generate xp1 = rpoisson(xb) 
generate xp2 � - rpoisson(xbh) 

summarize xg xb xp xp1 xp2 
Variable Dbs Mean 

xg 
x b  
xp 

xp1 
xp2 

2000 
2000 
2000 
2000 
2000 

1 . 032808 
5 . 031094 

5 . 024 
4 . 976 

5 . 1375 

II draw from gamma;E(v)=1  
II apply multiplicative heterogeneity 

II result xp - Poisson(5) 

II result xp1 - Poisson(xb) 
I I result xp2 - W(xb) 

Std. Dev. Min Max 

1 . 044434 . 000112 8. 00521 
.5749978 4 . 000569 5 . 999195 
2 . 300232 0 14 
2 . 239851 0 14 
5 . 676945 0 44 

The xb variable lies between 4 and 6, as expected, and the xg gamma variable has a mean 
and variance close to 1 ,  as expected. For a benchmark comparison, we make draws of xp 
from Poisson(5), which has a sample mean close to 5 and a sample standard deviation 
close to Y5 = 2.236. Both xpl and xp2 have means close to 5. In the case of xp2, 
the model has the multiplicative unobserved heterogeneity term xg that is itself drawn 
from a gamma distribution with shape and scale parameter both set to 1 .  Introducing 
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this type of heterogeneity means that xp2 is drawn from a distribution with the same 
mean as that of xpl, but the variance of the distribution is larger. More specifically, 
Var(xp2 lxb) = xb* (l+xb) , using results in section 17.2.2, leading to the much larger 
standard deviation for xp2. 

The second examp:e makes a draw from the Pois::;on-g<unma mixture, yielding the 
negative binomial distribution. The rnbinomial () function draws from a different 
parameterization of the negative binomial distribution. For this reason, we draw from 
the Pois::;on-gamma mixture here and in chapter 17. 

Histograms and density plots 

For a vi::;ual depiction, it is often useful to plot a histogTam or kernel density estimate 
of the generated random numbers. Here we do this for the draws xc from x2(10) and 
xp from Poisson(5) . The results are shown in figure 4 . 1 .  

• Example o f  histogram and kernel density plus graph combine 
quietly tYoYay (histogram xc , Yidth ( l ) )  (kdensity xc ,  lYidth(thick) ) ,  

> ti tle( "DraYs from chisquared(lO) " )  

quietly graph save mus04cdistr.gph, replace 
quietly tYoYay (histogr�n xp, discrete) (kdensity xp, lYidth(thick) Y ( l ) ) ,  

> title ( " DraYs from Poisson(mu) for 5<mu< 6" )  

. quietly graph save mus04poissdistr.gph, replace 

. graph combine mus04cdistr. gpb mus04poissdistr.gph, 
> title ( "Random-number generation examples " ,  margin(b=2) size (vlarge) )  

Random-number generation examples 

Draws from chisquared(1 0) Draws from Poisson(mu) for 5<mu<6 

30 40 

I !:J•lli\!?�;,, Denolty -- kdcn::;tty xc I I k-;iJw,'Ki! Den� lty -- kdonolty xp I 
Figure 4 . 1 .  x2(10) and Poisson(5) draws 
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4.3 Distribution of the sample mean 
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As  an introductory example of simulation, we demonstrate the central limit theorem 
result, (xN - tL)/(cr/VH) ----> N(O, 1 ) ;  i .e . ,  the sample mean is approximately normally 
distributed as N ----> oo. We consider a random variable that has the uniform distribu­
tion, and a sample size of 30. 

We begin by drawing a single sample of size 30 of the random variable X that is uni­
formly distributed on (0 ,  1 ) ,  using the runifom.O random-number function. To ensure 
the same results are obtained in future runs of the same code or on other machines, we 
use set seed. We have 

• Draw 1 sample of size 30 from uniform distribution 
quietly set obs 30 
set seed 10101 
generate x � runiform ( )  

To see the results, we use summarize and histogram. We have 

• Summarize x and produce a histogram 
summarize x 

Variable ! Dbs Mean 

X i 30 .5459987 

Std. Dev. Min Max 

.2803788 . 0524637 . 9983786 

quietly histogram x ,  width(0 . 1 )  xtitle("x from one sample " )  

.4 
x from ooo �amplo 

Figure 4 .2 .  Histogram for one sample of size 30 

The summary statistics show that 30 observations were generated and that for this 
sample x = 0 .546. The histogram for this single sample of 30 uniform draws, given in 
figure 4.2, looks nothing like the bell-shaped curve· of a normal , because we are sampling 
from the uniform distribution. For very large samples, this histogram approaches a 
horizontal line with a density value of 1 .  

· 
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To obtain the distribution of the sample mean by simulation, we redo the preceding 
10,000 times, obtaining 10,000 samples of size 30 and 10,000 sample means x. These 
10,000 sample means are draws from the distribution of the sample-mean estimator. By 
the central limit theorem, the distribution of the sample-mean estimator has approxi­
mately a normal distribution. Because the mean of a uniform(O, 1) distribution is 0 .5 ,  
the mean of the distribution of  the sample-mean estimator is  0 .5 .  Because the standard 
deviation of a uniform(O, 1) distribution is v'l7'i2 and each of the 10,000 samples is 
of size 30, the standard deviation of the distribution of the sample-mean estimator is 
J(l/12)/30 = 0.0527. 

4.3.1 Stata program 

A mechanism for repeating the same statistical procedure 10,000 times is to write a 
program (see appendix A.2 for more details) that does the procedure once and use the 
simulate command to run the program 10,000 times. 

We name the program onesample and define it to be r-class, meaning that the ulti­
mate result, the sample mean for one sample, is returned in r O . Because we name this 
result meanforonesample, it will be returned in r (meanforonesample) . The program 
has no inputs, so there is no need for program arguments. The prognun drop:; any 
existing data on variable x, sets the sample size to 30, draws :30 uniform variates, and 
obtains the sample mean with summarize. The summarize command is it::;elf an r-class 
command that store:; the sample mean in r (mean) ; see section l .o.1 . The last line of 
the program returns r (mean) as the result meanforonesample. 

The program is 

• Program to draY 1 sample of size 30 from uniform and return sample mean 
program onesample ,  rclass 
1 .  drop _all 
2 .  quietly s e t  obs 30 
3 .  generate x = runiform( ) 
4 .  summarize x 
5 .  return scalar meanforonesample = r(mean) 
6 .  end 

To check the program, we run it once, using the same seed as earlier. We obtain 

* Run program onesample once as a check 
set seed 10101 

onesample 
Variable J Obs 

return list 
scalar s :  

r(meanforonesample) 

30 

Mean 

.5459987 

S td. Dev. Min Max 

.2803788 . 0524637 . 9 983786 

. 5459987225631873 

The results for one sample are exactly the same as those given earlier. 
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4.3.2 The simulate command 
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The simulate command runs a specified command # times, where the user specifies 
#. The basic syntax is 

simulate [ exp_list ] , reps ( #) [ options ] : command 

where command is the i1ame of the command, often a user-written progTam, and # is 
the number of simulations or replications. The quantities to be calculated and stored 
from command are given in exp_list. We provide additional details on simulate in 
section 4.6.1 . 

After simulate i s  run, the Stata dataset currently in memory is replaced by a 
dataset that has # observations, with a separate variable for each of the quantities 
given in exp_list. 

4.3 .3 Central limit theorem simulation 

The simulate command can be used to run the onesample program 10,000 times, yield­
ing 10,000 sample means from samples of size 30 of uniform variates. We additionally 
used options that set the seed and suppress the output of a dot for each of the 10,000 
simulations. We have 

• Run program onesample 10 , 000 times to get 1 0 , 000 sample means 
simulate xbar � r (meanforonesample) , seed(10101) reps(10000) nodots:  

> onesample 

command : onesample 
xbar : r(meanforonesamplo) 

The result from each sample, r (meanf oronesample) , is stored as the variable xbar. 

The simulate command overwrites any existing data with a dataset of 10,000 "ob­
servations" on x. We summarize these values, expecting them to have a mean of 0.5 
and a standard dev�ation of 0.0527. We also present a histogram overlaid by a normal 
density curve with a mean and standard deviation, which are those of the 10,000 values 
ofx. We have 

• Summarize the 10 ,000 sample means and draw histogram 
summarize xbar 

Variable Obs 

xbar 10000 

Mean 

.4995835 

Std. Dev. Min Max 

. 0533809 . 3008736 . 6990562 

quietly histogram xbar , norma� xtitl e( " xbar from many samples")  

(Continued on next page) 
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xbar from m.:�ny sampler. 

Figure 4.3. Histogram of the 10,000 sample means, each from a sample of size 30 

The histogram given in figure 4.3 is very close to the bell-shaped curve of the normal. 

There are several possible variations on this example. Different distributions for 
x can be used with different random-number functions in the generate command for 
x. As sample size (set obs) and number of simulations (reps) increases, the results 
become closer to a normal distribution. 

4.3.4 The postfile command 

In this book, we generally use simulate to perform simulations. An alternative method 
is to use a looping command, such as forvalues, and within each iteration of the 
loop use post to write (or post) key results to a file that is declared in the postfile 
command. After the loop ends, we then analyze the data in the posted fi le. 

The postfile command has the following basic synta.x: 

pos tfile postname newvarlist using filename [ , every (#)  replace ] 

where postname is an internal filename, newvarlist contains the names of the variables 
to be put in the dataset, and filename is the external filename. 

The post postname ( exp1 ) ( exp2 ) . . . command is used to write expl , exp2 , . . . to 
the file. Each expression needs to be enclosed in parentheses. 

The postclose postname command ends the posting of observations. 

The postfile command offers more flexibility than simulate and, unlike simulate, 
does not lead to the dataset in memory being overwritten. For the examples in this 
book, simulate is adequate. 
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4.4 Pseudorandom-number generators: Further details 

4.3.5 Alternative central limit theorem simulation 

We illustrate the use of postfile for the central limit theorem example. We have 

• Simulation using postfile 
set seed 10101 

postfile sim_mem xmean using simresults , replace 
forvalues i = 1/10000 { 
2 .  drop _all 
3 .  quietly set obs 30 
4 .  
5 .  
6 .  
7 . 
8 .  } 

tempvar x 
generate · x ·  = runiform() 
quietly summarize · x ·  
post sim_mem (r(mean)) 

postclose sim_�em 
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The postfi1e command declares the memory object in which the results are stored, 
the names of variables in the results dataset, and the name of the results dataset file. 
In this example, the memory object is named sim_mem, X1!lean will be the only variable 
in the results dataset file, and simresul ts .d ta will be the results dataset file. (The 
replace option causes any existing simresul ts .d ta to be replaced.) The forvalues 
loop (see section 1 .8) i:; u:;ed to perform 10 ,000 repetition:;. At each repetition, the 
sample mean, result r (mean) , is posted and will be included as an observation in the 
new xmean variable in simresult s . dta. 

To see the results, we need to open simresul ts . d ta and summarize. 

• See the results stored in simresults 
Use simresul t s ,  clear 
summarize 

Variable Dbs Mean 

xmean 10000 .4995835 

Std. Dev.  Min Max 

. 0533809 . 3008736 . 6990562 

The results are ide�1tical to those in section 4.3.3 with simulate due to using the same 
seed and same sequence of evaluation of random-number fLmctions. 

The simulate command suppresses all output within the simulations. This is not 
the case for the forvalues loop, so the quietly prefix was used in two place� in the code 
above. It can be more convenient to instead apply the quietly prefix to all commands 
in the entire forvalues loop. 

4.4 Pseudorandom-number generators: Further details 

In this section, we present further details on ra.I,ldom-number generation that explain 
the methods used in section 4.2 and are useful for making draws from additional distri­
butions. 
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Commonly used methods for generating pseudorandom samples include inverse­
probability transforms, direct transformations, accept-reject methods, illL-..:ing and com­
pounding, and Markov chains. In what follows, we emphasize application and refer the 
interested reader to Cameron and Trivedi (2005, ch. 12) or numerous other texts for 
additional details. 

4.4.1 Inverse-probability transformation 

Let F(x) = Pr(X ::::; x) denote the cumulative distribution function of a random variable 
x. Given a draw of a uniform variate r, 0 ::::; r ::::; 1 ,  the inverse transformation x = 

p- I (r) gives a unique value of x because F (x) is nondecreasing in x. If r approximates 
well a random draw from the uniform, then x = p - l (r) will approximate well a random 
draw from F(x).  

A leading application is to the standard normal distribution. Then the inverse of 
the cumulative distribution function ( c.d.f.) , 

F (x) = <P(x) = jx �e-=212dz 
-00 y 27i 

has no closed-form solution, and there is consequently no analytical expression for 
<p-1 (x) . Nonetheless, the inverse-transformation method is easy to implement be­
cause numerical analysis provi(k;s fnnctions that calr.nlate a very gooci approximation 
to <P- 1 (x). In Stata, the function is invnonnal ( ) . Combining the two steps of drawing 
a random uniform variate and evaluating the inverse c.d.f., we have 

• Inverse probability transformation example : standard normal 
quietly set obs 2000 
set seed 10101 

generate xstn = invnormal(runiform( ) )  

This method was presented i n  section 4.2 .2 but is now superseded by the rno:nnal 0 
function. 

As another application, consider drawing from the unit exponential, with c.d.f. 
F(x) = 1 - e -"'. Solving r = 1 - e-x yields x = - ln( l - r) . If the uniform draw 
is, say, 0.640, then x = - ln(l - 0.640) = 1.022. With continuous monotonically in­
creasing c.d.f., the inverse transformation yields a unique value of x, given r. The Stata 
code for generating a draw from the unit exponential illustrates the method: 

. • Inverse probability transformation example:  unit exponential 

. generate xue = -ln(1-runiform( ) )  

For discrete random variables, the c.d.f. is a step function. Then the inverse is  not 
unique, but it can be uniquely determined by a convention for choosing a value on the 
fiat portion of the c.d.f., e.g., the left limit of the segment. 

In the simplest case, we consider a Bernoulli random variable taking a value of 1 
with a probability of p and a value of 0 with a probability of 1 - p. Then we take a 
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uniform draw, u, and set y = 1 i f  u ::; p and y = 0 i f  u > p. Thus, if p = 0.6, we obtain 
the following: 

• Inverse probability transformation example: Bernoulli (p � 0 . 6) 
generate xbernoulli � runiforinO > 0 .  6 I I Bernoull'i (0 .  6) 
summarize xstn xue xbernoulli 

Variable Dbs Mean Std. Dev. Min Max 

xstn 2000 . 0481581 1 . 001728 - 3 . 445941 3 . 350993 
xue 2000 .9829519 1 . 000921 . 0003338 9 . 096659 

xbernoulli 2000 . 4055 .4911113 0 

This code uses a logical operator that sets y = 1 if the condition is met and y = 0 
otherwise; s�e section 2.4. 7. 

A more complicated discrete example is the Poisson distribution because then the 
random variable can potentially take an infinite number of values. The method is to 
sequentially calculate the c.d.f. Pr(Y ::; k) for k =  0, 1 ,  2, . . . .  Then stop when the first 
Pr(Y ::; k) > u, where u is the uniform draw, and set y = k. For example, consider the 
Poisson with a mean of 2 and a uniform draw of 0.701. We first calculate Pr(y ::; 0) = 
0.135 < u, then calculate Pr(y ::; 1) = 0.406 < ·u, then calculate Pr(y ::; 2) = 0.677 < u, 
and finally calculate Pr(y ::; :3) = 0.857. This last calculation exceeds the uniform 
draw of 0. 701, so stop and set y = 3. Pr(Y ::; k) is computed by using the recursion 
Pr(Y ::; k) = Pr(Y ::; k - 1) + Pr(Y = k). 

4.4.2 Direct transformation 

Suppose we want to make draws from the random variable Y, and from probability 
theory, it is known that Y"is a transformation of the random variable X, say, Y = g(X) .  

In this situation, the direct transformation method obtains draws of  Y by drawing X and then applying the transformation g( · ) .  The method is clearly attractive when it 
is easy to draw X �d evaluate g( · ) .  

Direct transformation is particularly easy to  illustrate for well-known transform::; 
of a standard normally distributed random variable. A x2(1) draw can be obtained 
as the square of a draw from the standard normal; a x2(m) draw is the sum of m 
independent draws from x2(1 ) ;  an F(ml , m2 )  draw is (vJ/mi ) / (v2/m2), where Vi and 
v2 are independent draws from x2(mt) and x2(m2); and a t(m) draw is u/ � where 
u and v are independent draws from N(O, 1) and x2(m). 

4.4.3 Other methods 

In some cases, a distribution can be obtained as �" mi."<ture of distributions. A leading 
example is the negative binomial, which can be obtained as a Poisson-gamma mixture 
(see section 4.2.4) . Specifically, if y l .\ is Poisson(�) and .>.lp, ex is gamma with a mean 
of p, and a variance of cxp, then YifL, ex is a negative binomial distributed with a mean 
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of JL and a variance of f.L + a.!J-2 . This implies that we can draw from the negative 
binomial by using a two-step method in which we first draw (say, v) from the gamma 
distribution with a mean equal to 1 and then, conditional on v, draw from Poisson(�J-v). 
This example, using mixing, is used again in chapter 17. 

More-advanced methods include accept�reject algorithm:; and importance sampling. 
Many of Stata's pseudorandom-number generators use accept�reject a.lgorithms. Type 
help random number functions for more information on the methods u:;ecl by Stata. 

4.4.4 Draws from truncated normal 

In ::;imulation-based estimation for latent normal modeb with censoring or :;election, it 
i::; often nece::;::;ary to generate draw:; from a truncated normal distribution. The inver::;e­
probability transformation can be extended to obtain draw:; in this case. 

Consider making draw:; from a truncated normal. Then X ""' T N(<J,u) (JL, a2) ,  where 
without tnmcation X "' N(JL. a2 ) .  With truncation, realizations of X are restricted to 
lie between left truncation point a and right truncation poir:t b. 

For simplicity, fi.r:>t con::;ider the standard normal case (JL = 0, cr = 1) and let 
Z "' N(O, 1 ) .  Given the draw ·u from the uniform distribution, :r i::; defined by the 
::;olution of the inverse-probability transformation equation 

Pr(a s; Z s; x) iD(x) - <.!?(a) 
· u  = F(x) = 

Pr(a s; Z s; b)
= 

<.!?(b) - <.I?( a) 

Rearranging, <.!?( x) = <.!?(a) + {<.!?(b) - <.!?(a )}u so that ::;olving for x we obtain 

:z· = iD�1 [<.T?(a) + {<.!?(b) - <.!?(a ) } u] 

To extend this to the general case, note that if Z ""' N(,.. , a2 ) then Z* = (Z - IJ-)/a ""' 
N(O, 1 ) ,  and the truncation points for z• . rather than Z, are a• = (a - IJ-)/o· and 
b' = (b - f.L)/cr. Then 

x = f.L + O"iD� 1 [<.l?(a* ) + {<.l?(b*) - <.I?( a* ) }  u] 

As an example, we consider draws from N(5, 42) for a random variable truncated to 
the range [0, 12 ] .  

• DraYs from truncated normal x - N(mu, sigma-2) i n  [a,b] 
quietly set obs 2000 
set seed 10101 

scalar a � 0 
scalar b � 12 
scalar mu � 5 

scalar sigma = 4 
generate u = runiformO 

II loYer truncation point 
II upper truncation point 

II mean 

II standard deviation 
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generate �=normal ( ( a-mu ) lsigma)+u• (normal( (b-mu)lsigma)-normal ( ( a-mu)lsigma) ) 

generate xtrunc = mu + sigma•invnormal (�) 

summarize xtrunc 
Variable Obs 

xtrunc 1 2000 

Mean Std. Dev.  

5 . 605522 2 . 944887 

Min Max 

. 005319 1 1 . 98411 
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Here there is more truncation from below, because a is 1.2.So- from f.L whereas b is 
1.75<7 from �,, SQ we expect the truncated mean to exceed the untruncated mean. Accord­
ingly, the sample mean is 5.606 compared with the untruncated mean of 5. Tnmcation 
reduces the range and, for most but not all distributions, will reduce the variability. 
The sample standard deviation of 2 .945 is less than the untruncated standard deviation 
of 4. 

An altern ative way to draw X � TN(a,b) (�,, o-
2 ) is to keep drawing from untruncated 

N(p., o-2 ) until the realization lies in (a, b) .  This method will be very inefficient if, for 
example, (a, b) = ( -0.01 ,  0 .01 ) .  A Poisson example is given in section 17.3.5. 

4.4.5 Draws from multivariate normal 

Making draws from multivariate distributions is generally more complicated. The 
method depends on be specifi c case under consideration, and inverse-transformation 
methods and transformation methods that work in the univariate cose may no longer 
apply. 

However, making draws from the multivariate normal is relatively straightforward 
because, unlike most other distributions, linear combinations of normals are also normal. 

Direct draws from multivariate normal 

The drawnorm command generates draws from N(p,, �) for the user-specifi ed vector 
p, and matrix �. For example, c0nsider making 200 draws from a standard bivariate 
normal distribution·with means of 10 and 20,  variances of 4 and 9, and a correlation of 
0 . . 5 (so the covariance is 3) .  

• Bivariate normal example: 
* means 10 , 20; variances 4, 9; and correlation 0 . 5  
clear 
quietly set obs 1000 
set seed 10101 
matrix MU � (10 , 20) 
scalar sig12 = 0 . 5•sqrt ( 4•9) 

II MU is 2 x 1 

matrix SIGMA = ( 4 ,  sig12 \ s ig12, 9) II SIGMA is 2 x 2 

dra�norm y1 y 2 ,  means(MU) cov(SIGMA) 
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summarize y1 y2 
Variable Dbs Mean Std. Dev.  Min Max 

y1 1000 1 0 . 08618 2 . 082605 3 . 108118 1 6 . 49892 
y2 1000 20 .20292 2 . 999583 10 . 12452 29. 79675 

correlate yl y2 
(obs=1000) 

y 1  y2 

y1 1 . 0000 
y2 0 . 5553 1 . 0000 

The sample means are close to 10 and 20, and the standard deviations are close to 
J4 = 2 and /9 = 3. The sample correlation of 0.5553 differs somewhat from 0.50,  
though this difference disappears for much larger sample sizes. 

Transformation using Cholesky decomposition 

The method uses the result that if z ""' N(O, I) then x = J-L + Lz ""' N(p,, LL' ) . It is easy 
to draw z c' N(O, I) because z is just a column vector of univariate normal draws. The 
transformation method to make draws of x "' N(p,, 2::) evaluates x = J-L + Lz, where 
the matrix L satisfies LL' = 2::. More than one matrix L satisfies LL' = 2::, the matri..'< 
analog of the square root of 2::. Standard practice is to use the Cholesky decomposition 
that restricts L to be a lower triangular matrix. Specifically, for the trivariate normal 
distribution, let E(zz') = 2:: = Lzz'L', where z "' N  ( O ,I3) d.nd 

L = [ ��� l�2 � ] 
131 132 133 

Then the following transformations of z' = (z1 z2 z3) yield the desired multivariate 
normal vector x ""'  N(p,, 2:: ) :  

x1 = IJ.J + luz1 
X2 = /.l2 + I21 Z1 + b2z2 
X3 = /t3 + I31Z1 + h2z2 + l33Z3 

4 .4 .6 Draws using Markov chain Monte Carlo method 

In some cases, making direct draws from a target joint (multivariate) distribution is 
difficult , so the objective must be achieved in a different way. However, if it is also 
possible to make draws from the distribution of a subset, conditional on the rest, then 
one can create a Markov chain of draws. If one recursively makes draws from the con­
ditional distribution and if a sufficiently long chain is constructed, then the distribution 
of the draws will, under some conditions, converge to the distribution of independent 
draws from the stationary joint distribution. This so-called Markov chain Monte Carlo 
method is now standard in modern Bayesian inference. 
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To be concrete, let Y = (Y1 ,  Y2) have a bivariate density of  f(Y) = f(Y1, Y2) ,  and 
suppose the two conditional densities f(Y1 JY2) and f(Y2 I Y1)  are known and that it is 
possible to make draws from these. Then it can be shown that alternating sequential 
draws from j(Y1 I Y2) and j(Y2 IY1)  converge in the limit to draws from f(Y1 ,  Y2), even 
though in general f(Y1, Y2) f. f(Y1 J Y2)j(Y2 JY1 )  (recall that f(Y1 ,  Y2) = J(Y1 I Y2)J(Y2) ) . 
The repeated recursive sampling from f(Yt l Y2) and f(Y2 JY1 )  is called the Gibbs sampler. 

We illustrate the Markov · chain lVIonte Carlo approach by making draws from a 
bivariate normal distribution, f(Y1 ,  Y2) .  Of course, using the drawnorm command, it is 
quite straightforward to draw samples from the bivariate normal. So the application 
presented is illustrative rather than practical. The relative simplicity of this method 
comes from the fact that the conditional distributions f(Y1 J Y2)  and f(Y2 JY1 )  derived 
from a bivariate normal are also normal. 

vYe draw bivariate normal data with means of 0, variances of 1 ,  and a correlation of 
p = 0.9. Then Yi iY2 � N {0, ( 1 - p2 ) }  and Y2IY1 � N {0 ,  (1 - p2) } .  Implementation 
requires looping that is much easier using matrix programming language commands. 
The following Mata code implements this algorithm by using commands explained in 
appendix B.2. 

• MCMC example: Gibbs for bivariate normal mu's=O v's=1 corr=rho=0 .9  
set  seed 10101 
clear all 
set obs 1000 

obs Yas 0 ,  noY 1000 
. generate double y1 = .  

(1000 missing values generated) 

. generate double y2 = .  
(1000 missing values generated) 

mat a :  
-------------------- mata (type end to exit) -­

sO = 10000 

s1 = 1000 
y1 = J(sO+s1 , 1 , 0 )  
y2 = J (sO+s1 , 1 , 0) 

II Burn-in for the Gibbs sampler (to be discarded) 

II Actual draYs used from the Gibbs sampler 

II Initialize y1 
II Initialize y2 

rho = 0. 90 II Correlation parameter 
for(i=2;  i<=sO+ s 1 ;  i++) { 

> y 1 [i , 1] ( (1 -rho-2) -o . 5 ) • (rnormal( 1 ,  1 ,  0 ,  1 ) )  + rho•y2 [i-1 , 1] 
> y 2 [ i , 1 ]  = ( ( 1 -rho-2) -0 . 5 ) • (rnormal(1 , 1 ,  0 ,  1 ) )  + rho•y1 [ i ,1 ]  
> } 

y = y 1 , y2 
y = y [ l (s0+1) , 1  \ (sO+s 1 ) , .  I ]  I I  Drop the burn-ins 
mean (y) II Means of y 1 ,  y2 

2 

1 1 . 0831308345 . 0647158328 
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variance (y) 
[symmetric] 

1 . 104291499 
1 . 005053494 

2 

1 . 1087737 41 ; I �------------------� 

correlation(y) 
[symmetric] 

2 

21 l--------�----------� . . 9082927488 

end 

Chapter 4 Simulation 

II Variance matrix of y 1 ,  y2 

II Correlation matrix of y 1 ,  y2 

Many draws may be needed before the chain converges. Here we assume that 11,000 
draws are sufficient, and we discard the first 10,000 draws; the remaining 1,000 draws 
are kept. In a real application, one should run careful checks to ensure that the chain 
has indeed converged to the desired bivariate normal. For the example here, the sample 
means of Y1 and Y2 are 0.08 and 0.06, differing quite a bit from 0. Similarly, the sample 
variances of 1.10 and 1 . 11  differ from 1 and the sample covariance of 1.01 differs from 
0 .9, while the implied correlation is 0.91 as desired. A longer Markov chain or longer 
burn-in may be needed to generate numbers with desired properties for this example 
with relatively high p. 

Even given convergence of the Markov chain, the sequential draws of any random 
variable will be correlated. The output below shows that for the example here, the 
first-order correlation of sequential draws of Y2 is 0.823. 

mat a: 
-------------------- mata (type end to exit) ----

y2 = y [ 1 2 '  2 ' s 1 ' 2 1 ]  

y2lag1 = y [ l 1 , 2  \ (s1-1) , 2 1 ]  
y2andlag1 = y 2 , y2lag1 
correlation(y2andlag1 , 1 )  

[symmetric] 
2 

� I �----------� 
.822692407 

end 

4.5 Computing integrals 

I I Correlation bet1.1een y 2  and y 2  lag 1 

Some estimation problems may involve definite or indefinite integrals. In such cases, 
the integral may be numerically calculated. 
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4.5.1 Quadrature 

For one-dimensional :Utegrals of the form J: f(y)dy, where possibly a =  -oa, b = oa, or 
both, Gaussian quadrature is the standard method. This approximates the integral by 
a weighted sum of m terms, where a larger m gives a better approximation and often 
even m = 20 can give a good approximation. The formulas for the weights are quite 
complicated but are given in standard numerical analysis books. 

One-dimensional integrals often appear in regression models with a random intercept 
or random effect. In many nonlinear models, this random effect does not integrate 
out analytically. Most often, the random effect is normal so that integration is over 
( -oa, oa) and Gauss-Hermite quadrature is used. A leading example is the random­
effects estimator for nonlinear panel models fitted using various xt commands. For 
Stata code,. see, for example, the user-written command rfprobi t .  do for a random· 
effects probit package or fi le glla=. ado for generalized linear ad_ditive models. 

4.5.2 Monte Carlo integration 

Suppose the integral is of the form 

E {h(Y)} = 1b h(y)g(y)dy 

where g(y) is a density function. This can be estimated by the direct Monte Carlo 
integral estimate 

where y1 , . . . , y5 are S independent pseudorandom numbers from the density g(y ), ob­
tained by using methods. described earlier. This method works if E {h(Y)} exists and 
S -+  oa. 

This method can be applied to both defi11ite and indefinite integrals. It has the added 
advantage of being immediately applicable to multidimensional integrals, provided we 
can draw from the-appropriate multivariate distribution. It has the disadvantage that 
it will always provide an estimate, even if the integral does not exist. For example, to 
obtain E(Y) for the Cauchy distribution, we could average S draws from the Cauchy. 
But this would be wrong because the mean of the Cauchy does not exist. 

As an example, we consider the computation of E[eJ-.:p{- exp (Y) }] when y � N (0, 1 ) .  
This is the integral: 

E [exp {- exp(Y)}] = � exp {- exp(y) } exp ( -y-/2) dy 
!00 1 ., 

-oo v 27r · 

It has no closed-form solution but can be proved to exist. We use the estimate 
� 

· 

1 '""'s E [exp {- exp(Y) }] = S L...-,71 exp {- exp(y" ) }  

where y" is the sth draw of S draws from the N(O, 1 )  distribution. 
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This approximation task can be accomplished for a specified value of S, say, 100, by 
using the following code. 

• Integral evaluation by Monte Carlo simulation Yith S=100 
clear all 
quietly set obs 100 
set seed 10101 

generate double y � invnormal (runiform ( ) )  
generate double gy � exp(-exp ( y ) )  

quietly summarize g y ,  meanonly 
scalar Egy � r (mean) 
display "After 100 draYs the MC estimate of E [exp ( -exp (x) ) ]  is " Egy 

After 100 draYs the MC estimate of E[exp(-exp(x) ) )  is .3524417 

The Monte Carlo estimate of the integral is 0.352, based on 100 draws. 

4.5.3 Monte Carlo integration using different S 

It is not known in advance what value of S will yield a good Monte Carlo approximation 
to the integral. We can compare the outcome for several different values of S (including 
S = 100), stopping when the estimates stabilize. 

To investigate this, we replace the preceding code by a Stata program that has as 
an arg1.1ment S, the number of simulations. The program can then be called and run 
several times with different values of S. 

The program is named mcin tegra tion. The number of simulations is  passed to  the 
program as a named positional argument, numsims. This variable is a local variable 
within the program that needs to be referenced using quotes. The call to the program 
needs to include a value for numsims. Appendix A.2 provides the details on writing a 
Stata prog-ram. The program is r-class and returns results for a single scalar, E{g (y )} , 
where g (y ) = exp { - exp (y)} . 

• Program mcintegration to compute Eg(y) numsims times 
program mcintegration, rclass 
1 .  version : 0 . 1  
2 .  args numsims // Call to program Yill include value for numsims 
3 .  drop _all 
4 .  quietly set obs "numsims 
5 .  set seed 10101 
6 .  generate double y � rnormal(O) 
7 .  generate double gy � exp(-exp (y) )  
8 .  quietly summarize gy ,  meanonly 
9 .  scalar Egy � r(mean) 

10.  display "#simulations: " /.9.0g "numsims · /// 
> " MC estimate of E [exp(-exp(x) ) )  is " Egy 

1 1 .  end 

The prog-ram is then run several times, for S = 10, 100, 1000, 10000, and 100000. 
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. * Run program mc integration S � 1 0 ,  100,  . . . .  , 100000 times 
. mcintegration 10 
#simulations : 10 MC estimate of E [exp-exp (x)] is . 30979214 

mcintegration 100 
#simulations : 100 MC estjma te of E [exp-exp Co:ll  is .3714466 
. mcintegration 1000 
#simulations : 1000 MC estimate of E[exp-exp (x)]  is . 38146534 

mcintegration 10000 
#simulations : 10000 MC estimate of E [exp-exp (x) ] is . 38081373 

mcint·egration 100000 
#simulations : 100000 MC estimate of E [exp-exp (x)] is . 38231031 

13.5 

The estimates of E{g(y)} stabilize a� S ->  oo, but even with S = 105 , the estimate 
changes in the third decimal place. 

4.6 Simulation for regression: Introduction 

The simplest use of simulation methods is to generate a single dataset and estimate the 
DGP parameter 8. Under some assumptions, if the estimated parameter 0 differs from 
(} for a large sample size, the estimator is probably inconsistent. We defer an example 
of this simpler simu;ation to section 4.6.4. 

1-'Iore often, (} is estimated from each of S generated datasets, and the e�timates 
are t:>loretl and ::;ummarized to learn about the distribution of 0 for a given DGP. For 
example, this approach is necessary if one wants to check the validity of a standard 
error estimator or the finite-sample size of a test. This approach requires the ability to 
perform the same analysis S times and to store the results from each simulation. The 
simplest approach is to write a Stata program for the analysis of one simulation and 
then use simulate to run this program many times. 

4.6.1 Simulation example: OLS with x2 errors 

In this section, we use simulation methods to investigate the finite-sample properties 
of the OLS estimator with random regressors and skewed errors. If the errors are i . i .d. ,  
the fact that they are skewed has no effect on the large-sample properties of the OLS 
estimator. However, when the errors are skewed, we will need a larger sample size for the 
asymptotic distribution to better approximate the finite-sample distribution of the OLS 
estimator than when the errors are normal. This example also highlights an important 
modeling decision: when y is skewed, we sometimes choose to model E(lny [x) instead of 
E(y[x) because we believe the disturbances enter multiplicatively instead of additively. 
This choice is driven by the multiplicative way the error affects the outcome and is 
independent of the functional form of its distribution. As illustrated in this simulation, 
the asymptotic theory for the OLS estimator works well when the errors are i.i.d. from 
a skewed distribution. 
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We consider the following DGP: 

where {31 = 1, {32 = 2, and the sample size N = 150. For this DGP, the error u is 
independent of the regressor x (ensuring consistency of OLS) and has a mean of 0, 
variance of 2,  skewness of JS, and kurtosis of 15.  By contrast, a normal error has a 
skewness of 0 and a kurtosis of 3. 

We wish to perform 1,000 simulations, where in each simulation we obtain parameter 
estimates, standard errors, t-values for the t test of H0 : {32 = 2, and the outcome of a 
two-sided test of H0 at level 0.05. 

Two of the most frequently changed parameters in a simulation study are the sample 
size and the number of simulations. For this reason, these two parameters are almost 
always stored in something that can easily be changed. We use global macros. In the 
output below, we store the number of observations in the global macro numobs and the 
number of repetitions in the global macro numsims. We use these global macros in the 
examples in this section. 

• defining global macros for sample size and number of simulations 
global numobs 150 II sample size N 
global numsims "1000" II number of simulations 

We first write the chi2da ta program, which generates data on y, performs OLS, and 
returns lJ2 , s13� , t2 = (/h - 2)/ s13, , a rejection indicator 7"2 = 1 if lt2 l  > to.o2s (148) ,  and 
the p-value for the two-sided t test. The chi2da ta program is an r-class program, so 
these results are returned in r ( ) using the return command. 

• Program for finite-sample properties of OLS 
program chi2data ,  rclass 
1 .  version 1 0 . 1  
2 .  drop _all 
3 .  set obs $numobs 
4 .  
5 .  
6 .  
7 .  
8 .  
9 .  

10 .  
1 1 .  
1 2 .  end 

generate double x = rchi2(1 )  
generate y = 1 + 2•x + rchi2 ( 1 ) - 1  I I  demeaned chi-2 error 
regress y x 
return scalar b2 =_b [x] 
return scalar sc2 = _se [x] 
return scalar t2 = (_b[x]-2)l_se [x] 
return scalar r2 = abs(return(t2))> invttail($numobs-2 , .  025) 
return scalar p2 = 2•ttail ($numobs-2 ,abs (rcturn(t 2 ) ) )  

Instead o f  computing the t statistic and p-value by hand, we could have used test, 
which would have computed an F statistic with the same p-value. We perform the 
computations manually for pedagogical purposes. The following output illustrates that 
test and the manual calculations yield the same p-value. 

set seed 10101 

quietly chi2data 
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. return list 
scalars: 

r(p2) 
r (r2) 
r(t2) 

r(se2) 
r (b2) 

. quietly test x=2 

. return .list 
scalars: 

r(drop) 
r(df_r) 

r (F) 
r (df) 

r(p) 

. 0419507319188174 
1 .  
2 . 0 51809742705663 
.0774765767688598 
2 . 15896719504583 

0 
148 
4 . 2 09923220261881 

.0419507319188174 
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Below we use simulate to call chi2da ta $numsims times anci to store the results; 
here $numsims = 1000. The current dataset is replaced by one with the results from 
each simulation. These results can be displayed by using summarize, where obs in the 
output refers to the number of simulations and not the sample size in each simulation. 
The summarize outpc.t indicates that 1) the mean of the point estimates is very close 
to the true value of 2, 2) the standard deviation of the point estimates is close to the 
mean of the standard errors, and 3) the rejection rate of 0.046 is very close to the size 
of 0.05 . 

. • Simulation for finite-sample properties of OLS 

. simulate b2f=r(b2) se2f=r(se2) t2f=r(t2) reject2f=r(r2) p2f=r(p2) , 
> reps($numsims) saving(chi2datares,  replace) nolegend nodots: chi2data 

summarize b2f se2f rej ect2f 
Variable _ Obs Mean Std. Dev. Min Max 

b2f 
se2f 

reject2f 

.1000 
1000 
1000 

2 . 000502 
.0839736 

. 046 

. 0842622 1 . 719513 

.0 172607 . 0415919 

.2095899 0 

2 . 40565 
. 145264 

Below we use mean to obtain 95% confidence intervals for the simulation averages. 
The results for b2f and the rejection rate indicate that there is no significant bias and 
that the asymptotic distribution approximated the finite-sample distribution well for 
this DGP with samples of size 150. The confi.dence interval for the standard errors 
includes the sample standard deviation for b2f ,  which is another indication that the 
large-sample theory provides a good approximation to the finite-sample distribution. 

. mean b2f se2f reject2f 
Mean estimation Number of obs 1000 

b2f 
se2f 

reject2f 

Mean Std. Err. 

2 . 000502 . 0026646 
. 0839736 . 0005458 

. 04 6  .00 66278 

[95/. Conf . Interval) 

1 . 995273 
. 08;29025 

. 032994 

2. 005731 
. 0850448 

.059006 
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Further information on the distribution of the results can be obtained by using the 
summarize, detail and kdensi ty commands. 

4.6.2 Interpreting simulation output 

We consider in turn unbiasedness of {32 , correctness of the standard-error formula for 
sPz , distribution of the t statistic, and test size. 

Unbiasedness of estimator 

The average of 132 over the 1,000 estimates, 132 = (1/1000) I::�2 13" is the simulation 
estimate of E(132). Here 132 = 2 .001 (see the mean of b2f ) is very close to the DGP 
value {32 = 2.0, suggesting that the estimator is unbiased. However, this comparison 
should account for simulation error. F'rom the mean command, the simulation yields a 
95% confidence interval for E(132) of [1.995, 2.006]. This interval is quite narrow and 
includes 2.0 , so we conclude that E(132 ) is unbiased. 

Many estimators, particularly nonlinear estimators, are biased in finite samples. 
Then exercises such as this can be used to estimate the magnitude of the bias in typical 
sample sizes. If the estimator is consistent, then any bias should disappear as the sample 
size N goes to infinity. 

Standard errors 

The variance of 1J2 over the 1,000 estimates, s: (1/999) I;��1° (13. - /h)2 ,  is the liz 
simulation estimate of D"�- = Var(132) ,  the variance of 132 . Similarly, s _  = 0.084 (see the 

� � 

standard deviation of b2f ) is the simulation estimate of apz · Here se(132 ) = 0.084 (see 
the mean of se2f ) and the 95% confidence interval for se(132) is [0.083, 0.085]. Since this 
interval includes s .  = 0.084, there is no evidence that se({h) is biased for O";,_ ,  which 

� � 
means that the asymptotic distribution is approximating the finite-sample distribution 
well. 

In general, that {se(132 ) fl is unbiased for D"�z does not imply that upon taking the 
square root se(132) is unbiased for D"iJo . 

t statistic 

Because we impose looser restrictions on the DGP, t statistics are not exactly t dis­
tributed and z statistics are not exactly z distributed. However, the extent to which 
they diverge from the reference distribution disappears as the sample size increases. 
The output below generates the graph in figure 4.4, which compares the density of the 
t statistics with the t( 148) distribution. 
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kdensity t2f ,  n(1 000) gen(t2_x t2_d) nograph 
generate double t2_d2 = tden (148, t2_x) 

graph tYoYaY (line t2_d t2_x) (line t2_d2 t2_x) 

": · 

"! ·  

a 2 r(l2) 
1 -- donsly: r(l2) -- 12_o2 1 

4 

Figure 4.4. t statistic density against asymptotic distribution 
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Although the graph highlights some differences between the finite-sample and the asymp­
totic distributions, the divergence between the two does not appear to be great. Rather 
than focus on the distribution of the t statistics, we instead focus on the size of tests or 
coverage of confidence intervals based on these statistics. 

Test size 

The size of the test is the probability of rejecting H 0 when H 0 is true. Because the 
DGP sets (32 = 2, we consider a two-sided test of H o: (32 = 2 against Ha : (32 =I 2. The 
level or nominal size of the test is set to 0.05, and the t test is used. The proportion 
of simulations that lead to a rej�ction of H 0 is known as the rejection rate, and this 
proportion is the sirriulation estimate of the true test size. Here the estimated rejection 
rate is 0.046 (see the mean of reject2f) .  The associated 95% confidence interval (from 
mean reject2f) is [0.033, 0.059] , which is quite wide but includes 0.05. The width 
of this confidence interval is partially a result of having run only 1,000 repetitions, 
and partially an indication that, with 150 observations, the true size of the test can 
differ from the nominal size. When this simulation is rerun with 10,000 repetitions, the 
estimated rejection rate is 0.049 and the confidence interval is [0.044, 0.052]. 

The simulation results also include the variable p2f, which stores the p-values of 
each test. If the t(148) distribution is the correct distribution for the t test, then p2f 
should be uniformly distributed on (0 , 1 ) .  A histogram, not shown, reveals this to be 
the case. 
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More simulations are needed to accurately measure test size (and power) than are 
needed for bias and standard-error calculations. For a test with estimated size a based on 
S simulations, a 95% confidence interval for the true size is a ±  1 .96 x J a(l - a)/ S. For 
example, if a =  0.06 and S = 10,000 then the 95% confidence interval is [0.055, 0.065] .  
A more detailed Monte Carlo experiment for test size and power is given in section 12.6. 

Number of simulations 

Ideally, 10,000 simulations or more would be run in reported results, but this can be 
computationally expensive. vVith only 1,000 simulations, there can be considerable 
simulation noise, especially for estimates of test size (and power) .  

4.6.3 Variations 

The preceding code is easily adapted to other problems of interest. 

Different sample size and number of simulations 

Sample size can be changed by changing the global macro numobs. Many simulation 
studies focus on finite-sample deviations from asymptotic theory. For some estimators, 
most notably IV with weak instruments, such deviations can occur even with samples 
of many thousands of observations. 

Changing the global macro numsims can increase the number of simulations to yield 
more-precise simulation results. 

Test power 

The power of a test is the probability that it rejects a false null hypothesis. To simulate 
the power of a test, we estimate the rejection rate for a test against a false null hypoth­
esis. The larger the difference between the tested value and the true value, the greater 
the power and the rejection rate. The example below modifies chi2data to estimate 
the power of a test against the false null hypothesis that (32 = 2 . 1 .  

• Program f o r  finite-sample properties o f  OLS: 
program chi2datab , rclass 
1 .  version 10 . 1 
2 .  drop _all 
3 .  set obs $numobs 
4 .  generate double x = rchi 2(1)  

fixed regressors 

5. generate y = 1 + 2•x + rchi2(1 )-1  II demeaned chi -2 error 
6 .  
7 .  
8 .  
9 .  

10 .  
1 1 .  end 

regress y x 
return scalar b2 =_b[x] 
return scalar se2 =_se [x] 
test x�2 . 1  
return scalar r2 = (r (p )< .05)  
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Below we use simulate to run the simulation 1 , 0 00  times, and then we summarize the 
results. 

• PoYer simulation for finite-sample properties of OLS 
simulate b2f=r(b2) se2f=r(se2) reject2f=r (r2) , reps.(Snumsims) 

> saving(chi2databres ,  replace) nolegend nodots :  chi2datab 

. mean b2f se2f reject2f 
Mean estimation Number of obs 1000 

Mean Std . Err. [95/. Conf. Interval] 

b2f 2 . 001816 . 0026958 1 . 996526 2 . 007106 
se2f . 0836454 . 0005591 . 0825483 . 0847426 

reject2f .241  . 0135315 . 2 144465 . 2675535 

The sample mean of reject2f provides an estimate of the power. The estimated power 
is 0.241, which is not high. Increasing the sample size or the distance between the tested 
value and the true value will increase the power of the test. 

A useful way to incorporate power estimation is to define the hypothesized value of 
{32 to be an argumer:t of the progTam chi2datab. This is demonstrated in the more 
detailed l\Ionte Carlo experiment in section 12.6 . 

Different error distributions 

We can investigate the effect of using other error distributions by changing the dis­
tribution used in chi2da ta. For linear regression, the t statistic becomes closer to t 
distributed as the error distribution becomes closer to i . i .d. normal. For nonlinear mod­
els, the exact finite-sample distribution of estimator:; and test statistics is unknown even 
if the errors are i . i .d. normal. 

The example in section 4.6.2 used different draws of both regTessors and errors in 
each simulation. This corresponds to simple random sampling where we jointly sample 
the pair (y , x ) , especially relevant to survey data where individuals are sampled, and 
we use data (y ,x ) for the sampled individuals. An alternative approach is that of fixed 
regTessors in repeated trials, especially relevant to designed experiments. Then we draw 
a sample of x only once, and we use the same sample of x in each simulation while 
redrawing only the error u (and hence y). In that case, we create fixedx .dta, which 
has 150 observations on a variable, x, that is drawn from the x2(1) distribution, and 
we replace lines 2-4 of chi2data by typing use fixedx , clear. 

4.6.4 Estimator inconsistency 

Establishing estimator inconsistency requires less coding because we need to generate 
data and obtain estimates only once, with a large N, and then compare the estimates 
with the DGP values. 
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We do so for a classical errors-in-variables model of measurement error. Not only is 
it known that the OLS estimator is inconsistent, but in this case, the magnitude of the 
inconsistency is also known, so we have a benchmark for comparison. 

The DGP considered is 

y = (Jx* + u; x* � N(0 , 9 ) ;  u "' N(0 , 1 )  

x = x•  + v ;  v ,-.., N(O, 1) 

OLS regression of y on x* consistently estimates (3. However, only data on x rather 
than x• are available, so we instead obtain /3 from an OLS regression of y on x. It 
is a well-known result that then 7J is inconsistent, with a downward bias, s(J, where 
s = cr.�/(cr; + a·;. ) is the noise-signal ratio. For the DGP under consideration, this ratio 
is 1 / (1 + 9) = 0 .1 ,  :;o plim 'iJ = (3 - s(J = 1 - 0. 1  x 1 = 0.9. 

The following simulation checks this theoretical prediction, with sample size set to 
10, 000. We use drawnorm to jointly draw (x* ,  u, v), though we could have more simply 
made three separate standard normal draws. We set (3 = 1 .  

• Inconsistency o f  OLS �n errors-in-variables model (measurement error) 
clear 

quietly set obs 10000 
set seed 10101 
matrix mu � ( 0 , 0 , 0) 
matrix sigmasq � ( 9 , 0 ,0\0 , 1 , 0\0 , 0 , 1) 
dra�norm xstar u v ,  means(mu) cov(sigmasq) 

generate y � 1•xstar + u // DGP for y depends on xstar 
generate x � xstar + v // x is mismeasured xstar 

regress y x, noconstant 

Source ss df MS 

Model 31730 . 3312 81730.3312 
Residual 19127.893 9999 1 .  9 129806 

Total 100858. 224 10000 10 . 0858224 

y I Coef . Std. Err. t P> l t l  

X I . 9001733 . 004355 206.70 0 .  000 

Number of obs � 10000 
F(  1 ,  9999) �42724 .08 
Prob > F 0 . 0000 
R-squared 0 . 8103 
Adj R-squared � 0 . 8103 
Root MSE 1. 3831 

[95% Conf. Interval) 

.8916366 . 90871 

The OLS estimate is very precisely estimated, given the large sample size. The estimate 
of 0.9002 clearly differs from the DGP value of 1 .0 ,  so OLS is inconsistent. Furthermore, 
the simulation estimate essentially equals the theoretical value of 0.9. 

4.6.5 Simulation with endogenous regressors 

Endogeneity is one of the most frequent causes of estimator inconsistency. A simple 
method to generate an endogenous regressor is to first generate the error u and then 
generate the regressor x to be the sum of a multiple of u and an independent component. 



4.6.5 Simulation with endogenous regressors 

We adapt the previous DGP as follows: 

y = fJ1 + fJ2x + u; U "-' N(0, 1) ; 
x = z + 0 .5u; z ,...., N(O, 1) 
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We set fJ1 = 10 and fJ2 = 2. For this DGP, the correlation between x and u equals 0.5 . 
We let N = 150. 

The following program generates the data: 

• Endogenous regre�sor 
clear 

set seed 10101 
program endogreg, rclass 
1 .  version 1 0  . 1  
2 .  drop _a:.l 
3 .  set obs $numobs 
4 .  generate u = rnorma l(O) 

6 .  
7 .  

5 .  generate x = 0 . 5•u + rnorma l(O)  
generate y = 10 + 2•x + u 
regress y x 

8 .  
9 .  

return scalar b2 =_b [x] 
return scalar se2 = _se [x] 

II endogenous regressors 

10 .  return scalar t2 = (_b[x]-2)1_se [x] 
1 1 .  
12 .  
13 .  end 

return scalar r 2  = abs (return (t2)) >invttail ($numobs-2 , . 025) 
return scalar p2 = 2•ttail($numobs-2, abs (return(t2) ) )  

Below we run the simulations and summarize the results . 

. simulate b2r=r(b2) se2r=r(se2) t2r=r(t2) reject2r=r(r2) p2r=r (p2) , 
> reps($numsims) nolegend nodots : endogreg 

. mean b2r se2r reject2r 

Mean estimation Number of obs 1000 

Mean Std. Err. 

b2r - 2 .  399301 
se2r . 0658053 

reject2r 

.0020709 

.0001684 
0 

[95/. Conf. Interval] 

2 . 395237 
. 0654747 

2 . 403365 
. 0661358 

The results from these 1,000 repetitions indicate that for N = 150, the OLS estimator 
is biased by about 20%, the standard error is about 32 times too small, and we always 
reject the true null hypothesis that /32 = 2. 

By setting N large, we could also show that the OLS estimator is inconsistent with a 
single repetition. As a variation, we could instead estimate by IV, with z an instrument 
for x, and verify that the IV estimator is consiste�?-t· 
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4. 7 Stata resources 

The key reference for random-number functions is help functions. This covers most of 
the generators illustrated in this chapter and several other standard ones that have not 
been used. Note, however, that the rnbinomial (k ,p) function for making draws from 
the negative binomial distribution has a different parameterization from that used in this 
book. The key Stata commands for simulation are [Rj simulate and [P] postfile. The 
simulate command requires first collecting commands into a program; see [P] program. 

A standard book that presents algorithms for random-number generation is Press et 
al. (1992) .  Cameron and Trivedi (200,5) discuss random-number generation and present 
a Monte Carlo study; see also chapter 12 .7 . 

4.8 Exercises 

1. Using the normal generator, generate a random draw from a 50-50 scale mixture 
of N(l ,  1) and N ( 1 , 32) distributions. Repeat the exercise with the N(l,  32) com­
ponent replaced by N (3 ,  1 ) .  For both cases, display the features of the generated 
data by using a kernel density plot. 

2. Generate 1,000 observations from the F(5, 10) distribution. Use rchi20 to obtain 
draws from the x:2(5) and the x:2(10) distributions. Compare the sample moments 
with their theoretical count�rparts. 

3. Make 1,000 draws from the N(6, 22) distribution by making a transformation of 
draws from N(O, 1) and then making the transforma';ion Y = J1. + aZ. 

4. Generate 1,000 draws from the t(6) distribution, which has a mean of 0 and a 
variance of 4. Compare your results with those from exercise 3. 

5 .  Generate a large sample from the N(p. = l , a2 = 1 )  distribution and estimate 
a/Jl., the coefficient of variation. Verify that the sample estimate is a consistent 
estimate. 

6. Generate a draw from a multivariate normal distribution, N(J.L, :E = LL') ,  with 
f.L1 = [0 0 OJ and 

� � l , or 
:E 

= [ � � � l V3 v'6  0 3 9  

using transformations based on this Cholesky decomposition. Compare your re­
sults with those based on using the drawnorm command. 

7. Let s denote the sample estimate of a and x denote the sample estimate of p.. The 
coefficient of variation ( cv) a//.!, which is the ratio of the standard deviation to 
the mean, is a dimensionless measure of dispersion. The asymptotic distribution 
of the sample cv sjx is N[ajp,, (N - 2)-112 (a/Jl. f {0 .5 + (a/p,)2}] ;  see Miller 
( 1991) .  For N = 25 .. using either simulate or postfile, compare the Monte 
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Carlo and asymptotic variance of the sample cv with the following specification 
of the DGP: x "' N(J.L, cr2) with three different values of cv = 0 . 1 ,  0.33, and 0.67. 

8. It is suspected that making draws from the truncated normal using the method 
given in section 4.4.4 may not work well when sampling from the extreme tails of 
the normal. Using different truncation points, check this suggestion. 

9. Repeat the example of section 4.6.1 ( OLS with x2 errors) ,  now using the postfile 
command. Use postfile to save the estimated slope coefficient, standard error, 
the t statistic for H0: (3 = 2, and an indicator for whether H 0 is rejected at 0.05 
level in a Stata file named simresul ts. The template program is as follows: 

• Postfile and post example: repeat OLS Yith chi-squared errors example 
clear 
set seed 10101 
program simbypost 

version 10 . 1  
tempname simfile 
postfile ' simfile"  b2 se2 t2 reject2 p2 using simresults, replace 
quietly { 

forvalues i = 1/$numsims { 
drop _all 

} 
} 

set obs $numobs 
generate x = rchi2(1)  
generate y = 1 + 2•x  + rchi2 (1 )  - 1 // demeaned chi -2 error 
regress y x 
scalar b2 �_b [x] 
sea lar se2 = _se [x] 
scalar t2 = (_b [x] -2)/_se [x] 
scalar reject2 = abs(t2) > invttail ($numobs-2 , . 025) 
scalar p2 = 2•ttail($numobs-2 ,abs(t2)) 
post 'simfile"  (b2) (se2) (t2)  (reject2) (p2) 

postclose ' simf ile"  
end 
simbypost 
use simresult s ,  clear 
summarize 





5 G lS regression 

5 .1  I ntroduction 

This chapter presents generalized least-squares (GLS) estimation in the linear regression 
model. 

GLS estimators are appropriate when one or more of the assumptions of homoskedas­
ticity and noncorrelation of regression errors fails. We presented in chapter 3 ordinary 
least-squares (OLS) estimation with inference based on, respectively, heteroskedasticity­
robust or cluster-robust standard errors. Now we go further and present GLS estimation 
based on a richer correctly specified model for the error. This is more efficient than OLS 
estimation, leading to smaller standard errors, narrower confidence intervals, and larger 
t statistics. 

Here we detail GLS for single-equation regression on cross-section data with het­
eroskedastic errors, ac.d for multiequation seemingly unrelated regressions (SUR), an ex­
ample of correlated errors. Other examples of GLS include the three-stage least-squares 
estimator for simultaneous-equations systems (section 6 .6) ,  the random-effects estimator 
for panel data (section 8.7), and systems of nonlinear equations (section 15 .10.2) .  

This chapter conclud_es with a stand-alone presentation of  a quite distinct topic: 
survey estimation methods that explicitly control for the three complications of data 
from complex surveys-sampling that is weighted, clustered, and stratified. 

5.2 GLS and FGLS regress1on 

We provide an overview of theory for GLS and feasible GLS (FGLS) estimation. 

5.2.1 GLS for heteroskedastic errors 

A simple example is the single-equation linear regression model with heteroskedastic 
independent errors, where a specific model for heteroskedasticity is given. Specifically, 

y.; = X;f3 + u; ,  i = l , . . .  , N  
Ui = a(z;)c< 

(5 . 1 )  

where ci satisfies E(c;lxi, z.;) = 0 , E(c;ci lx;, z; , x� , zj) = 0, i =I j, and E(c?lx;, z;) = 1 .  
The function a(zi), called a skedasticity function, is a specified scalar-valued function 
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of the observable variables z.i. The special case of homoskedastic regression arises if 
a(z;) = a, a constant. The elements of the vectors z and x may or may not overlap. 

Under these assumptions, the errors u; in (.5.1 ) have zero mean and are uncorrelated 
but are heteroskedastic with variance o·2 (z;) .  Then OLS estimation of ( 5 . 1) yields con­
sistent estimates, but more-efficient estimation is possible if we instead estimate OLS 
by a transformed model that has homoskedastic errors. Transforming the model by 
multiplying by w.i = 1/o (z.,) yields the homoskedastic regTession { Y·i } { Xi }' 

� = � f3 + ci o(z.,) o (zi) (5 .2) 

because u;/o·(zi) = {a(zi)ci}/o(zi) = c;. and ci is homoskedastic. The GLS estimator 
is the OLS estimator of this transformed model. This regression can also be interpreted 
as a weighted linear regression of y; on X; with the weight Wi = 1/ o·(zi) assigned to the 
ith observation. In practice, a(z;) may depend on unknown parameters, leading to the 
feasible GLS estimator that uses the estimated weights a(z;) as explained below. 

5.2.2 GLS and FGLS 

More generally, we begin with the linear model in matrix notation: 

y = XJ3 + u  (5.3) 

:iy the Gauss-Markov theorem, the OLS estimator is efficient among linear unbiased 
estimators if the linear regression model errors are zero-mean independent and ho­
moskedastic. 

We suppose instead that E(uu'IX) = 0, where 0 'I o2I for a variety of reasons 
that may include heteroskedasticity or clustering. Then the efficient GLS estimator is 
obtained by OLS estimation of the transformed model 

o- l/2y = o-l/2xf3 + c 

where o-1/2oo-112' = I so that the transformed error e: = 0 -l/2u "' [0, I] is ho­
moskedastic. In the heteroskedastic case, 0 = Diag{a2(z, )} ,  so o-112 = Diag{1/o·(z.i) } .  

In practice, 0 is not known. Instead, we specify an error variance matrix model, 
0 = f!(-y), that depends on a finite-dimensional parameter vector "' and, possibly, 
data. Given a consistent estimate 9 of "/,  we form fi = D(,Y). Different situations 
correspond to different models for 0("1) and estimates of fi. The FGLS estimator is the 

� -1/2 � -1/2 . 

OLS estimator from the regression of 0 y on 0 X and equals 

,i3FGLS = (X'O- lXtlX'fi- \ 
Under the assumption that 0("1) is correctly specified, the variance-covariance matrL-x 

- - -1 
of the estimator (veE) of f3FcLs is (X'O X)-1 because it can be shown that estimating 
0 by fi makes no difference asymptotically. 
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5.2.3 Weighted least squares and robust standard errors 
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The FGLS estimator requires specification of a model, n(! ), for the error variance 
matrix.  Usually, it is clear what general complication is likely to be present. For 
example, heteroskedastic errors are likely with cross-section data, but it is not clear what 
specific model for that complication is appropriate. If the model for !1( "/) is misspecified, 
then FGLS is still consistent, though it is no longer efficient. More importantly, the usual 
VCE of .§FGLS will be incorrect. Instead, a robust estimator of the VCE should be used. 

We therefore distbguish between the true error variance matri..."\:, n = E(uu' IX) ,  
and the specified model for the error variance, denoted by z.; = z.; (-y). In  the statistics 
literature, especially that for generalized linear models, z.; ( 1) is called a working variance 
matrix. Form the estimate f; = z.;(;:y) ,  where ;:y is an estimate of 'Y· Then do FGLS with 

. � - 1  
the weighting matrix z.; , but obtain a robust estimate o f  the VCE. This estimator is 
called a weighted least-squares (WLS) estimator to indicate that we no longer maintain 
that z.; ('y) = n. 

Table 5.1 presents the lengthy formula for the estimated VCE of the WLS estimator, 
along with corresponding formulas for OLS and FGLS. Heterosked.asticity-robust stan­
dard errors can be obtained after OLS and after FGLS; see section 5.:3.5, which uses the 
vee (robust) option. The cluster-robust case is presented for panel data in chapter 8. 

Table 5 .1 .  Least-squares estimators and their asymptotic variance 

Estimator Definition 
OLS 73 = (X'X)-1 X'y 
FGLS 73 = (X'fi- 1X)- 1X'fi-1 y  
WLS 73 = (X'f:-1X) -1 X'f:-l y  

Estimated asymptotic variance 

(X'X)-1 X'fiX (X'X)-1 
(X'n-1 x) -1 

(X'f:-1X) - t  X'f: -1  fif:- 1X(X'f:-1X) - 1  

Note: All results are for a linear regression model whose errors have a conditional variance matrix 
n. For FGLS, it is assumed that 0 is consistent for n. For OLS and WLS, the heteroskedasticity­
robust VCE of jj uses 0 equal to a diagonal matrix with squared residuals on the diagonals. A 
cluster-robust VCE can also be used. 

5.2.4 Leading examples 

The GLS framework is relevant whenever n =I cr2I. We summarize several leading cases. 

Heteroskedastic errors have already been discussed at some length, and can arise in 
many different ways. In particular, they may reflect specification errors associated with 
the functional form of the model. Examples include neglected random or systematic 
parameter variation; incorrect functional form of the conditional mean; incorrect scaling 
of the variables in the regression; and incorrect 

·
distributional assumptions regarding 

the dependent variables. A proper treatment of t.he problem of heteroskedasticity may 
therefore require analysis of the functional form of the regression. For example, in 
chapter 3, a log-linear model was found to be more appropriate than a linear model. 
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For multivariate linear regression, such as the estima-vion of systems of equations, 
errors can be correlated across the equations for a specific individual. In this case, the 
model consists of m linear regression equations Y;j = x;jf3j + Uij, where the errors U·ij 
are correlated over j for a given i, but are uncorrelated over i. Then GLS estimation 
refers to efficient joint estimation of all m regressions. The three-stage least-squares 
estimator is an extension to the case of simultaneous-equations systems. 

Another common example is that of clustered (or grouped) errors, with errors being 
correlated within clusters but uncorrelated between clusters. A cluster consists of a 
group of observations that share some social, geographical, or economic trait that in­
duces within-cluster dependence between observations, even after controlling for sources 
of observable differences. Such dependence can also be induced by other latent factors 
such as shared social norms, habits, or influence of a common local environment. In 
this case, n can be partitioned by cluster. If all observations can be partitioned into 
C mutually exclusive and exhaustive groups, then n can be partitioned into C subma­
trices, with each submatrix having its own intracluster correlation. A leading example 
is the random-effects estimator for panel data, where clustering is on the individual 
with independence across individuals. Then algorithms exist to simplify the necessary 
inversion of the potentially very large N X N matrix n .  

5.3 Modeling heteroskedastic data 

Heteroskedastic errors are pervasive in microeconometrics. The failure of homoskedas­
ticity in the standard regTession model, introduced in chapter 3, leads to the OLS estima­
tor being inefficient, though it is still a consistent estimator. Given heteroskedastic er­
rors, there are two leading approaches. The first, taken in chapter 3, is to obtain robust 
estimates of the standard errors of regression coefficients without assumptions about 
the functional form of heteroskedasticity. Under this option, the form of heteroskedas­
ticity has no interest for the investigator who only wants to report correct standard 
errors, t statistics, and p-values. This approach is easily implemented in Stata, using 
the vce (robust) option. The second approach seeks to model the heteroskedasticity 
and to obtain more-efficient FGLS estimates. This enables more precise estimation of 
parameters and marginal effects and more precise prediction of the conditional mean. 

Unlike some other standard settings for FGLS, there is no direct Stata command for 
FGLS estimation given heteroskedastic errors. However, it is straightforward to obtain 
the FGLS estimator manually, as we now demonstrate. 

5 .3 . 1  Simulated dataset 

We use a simulated dataset, one where the conditional mean of y depends on regTes­
sors x2 and x3, while the conditional variance depends on only x2. The specific data­
generating process (DGP) is 



5.3.2 OLS estimation 

y = 1 + 1 X Xz + 1 X X3 + 'U; 

U = )exp(-1 + 0 .2 X x2 ) X t:; 

x2 , x3 "-' N(0, 25) 

c "'  N(O, 25) 
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Then the error u i s  heteroskedastic with a condi tiona! variance of  25 x exp( -1 +0.  2 x x2 ) 
that varies across observations according to the value taken by x2. 

We generate a sample of size 500 from this DGP: 

• Generated data for heteroskedasticity example 
set seed 10101 
quietly set obs 500 

generate double x2 � 5•rnormal (O) 
generate double x3 � 5•rnormal (O) 
generate double e 5•rnormal (0) 
generate double u sqrt (exp(-1+0 .2•x2) ) • e  
generate double y = 1 + 1•x2 + l •x3 + u 
summarize 

Variable Obs Mean Std, Dev.  

x2 500 - . 0357347 4 . 929534 
x3 500 . 08222 5 .  001709 

e 500 -. 04497 5 . 130303 
u 500 - . 1564096 3 . 80155 
y 500 .8900757 7 . 709741 

Min Max 

-17 . 05808 15 . 1011 
-14 . 89073 15 . 9748 
-12 . 57444 18 .65422 
-17.38211 1 6 . 09441 
-21 . 65168 28. 89449 

The generated normal variables x2, x3, and e have, approximately, means of 0 and 
standard deviations of 5 as expected. 

5.3.2 OLS estimation 

OLS regression with default stand::J.rd errors yields 

• OLS regression Yith default standard errors 
regress y x2 x3 

Source ss df MS 

Model 22566.6872 2 11283. 3436 
Residual 7093. 92492 497 14 . 2734908 

Total 29660.6122 499 5 9 . 4401046 

y Coef . Std. Err. t 

x2 . 9271964 . 0343585 26 .99 
x3 . 9384295 . 0338627 27.71  

cons .8460511 . 168987 5 . 0 1 

Number of obs 500 
F( 2 ,  497) 790 . 5 1  
Prob > F 0 . 0000 
R-squared 0 . 7608 
Adj R-squared � 0 . 7599 
Root MSE 3 .  778 

P> l t l  [95/. Conf . Interval] 

0 . 000 . 8596905 .9947023 
0 . 000 . 8718977 1 .  004961 
0 . 000 . 5140341 1 . 178068 



152 Chapter 5 GLS regression 

The coe!ficient estimates are close to their true values and just within or outside the 
upper limit of the 95% confidence intervals. The estimates are quite precise because 
there are 500 observations, and for this generated dataset, the R2 = 0 .76 is very high. 

The standard procedure is to obtain heteroskedasticity-robust standard errors for 
the same OLS estimators. vVe have 

. • OLS regression Yith heteroskedasticity-robust standard errors 

. regress y x2 x3, vce (robust) 

Linear regression Number of obs 
F( 2 ,  497) 
Prob > F 
R-squared 
Root MSE 

500 
652.33 
0 . 0000 
0. 7608 
3. 778 

y 
Robust 

Coef . Std. Err. t P> l t l  [95/. Conf. Interval] 

x2 
x3 

_cons 

. 9271964 . 0452823 

.9384295 . 0398793 

.8460511 . 170438 

20 .48  0 .  000 
23 .53  0 .000  

4 .96  0 . 000 

. 8382281 
. 8600767 
. 5 1 1 1833 

1 . 016165 
1. 016782 
1 . 180919 

In general, failure to control for heteroskedasticity leads to default standard errors being 
wrong, though a priori it is not known whether they will be too large or too smalL In 
our example, we e.."'\:pect the standard errors for thP. coefficient of x2 to be most effected 
because the heteroskedasticity depends on x2. This is indeed the case. For x2, the 
robust standard error is 30% higher than the incorrect default (0.045 versus 0.034) .  
The original failure to control for heteroskedasticity led to wrong standard errors, in  
this case, considerable understatement of the standard error of x2.  For x3 ,  there is less 
change in the standard error. 

5.3.3 Detecting heteroskedasticity 

A simple informal diagnostic procedure is to plot the absolute value of the fitted reg1'es­
sion residual, [u.; l ,  against a variable assumed to be in the skedasticity function. The 
regressors in the model are natural candidates. 

The following code produces separate plots of [u.; [ against X2;. and [u;l against x3;, 
and then combines these into one graph (shown in figure 5.1) by using the graph combine 
command; see section 2.6. Several options for the two way command are used to improve 
the legibility of the graph. 

• Heteroskedasticity diagnostic scatterplot 
quietly regress y x2 x3 

predict double uhat , resid 
generate double absu = abs(uhat) 

quietly tYOYay (scatter absu x2) (loYess absu x 2 ,  bY(0 .4)  lY(thick ) ) , 
> scale ( 1 . 2 )  x scale(titleg (•5 ) )  yscale(titleg (•5) )  
> plotr(style (none ) )  name (gls1) 



5.3.3 Detecting heteroskedasticity 

. quietly t1o101o1ay (scatter absu x3) (lo1o1ess absu x3. blo1(0.4) l1o1(thick) ) .  
> scale ( 1 . 2) xscale (titleg ( • 5 ) )  yscale(titleg ( • S))  
> plotr(style (non�) )  name(gls2) 
. graph combine glsl gls2 
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Figure 5 . 1 .  Absolute residuals gTaphed against x2 and x3 
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It is easy to see that t_he range of the scatterplot becomes wider as x2 increases, with 
a nonlinear relationship, and is unchanging as x3 increases. These observations are to 
be expected given the DGP. 

We can go beyond a visual representation of heteroskedasticity by formally testing 
the null hypothesis _ _  of homoskedasticity against the alternative that residual variances 
depend upon a) x2 only, b) x3 only, and c) x2 and x3 jointly. Given the previous plot 
(and our knowledge of the DGP), we expect the first test and the third test to reject 
homoskedasticity, while the second test should not reject homoskedasticity. 

These tests can be implemented using Stata's postestimation command estat 
hettest, introduced in section 3.5 .4 .  The simplest test is to use the mtest option, 
which performs multiple tests that separately test each component and then test all 
components. vVe have 

(Continued on next page) 
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. • Test heteroskedastici ty depending on x2,  x3, and x2 and x3 

. esta t hettest x2 x 3, m test 

Breusch-Pagan I Cook-Weisberg test for heteroskedazticity 
Ho: Constant variance 

Variable chi2 df p 

x2 1 8 0 . 80 0 . 0000 # 
x3 2 . 16 0 . 1413 # 

simultaneous 185.62 2 0 . 0000 

# unadjusted p-valucs 

The p-value for x2 is 0.000, causing us to reject the null hypothesis that the skedasticity 
function does not depend on x2. We conclude that there is heteroskedasticity due 
to x2 alone. In contrast, the p-value for x3 is 0 .1413, so we cannot reject the null 
hypothesis that the skedasticity function does not depend on x3. We conclude that there 
is no heteroskedasticity due to x3 alone. Similarly, the p-value of 0 .000 for the joint 
(simultaneous) hypothesis leads us to conclude that the skedasticity function depends 
on x2 and x3. 

The mtest option is especially convenient if there are many reg-ressors and, hence, 
many candidates for causing heteroskedasticity. It does, however, use the version of 
hettest that assumes that errors are normally distributed. To relax this assumption 
to one of independent and identically distributed errors, we need to use the iid option 
(see section 3 .5.4) and conduct separate tests. Doing this leads to test statistics (not 
reported) with values lower than those obtained above without iid ,  but leads to the 
same conclusion: the heteroskedasticity is due to x2. 

5.3.4 FGLS estimation 

For potential gains in efficiency, we can estimate the parameters of the model by using 
the two-step FGLS estimation method presented in section 5.2.2. For heteroskedasticity, 
this is easy: from (5 .2) ,  we need to 1) estimate O'f and 2) OLS regress y;/J; on xi/"ai ·  

At  the first step, we  estimate the linear regression by  OLS, save the residuals Ui = y-x'i3oLS • estimate the skedasticity function cr2 (z.i, I) by regressing u; on cr2 (z; , I) ,  and 
get the predicted values 0'2 (z i ,9) . Here our tests suggest that the skedasticity function 
should include only x2. We specify the skedasticity function cr2 (z) = exp(/1 + 12x2) , 

because taking the exponential ensures a positive variance. This is a nonlinear model 
that needs to be estimated by nonlinear least squares. We use the nl command, which 
is explained in section 10.3 .5.  

The first step of FGLS yields 

• FGLS: First step get estimate of skodasticity function 
quietly regress y x2 x3 II get bols 
predict double uhat , resid 
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generate doub:e uhatsq = uhat -2 II get squared residual 
generate doub�e one = 1 

nl (uhatsq = exp({xb: x2 one}) ) ,  nolog II NLS of uhatsq on exp(z'a) 
(obs = 500) 

Source ss df MS 
Number of obs = 

Model 188726 . 865 2 94363. 4324 R-squared 
Residua� 384195.497 498 771 . 476902 Adj R-squared = 

Root MSE 
Total 572922 .362 500 1145 .84472 Res . dev. = 

uhatsq Coef . Std. Err. t P> l t  I [95/. Con f. 

lxb_x2 . 1427541 . 0 128147 1 1 . 14 0 . 000 . 1 175766 
lxb_one 2 . 462675 ' 1 119496 22 .00  0 . 000 2 . 242723 

predict double varu, yhat II get sigmahat-2 

500 
0 . 3294 
0 . 3267 

27. 77547 
4741 .088 

Interval) 

. 1 679317 
2 . 682626 

Note that x2 explains a good deal of the heteroskedasticity (R2 = 0.33) and is highly 
statistically significant. For our DGP, a2 (z) = 25 x exp ( -1  + 0.2x2 ) = exp( ln25 - 1 + 
0.2x2) = exp(2.22 + 0.2x2) , and the estimates of 2.46 and 0 . 14  are close to these values. 

At the second step, the predictions &'2(z) define the weights that are used to obtain 
the FGLS estimator. Specifically, we regress Yi(Ci; on xJCi; where &''f = e:"<p('J1 + 72x2i ) · 
This weighting can b e  done automatically by using aweight in estimation. If the 
aweight variable is Wi, then OLS regression is of JW;.y; on .JW;.xi . Here we want 
the aweight variable to be 1/&''f, or 1/varu. Then 

. • FGLS : Second step get estimate of skedasticity function 
. regress y x2 x3 [aYeight=1lvaru) 
(sum of Ygt is 5 . 4993e+01) 

Source ss df MS Number of obs = 

F( 2 ,  497) 
Model 29055. 2584 2 14527.6292 Prob > F 

Residual 3818. 72634 497 7 . 68355401 R-squared 
Adj R -squared = 

Total .. . 32873 . 9847 499 65. 8797289 Root MSE 

500 
1890.74 
0 . 0000 
0 . 8838 
0 . 8834 
2 0 7719 

y Coef. Std. Err. t P> l t l  [95/. �onf. Interval) 

x2 .9880644 .0246626 40 .06  0 0 000 . 9396087 1 . 03652 
x3 . 9783926 .025276 38 .71  0 . 000 0 9287315 1. 028054 

cons . 9522962 ' 1516564 6 .28 0. 000 .6543296 1 . 250263 

Comparison with previous results for OLS with the correct robust standard errors shows 
that the estimated confidence intervals are narrower for FGLS. For example, for x2 the 
improvement is from [0.84, 1.02] to [0.94, 1.04]. As predicted by theory, FGLS with a 
correctly specified model for heteroskedasticity is. more efficient than OLS. 

In practice, the form of heteroskedasticity is not known. Then a similar favorable 
outcome may not occur, and we should create more robust standard errors as we next 
consider. 
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5.3 .5  WLS estimation 

The FGLS standard errors are based on the assumption of a correct model for het­
eroskedasticity. To guard against rnisspecification of this model, we use the WLS esti­
mator presented in section 5 .2 . :3 ,  which is equal to the FGLS estimator but uses 

·
robust 

standard errors that do not rely on a model for heteroskedast"icity. We have 

. • WLS estimator is FGLS 1.1ith robust estimate of VC£: 

. regress y x2 x3 [aYeight=i/varu] , vce(robust) 
(sum of 1.1gt is 5 .4993oi"01) 
Linear regression 

Robust 
y Coef . Std. Err. t P> l t l  

x2 . 9 880644 . 0218783 4 5 . 1 6  0 . 000 
x3 . 9783926 . 0242506 40 .35  0 . 000 

_cons . 9522962 . 1546593 6 . 1 6  0 . 000 

Number of obs = 500 
F( 2, 497) = 2589 .73  
Prob > F 0 . 0000 
R-squared 0 . 8838 
Root MSE 2 .  7719 

[95% Conf . Interval] 

.9450791 1 . 03105 

. 9307462 1 . 026039 

. 6484296 1. 256163 

The standard errors are quite similar to those for FGl:S, as expected because here FGLS 
is known to use the DGP model for heteroskedasticity. 

5.4 System of iiroear regressions 

In this section, we extend GLS e:;timation to a system of linear equations with errors 
that are correlated across equations for a given individual but are uncorrelated across 
individuals. Then cross-equation COlTelation of the errors can be exploited to improve 
estimator efficiency. This multivariate linear regression model is usually referred to  
in econometrics as a set of SUR equations. It arises naturally in  many contexts in 
economics-a system of  demand equations is  a leading example. The GLS methods 
presented here can be extended to systems of simultaneous equations (three-stage least­
squares estimation presented i::J. section 6 .6 ) ,  panel data (chapter 8 ) ,  and to systems of 
nonlinear equations (section 15 .10. 2 ) .  

We also illustrate how to test or  impose restrictions on parameters across equa­
tions. This additional complication can arise with systems of equations. For example, 
consumer demand theory may impose symmetry restrictions. 

5.4 .1  SUR model 

The model consists ofm linear regression equations for N individuals. The jth equation 
for individual i is Yii = x';j(31 + u;1 . With all observations stacked, the model for the 
jth equation can be written as Yi = X1{3J + u1 . We then stack the m equations to give 
the SUR model 

i 
\ I '  i 
I 
i 

I I l 
i 
\ 
I 

I 
i 
j 

_l 
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�� l � 

x1 0 0 

0 x2 
0 

0 0 Xrn 

(5.4) 

This has a compact representation: 

(5.5) 

The error terms are assumed to have zero mean and to be independent across indi­
viduals and homoskedastic. The complication is that for a given individual the errors 
are correlated across equations, with E(u;iuwiX) = O'jj' and O'jj' =/= 0 when j f- j' .  
It follows that the N x 1 error vectors Uj,  j = 1 ,  . . .  , m, satisfY the assumptions 1) 
E(uj !X) = 0 ; 2) E(ujuj iX) = O'jjiN; and 3) E(ujuj,IX) = O'jjiiN,  j i= j' .  Then for 
the entire system, n = E(uu') = :E \Sl iN, where :E = (O'jj ' ) is an m X m positive-definite 
matrix and \3l denotes the Kronecker product of two matrices. 

OLS applied to each equation yields a consistent estimator of (3, but the optimal 
estimator for this model is the GLS estimator. Using n- l = ':E-1 \3) IN, because n = 
':E \3) IN, the GLS is 

.GaLs = { X' (:E- 1 i!J IN ) X} - l  {X' (:E - 1 1!) IN ) y } (5.6) 

with a VCE given by 

FGLS estimation is straightforward, and the estimator is called the SUR estimator. 
We require only estimation and inversion of the m x m matrix ':E. Computation is in two 
steps. First, each equation is estimated by OLS..t and the residuals from the m equat2?ns 
are used to estimate :E ,  using u, = Yi - X](Jj , and &jj' = uj Uj' jN. Second, :E is 
substituted for :E in (5.6) to obtain the FGLS estimator ,BFGLS · An alternative is to 
further iterate the�e two steps until the estimation converges, called the iterated FGLS 
(IFGLS) estimator. Although asymptotically there is no advantage from iterating, in 
fi.nite samples there may be. Asymptotic theory assumes that m is fixed while N __, oo. 

There are two cases where FGLS reduces to equation-by-equation OLS. First is the 
obvious case of errors uncorrelated across equations, so :E is diagonal. The second case 
is less obvious but can often arise in practice. Even if ':E is nondiagonal, if each equation 
contains exactly the same set of regTessors, so Xj = Xj' for all j and j' , then it can be 
shown that the FGLS systems estimator reduces to equation-by-equation OLS. 

5.4.2 The sureg command 

The SUR estimator is performed in Stata by using the command sureg. This command 
requires specification of dependent and regressor variables for each of the m equations. 
The basic syntax for sureg is 
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sureg (depvarl varlistl ) . . . (depvarm varlistm) [ if ]  [ in ]  [ weight ] [ , options ] 

where each pair of parentheses contains the model specification for each of the m linear 
regressions. The default is two-step SUR estimation. Specifying the isure option causes 
sureg to produce the iterated estimator. 

5.4.3 Application to two categories of expenditures 

The application of SUR considered here involves two dependent variables that are the 
logarithm of expenditure on prescribed drugs (ldrugexp) and expenditure on all cate­
gories of medical services other than drugs (1 totothr ). 

This data extract from the Medical Expenditure Panel Survey (MEPS) is similar 
to that studied in chapter 3 and covers the Medicare-eligible population of those aged 
65 years and more. The regressors are socioeconomic variables (educyr and a quadratic 
in age), health-status variables (actlim and totcbr), and supplemental insurance in­
dicators (private and medicaid). We have 

• Summary statistics for seemingly unrelated regressions example 
clear all 
use mus05surdata.d ta 

summarize ldrugexp ltototbr age age2 educyr actlim totchr medicaid private 
Variable Obs Mean Std. Dev. Min Max 

ldrugexp 3285 6 . 936533 1 . 300312 1 . 386294 10 . 33773 
ltotothr 3350 7. 537196 1 . 61298 1 . 098612 1 1 . 71892 

age 3384 74. 38475 6 . 388984 65 90 
age2 3384 5573.898 9 6 1 . 357 4225 8100 

educyr 3384 1 1 . 29108 3. 7758 0 17 

actlim 3384 .3454492 .4755848 0 1 
totchr 3384 1 . 954492 1 . 326529 0 8 

medicaid 3384 . 161643 . 3681774 0 
private 3384 . 5156619 .4998285 0 

The parameters of the SUR model are estimated by using the sureg command. 
Because SUR estimation reduces to OLS if exactly the same set of regressors appears in 
each equation, we omit educyr from the model for ldrugexp, and we omit medicaid 
from the model for 1 totothr. We use the corr option because this yields the correlation 
matrix for the fitted residuals that is used to form a test of the independence of the 
errors in the two equations. We have 
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* SUR estimatio� of a seemingly unrelated regressions model 
sureg (ldrugexp age age2 actlim totchr medicaid private) 

> (ltotothr age age2 educyr actlim totcbr private) , corr 
Seemingly unrelated regression 

Equation 

ldrugexp 
ltotothr 

Obs Parms 

3251 6 
3251 6 

RMSE 

1 . 133657 
1 .  491159 

0 . 2284 
0 . 1491 

chi2 P 

962.07 0 . 0000 
567 .91 0 . 0000 

Coef . Std. Err. z P> l z l  [95/. Conf . Interval] 

ldrugexp 
age .2630418 . 0795316 3 . 31 0 . 001 . 1071627 . 4 189209 

age2 - .  0017428 . 0005287 -3 .30  0 . 001 - . 002779 - . 0007066 
actlim . 3546589 . 046617 7 . 6 1  0 . 000 .2632912 .4460266 
totchr .4005159 .0161432 24 .81  0 . 000 . 3688757 . 432156 

medicaid . 1067772 . 0592275 1 . 80 0 .  071 -. 0093065 . 2228608 
private . 0810116 . 0435596 1 .  86 0 . 063 - . 0043636 . 1663867 

cons -3.891259 2 . 975898 - 1 . 3 1  0 . 19 1  -9 .723911 1 . 941394 

ltotothr 
age .2927827 . 1046145 2 . 80 0 . 005 . 087742 .4978234 

age2 - . 0019247 . 0006955 -2.77 0 . 006 - . 0032878 - . 0005617 
educyr .0652702 . 0 0732 8 . 9 2  0 . 000 . 0509233 . 0796172 
actlim .7386912 . 0608764 1 2 . 1 3  0 . 000 . 6193756 . 8580068 
totchr .2873668 .0 211713 13 .57 0 . 000 .2458719 . 3288618 

private .2689068 . 055683 4 . 83 0 . 000 . 1597701 . 3780434 
cons -5 . 198327 3 . 914053 - 1 . 33 0 . 184 -12 . 86973 2 . 473077 

Correlation matrix of residuals : 

ldrugexp ltotothr 
ldrugexp 1 . 0000 
ltototbr 0 . 1741 1 . 0000 
Breusch-Pagan test of independence:  chi2 (1 )  = 98 .590 ,  Pr = 0 . 0000 
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There are only 3,251 observations in this regression because of missing values for 
ldrugexp and ltototbr. The le::tgthy output from sureg has three components. 

The first set of results summarizes the goodness-of-fit for each equation. For the 
dependent variable ldrugexp, we have R2 = 0.23 . A test for joint significance of all 
regressors in the equation (aside from the intercept) has a value of 962.07 with a p-value 
of p = 0.000 obtained from the x2(6) distribution because there are six regressors. The 
regressors are jointly significant in each equation. 

The middle set of results presents the estimated coefficients. Most regressors are 
statistically signifi.cant at the 5% level, and the regressors generally have a bigger impact 
on other expenditures than they do on drug expenditures. As you will see in exercise 6 
at the end of this chapter, the coefficient estimates are similar to those from OLS, and 
the efficiency gains of SUR compared with OLS · are relatively modest, with standard 
errors reduced by roughly 1%.  
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The final set of results are generated by the carr option. The errors in the two equa­
tions are positively correlated, with Tl2 = "B12i'/8n&22 = 0.17 41. The Breusch-Pagan 
Lagrange multiplier test for error independence, computed as Nrr2 = 3251 x 0.17412 = 
98.54, has p = 0.000, computed by using the x2( 1 )  distribution. Because r12 is not 
exactly equal to 0.17 41, the hand calculation yields 98.54, which is not exactly equal to 
the 98.590 in the output. This indicates statistically significant correlation between the 
enors in the two equations, as should be expected because the two categories of expen­
ditures may have similar underlying determinants. At the same time, the correlation is 
not particularly strong, so the enlciency gains to SUR estimation are not great in this 
example. 

5.4.4 Robust standard errors 

The standard errors reported from sureg impose homoskedasticity. This is a reason­
able assumption in this example, because taking the natural logarithm of expenditures 
greatly reduces heteroskedasticity. But in other applications, such as using the levels of 
expenditures, this would not be reasonable. 

There is no option available with sureg to allow the errors to be heteroskedastic. 
However, the bootstrap prefix, explained in chapter 13 , can be used. It resamples over 
individuals and provides standard errors that are valid under the weaker assumption 
that E(uijUij• IX) = CJ;,jj ' ,  while maintaining the assumption of independence over 
indivi(lual::;. A"" you will learn in section 13.3 .4 , it is good practice to use more bootstraps 
than the Stata default and to set a seed. We have 

. * Bootstrap to get heteroskedasticity-robust SEs for SUP. estimator 

. bootstrap ,  reps(400) s eed(10101) nodots :  surog 
> (ldrugexp age age2 actlim totchr medicaid private) 
> (ltotothr age age2 educyr actlim totchr private) 
Seemingly unrelated regression 

Equation 

ldrugexp 
ltototbr 

Obs Parms 

3251 6 
3251 6 

RMSE 

1 . 133657 
1 : 491159 

�·R-sq" 

0 . 2284 
0 . 1491 

chi2 p 

962.07 0 .  0000 
567 .91 0 . 0000 
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Bootstrap 
Coef. Std.  Err. 

ldrugexp 
age . 2630418 . 0799786 

age2 - . 0017428 . 0005319 
act lim . 3546589 .0460193 
totchr .4005159 . 0160369 

medicaid . 1067772 . 0578864 
private .0810116 . 042024 

cons -3.891259 2 . 993037 

ltotothr 
age . 2927827 . 1040127 

age2 - .  0019247 . 0006946 
educyr . 0652702 . 0082043 
act lim . 7386912 . 0655458 
totchr . 2873668 . 0212155 

private . 2689068 . 057441 
_cons -5 . 198327 3 . 872773 
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z P> l z l  [95/. Conf . Interval} 

3 . 29 0 . 001 . 1062866 . 4 197969 
-3 . 28 0 . 0 01 - . 0027853 - . 0007003 

7 . 71 0 .  000 . 2644627 .4448551 
24.97 0 . 000 . 3690841 . 4319477 

1 . 84 0 . 065 - . 0066781 . 2202324 
1 . 93 0 . 054 - . 0013539 . 163377 

- 1 . 3 0  0 . 194 -9. 757504 1. 9 74986 

2 . 81 0 .  005 . 0889216 .4966438 
-2.77 0 .006  - . 0032861 - . 0005633 

7 . 96 0 .  000 . 0491902 . 0813503 
1 1 . 27 0 . 000 . 6102238 . 8671586 
13 .55  0 . 000 . 2457853 .3289483 
4 . 68 0 . 000 . 1563244 .3814891 

- 1 . 34 0 . 180 -12 . 78882 2 . 392168 

The output shows that the bootstrap standard errors differ little from the default stan-
dard errors. So, as expected for this example for expenditures in logs, heteroskedasticity 
makes little difference to the standard errors. 

5.4.5 Testing cross-equation constraints 

Testing and imposing cross-equation constraints is not possible using equation-by­
equation OLS but is possible using SUR estimation. We begin with testing. 

To test the joint significance of the age regressors, we type 

• Test of variables in both equations 
quietly sureg (ldrugexp age age2 actlim totchr medicaid private) 

> (ltotothr a�o age2 educyr actlim totcbr private) 
test age age2 

( 1)  [ldrugexp: age = 0 
( 2) [1 tototbr :age = 0 
( 3) [ldrugexp] age2 = 0 
( 4) [1 totothr ]age2 = 0 

chi2( 4) = 1 6 . 5 5  
Prob > chi2 = 0 . 0024 

This command automatically conducted the test for both equations. 

The format used to refer to coefficient estimates is [depname] varna me, where dep­
name is the name of the dependent variable in the equation of interest, and varna me is 
the name of the regressor of interest. 
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A test for significance of regressors in just the first equation is therefore 

. * Test of variables in just tbe first equation 

. test [ldrugexp]ago [ldrugexp] age2 
( 1 )  [ldrugexp] age = 0 
( 2)  [ldrugexp] age2 = 0 

cbi2( 2)  10 .98  
Prob > cbi2 = 0 . 0041 

The quadratic in age in the first equation is jointly statistically significant at the 5% 
level. 

Now consider a test of a cross-equation restriction. Suppose we want to test the 
null hypothesis that having private insurance has the same impact on both dependent 
variables. We can set up the test as follows: 

. * Test of a restriction across tbe t�o equations 

. test [ldrugexp]private = [ltototbr]private 

( 1 )  [ldrugexp]private - [ltototbr]private = 0 
cbi2( 1) 8 . 35 

Prob > cbi2 = 0 . 0038 

The null hypothesis is rejected at the 5% significance level. The coefficients in the two 
equations differ. 

· 

In the more general case involving cross-equation restrictions in models with three 
or more equations, then the accumulate option of the test command should be used. 

5.4.6 Imposing cross-equation constraints 

We now obtain estimates that impose restrictions on parameters across equations. Usu­
ally, such constraints are based on economic theory. As an illustrative example, we 
impose the constraint that having private insurance has the same impact on both de-
pendent variables. · 

We first use the constraint command to define the constraint. 

* Specify a restriction across tbo t�o equations 
constraint 1 [ldrugexp] privato = [ltototbr]private 

Subsequent commands imposing the constraint will refer to it by the number 1 (any 
integer between 1 and 1,999 can be used) . 
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We then impose the constraint using the constraint s ( )  option. We have 

* Estimate subject to the cross-equation constraint 
sureg (ldrugexp age age2 actlim totchr medicaid private) 

> (ltotothr age age2 educyr actlim totchr private) , constraints ( 1 )  

Seemingly unrelated regression 
Constraints :  

( 1 )  [ldrugexp]private - [ltotothr]private = 0 

Equation 

ldrugexp 
ltotothr 

ldrugexp 
age 

age2 
actlim 
totchr 

medicaid 
private 

cons 

ltotothr 
age 

age2 
educyr 
act lim 
totchr 

private 
cons 

Obs Parms 

3251 6 
3251 6 

RMSE 

1 . 134035 
1 .  492163 

Coef. Std. E rr. 

.2707053 . 0795434 
- . 0017907 . 0005288 

. 3575386 . 0466396 

. 3997819 . 0 161527 

. 1473961 . 0575962 
. 1482936 . 0368364 

-4. 235088 2 . 975613 

.2780287 . 1045298 
- . 0018298 . 0006949 

. 0703523 .0071112 
.7276336 . 0607791 
.2874639 . 0211794 
. 1482936 . 0368364 
-4. 62162 3 . 9 10453 

z 

0 . 2279 
0 . 1479 

P> l z l  

3 .40  0 .001  
-3 . 39 0 .001  

7 .67  0 . 000 
24.75 0 . 000 

2 .  56 0 .010  
4 .  03 0 .  000 

- 1 . 42 0 . 155 

2 .  66 0 .  008 
-2 .63  0 .  008 

9 . 8 9  0 . 000 
1 1 . 97 0 .000  
13 .57  0 . 000 
4 .  03 0 .  000 

- 1 . 18 0 .  237 

chi2 P 

974 .09 0 . 0000 
559 .71  0 . 0000 

[95/. Conf . Interval] 

. 1 148031 
- . 0028271 

. 2661268 
. 3681233 
. 0345096 
. 0760955 

- 1 0 . 06718 

.4266076 
- . 0007543 

.4489505 

. 4314405 

.2602827 

. 2204917 
1 . 597006 

.073154 .4829034 
- . 0031919 - . 0004677 

. 0564147 . 0842899 

. 6085088 .8467584 
. 245953 .3289747 

.0760955 . 2204917 
-12 . 28597 3 . 042727 
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As desired, the private variable has the same coefficient in the two equations: 0.148. 

More generally, separate con:::;traint commands can be typed to specify many con­
straints, and the constraints ( )  option will then have as an argument a list of the 
constraint numbers. 

5.5 Survey data: Weighting, clustering, and stratification 

We now turn to a quite different topic: adjustments to standard estimation methods 
when the data are not from a simple random sample, as we have implicitly assumed, but 
instead come from complex survey data. The issues raised apply to all estimation meth­
ods, including single-equation least-squares estimation of the linear model, on which we 
focus here. 

Complex survey data lead to a sample that �an be weighted, clustered, and strat­
ified. From section 3.7, weighted estimation, if desired, can be performed by using 
the estimation command modifier [pweight=weight] . (This is a q1.1ite different rea-
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son for weighting than is that leading to the use of aweights in section 5 .3.4.) Valid 
standard errors that control for clustering can be obtained by using the vce (cluster 
clustvar) option. This i s  the usual approach in microeconometric analysis-standard 
errors should always control for any clustering of errors, and weighted analysis may or 
may not be appropriate depending on whether a census coefficient approach or a model 
approach is taken; see section 3.7.3. 

The drawback to this approach is that while it yields valid estimates it ignores the 
improvement in precision of these estimates that arises because of stratification. This 
leads to conservative inference that uses overestimates of the standard errors, though for 
regression analysis this overestimation need not be too large. The attraction of survey 
commands, performed in Stata by using the svy prefix, is that they simultaneously do 
all three adjustments, including that for stratification. 

5 .5 .1  Survey design 

As an example of complex survey data, we use nhanes2.  dta provided at the Stata web 
site. These data come from the second National Health and Nutrition Examination 
Survey (NHANES I I ), a U.S. survey conducted in 1976-1980. 

We consider models for the hemoglobin count, a measure of the amount of the 
oxygen-transporting protein hemoglobin present in one's blood. Low values are asso· 
ciated with anemia. We estimate both the mean and the relationship with age and 
gender, restricting analysis to nonelderly adults. The question being asked is a purely 
descriptive one of how does hemoglobin vary with age and gender in the population. To 
answer the question, we should use sampling weights because the sample design is such 
that different types of individuals appear in the survey with different probabilities. 

Here is a brief explanation of the survey design for the data analyzed: The country is 
split into 32 geographical strata. Each stratum contains a number of primary sampling 
units (PSUs) , where a PSU represents a county or several contiguous counties with an 
average population of several hundred thousand people . Exactly two PSUs were chosen 
from each of the 32 strata, and then several hundred individuals were sampled from 
each PSU. The sampling of PSUs and individuals within the PSU was not purely random, 
so sampling weights are provided to enable correct estimation of population means at 
the national level. Observations on individuals may be correlated within a given PSU 
but are uncorrelated across PSUs, so there is clustering on the PSU. And the strata are 
defined so that PSUs are more similar within strata than they are across strata. This 
stratification improves estimator efficiency. 

We can see descriptions and summary statistics for the key survey design variables 
and key analysis variables by typing 

• Survey data example :  NHANES II data 
clear all 
use mus05nhanes2 . dta 

quietly keep if age >= 21 & age <= 65 



5.5.1 Survey design 

. describe sampl finalwgt strata psu 

storage display 
variable name type format 

value 
label 

sampl long /.9 .0g  
finalwgt long /.9 .0g  
strata byte /.9 .0g  
psu byte /.9 .0g  

summarize sampl finalwgt strata psu 
Variable Obs Mean 

sampl 8136 33518.94 
finalwgt 8136 12654 . 8 1  

strata 8136 1 6 . 67146 
psu 8136 1 . 487955 
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variable label 

unique .case identifier 
sampling weight (except lead) 
stratum identifier, 1-32 
primary sampling unit, 1 or 2 

Std. Dev. Min Max 

18447 .04 1400 64702 
740 0 . 205 2079 79634 
9 . 431087 32 
.4998856 2 

There are three key survey design variables. The sample weights are given in 
finalwgt and take on a wide range of values, so weighting may be important. The 
strata are given in strata and are numbered 1 to 32. The psu variable defines each 
PSU. within strata and takes on only values of 1 and 2 because there are two PSUs per 
strata. 

Before survey commands can be used, the survey design must be declared by using 
the svyset command. For a single-stage survey, the command syntax is 

svyset [ psu ] [ weight ] [ , design_options options ] 

For our data, we a;e able to provide all three of these quantities, as follows: 

* Declare survey design 
svyset psu [pweight=finalwgt] , strata(strata) 

pweight : finalwgt 
VCE: linearized 

Single unit : missing 
Strata 1: strata 

SU 1 :  psu 
FPC 1 :· ·<zero> 

For our dataset, the PSU variable was named psu and the strata variable was named 
strata, but other names could have been used. The output VCE : linearized means 
that the VCE will be estimated using Taylor linearization, which is analogous to cluster­
robust methods in the nonsurvey case. An alternative that we do not consider is bal­
anced repeated replication, which can be an improvement on linearization and requires 
provision of replicate-weight variables that ens\ll·e respondent confidentiality, whereas 
provision of variables for the strata and PSU may not. The output FPC 1 :  <zero> means 
that no finite-population correction (FPC) is provided. The FPC corrects for the com­
plication that sampling is without replacement r;:tther than with replacement , but this 
correction is only necessary if a considerable portion of the PSU is actually sampled. 
The FPC is generally wmecessary for a national t>mvey of individuals, unless the PSU is 
very small. 
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The design information is given for a single-stage survey. In fact, the NHANES II is a 
multistage survey with sample segments (usually city blocks) chosen from within each 
PSU, households chosen from within each segment, and individuais chosen from within 
each household. This additional information can also be provided in svyset but is often 
not available for confidentiality reasons, and by far the most important information is 
declaring the first-stage sampling units. 

The svydescri be command gives details on the survey design: 

• Describe the survey design 
. svydescri be 
Survey: Describing stage 1 samplin g units 

pweight : finalwgt 
VCE: linearized 

Single unit: missing 
Strata 1 :  strata 

su 1 :  psu 
FPC 1 :  <zero> 

#Obs per Unit 

Stratum #Units #Obs min mean max 

1 2 286 132 143 .0  154 
2 2 138 57 69 . 0  8 1  
3 2 255 103 127 . 5  152 
4 2 369 179 184 . 5  190 
5 2 215 93 107 .5  122 
6 2 245 112 122 . 5  133 
7 2 349 145 174 . 5  204 
8 2 250 114 125.0 136 
9 2 203 88 1 0 1 . 5  115 

10 2 205 97 102 .5  108 
1 1  2 226 105 1 13 . 0  121 
12 2 253 123 126 .5  130 
13 2 276 121 138 . 0  155 
14 2 327 163 163 .5  164 
15 2 295 145 147 . 5  150 
16 2 268 128 134.0 140 
17 2 321 142 160 . 5  179 
18 2 287 117 143 .5  170 
20 2 221 95 1 1 0 . 5  126 
21 2 170 84 85 . 0  86 
22 2 242 98 121 . 0  144 
23 2 277 136 138 .5  141 
24 2 339 162 169 .5  177 
25 2 210 94 105 .0  116  
2 6  2 210 103 105 . 0  107 
27 2 230 110 115 .0  120 
28 2 229 106 1 1 4 . 5  123 
29 2 351 165 175 .5  186 
30 2 291 134 145.5  157 
31 2 251 115 125 .5  136 
32 2 347 166 173 .5  181 

----

31 62 8136 57 131 . 2  204 
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For this data extract, only 31 of the 32 strata are included (stratum 19 is excluded) and 
each stratum has exactly two PSUs, so there are 62 distinct PSUs in all. 

5.5.2 Survey mean estimation 

We consider estimation of the population mean of hgb, the hemoglobin count with a 
normal range of approximately 12�15 for women and 13.5�16.5 for men. To estimate 
the population mean, we should definitely use the sampling weights. 

To additionally control for clustering and stratification, we give the svy: prefix 
before mean. We have 

. • Estimate the population mean using svy: 

. svy: mean hgb 
(running mean on estimation sample) 

Survey: Mean estimation 
Number of strata = 
Number of PSUs 

31 
62 

N=ber of obs 
Population size 
Design d.f 

8136 
102959526 

31 

Linearized 
Mean Std. Err. [95/. Conf . Interval] 

hgb 14 . 29713 . 0345366 14 . 22669 14. 36757 

The population mean is quite precisely estimated with a 95% confidence interval [ 14.23, 
14.37]. 

What if we completely ignored the survey design? We have 

. • Estimate the ?Dpnlation mean using no weights and no cluster 

. mean hgb 

Mean estimation Number of o bs 8136 

hgb 

Mean Std. Err. 

1 4 . 28575 . 0153361 

[95/. Conf . Interval] 

14 . 25569 14. 31582 

In this example, the estimate of the population mean is essentially unchanged. There is 
a big difference in the standard errors. The default standard error estimate of 0.015 is 
wrong for two reasons: it is underestimated because of failure to control for clustering, 
and it is overestimated because of failure to control for stratification. Here 0.01 5 < 0.035, 
so, as in many cases, the failure to control for clustering dominates and leads to great 
overstatement of the precision of the estimator. 

5.5.3 Survey linear regression 

The svy prefix before regress simultaneously controls for weighting, clustering, and 
stratification declared in the preceding svyset command. We type 
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. * Regression using svy:  

. svy :  regress hgb age female 
(running regress on estimation sample) 

Survey : Linear regression 

Number of strata 
Number of PSUs 

hgb 

age 
female 

.... cons 

Coef . 

. 0021623 
- 1 . 696847 

1 5 . 0851 

31 
62 

Linearized 
Std. Err. 

.0010488 

. 0261232 

.0651976 

t 

2 . 06 
-64 .96  
231 .38 
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Number of obs 
Populat ion size 
Design df 
F( 2 ,  30) 
Prob > F 
R-squared 

P> l t l  

0 . 048 
0 . 000 
0 . 000 

[95% Conf. 

. 0000232 
- 1 . 750125 

14 . 95213 

8136 
102959526 

3 1  
2071 . 57  

0 . 0000 
0 .  3739 

Interval] 

. 0043014 
- 1 . 643568 

1 5 . 21807 

The hemoglobin count increases slightly with age and is considerably lower for women 
when compared with the sample mean of 14.3. 

The same weighted estimates, with standard errors that control for clustering but not 
stratification, can be obtained without using survey commands. To do so, we first need 
to define a single variable that uniquely identifies each PSU, whereas survey commands 
can use two separate variables, here strata and psu, to uniquely identify each PSU. 
Specifically, strata took 31 different integer values while psc. took only the values 1 
and 2. To make 62 unique PSU identifiers, we multiply strata by two and add psu. 
Then we have 

• Regreosion using woights and cluster on PSU 
generate uniqpsu � 2•strata + psu // make unique identifier for each psu 

regress hgb age female [pweight=finalwgt] ,  vce(cluster unigpsu) 
(sum of wgt is · 1 . 0296e+08) 
Linear regression Number of obs = 8136 

F( 2 ,  61 )  1450.50 
Prob > F 0 . 0000 
R-squared 0 . 3739 
Roo-: MSE 1 .  0977 

(Std. Err. adjusted for 62 clusters in unigpsu) 

Robust 
hgb Coef. Std. Err. t P> l t l  [95% Conf. Interval] 

age . 0021623 .0011106 1 . 95 0 . 056 - . 0000585 . 0043831 
female - 1 . 696847 .0317958 -53.37 0 . 000 - 1 . 760426 - 1 . 633267 

cons 1 5 . 0851 . 0654031 230 .65  0 . 000 1 4 . 95432 1 5 . 21588 

The regression coefficients are the same as before. The standard errors for the slope 
coefficients are roughly 5% and 20% larger than those obtained when the svy prefix is 
used, so using survey methods to additionally control for stratification improves esti­
mator efficiency. 

l :I 

: : 

"' 

J 
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Finally, consider a naive OLS regression without weighting or obtaining cluster­
robust VCE: 

• Regression using no weights and no cluster 
regress hgb age female 

Source ss df MS 

Model 5360. 48245 2 2680.24123 
Residual 10206.2566 8133 1. 25491905 

Total 15566 . 7391 8135 1. 9 1355121 

hgb Coef. Std. Err. t 

age . 0013372 . 0008469 1 . 58 
female - 1 . 624161 . 024857 -65.34 

con::. 1 5 . 07118 . 0406259 370 .97  

Number of  obs � 8136 
F( 2, 8133) � 2135.79 
Prob > F 0 . 0000 
R-squared 0 . 3444 
Adj R-squared � 0 . 3442 
Root MSE 1 . 1202 

P> l t l  [95/. Conf . Interval] 

0 . 114 - . 0003231 . 0029974 
0 . 000 -1 . 672887 - 1 . 575435 
0 . 000 1 4 . 99154 15 . 15081 

Now the coefficient of age has changed considerably and standard errors are, erro­
neously, considerably smaller because of failure to control for clustering on the PSU. 

For most microeconometric analyses, one should always obtain standard errors that 
control for clustering, if clustering is present. Many data extracts from complex survey 
datasets do not include data on the PSU, for confidentiality reasons or because the 
researcher did not extract the variable. Then a conservative approach is to use nonsurvey 
methods and obtain standard errors that cluster on a variable that subsumes the PSUs, 
for example , a geographic region such as a state. 

As emphasized in section 3.7, the issue of whether to weight in regression analysis 
(rather than mean estimation) with complex survey data is a subtle one. For the many 
microeconometrics applications that take a control-function approach, it is unnecessary. 

5.6 Stata resources 

The sureg command introduces multiequation regression. Related multiequation com­
mands are [R] mvreg, [R] nlsur, and [R] reg3. The multivariate regression command 
mvreg is essentially the same as sureg. The nlsur command generalizes sureg to non­
linear equations; see section 15.10.  The reg3 command generalizes the SUR model to 
handle endogenous regressors; see section 6.6 .  

Econometrics texts give little coverage of survey methods, and the survey literature 
is a stand-alone literature that is relatively inaccessible to econometricians. The Stata 
[SVY] Survey Data Reference Manual is quite helpful. Econometrics references include 
Bhattacharya (2005), Cameron and 1rivedi (2005), and Kreuter and Valliant (2007). 

5. 7 Exercises 

1. Generate data by using the same DGP as that in section 5.3, and implement 
the JJrst step of FGLS estimation to get the predicted variance varu. Now com-
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pare several different methods to implement the second step of weighted estima­
tion. First, use regress with the modifier [aweight=l/varu] , as in the text. 
Second, manually implement this regression by generating the transformed vari­
able try=y I sqrt ( varu) and regressing try on the similarly constructed variables 
trx2, trx3, and trone, using regress with the noconstant option. Third, use 
regress with [pweight=l/varu] , and show that the default standard errors us­
ing pweights differ from those using aweights because the pweights default is to 
compute robust standard errors. 

2. Consider the same DGP as that in section 5.3. Given this specification of the 
model, the rescaled equation yjw = f3J (1/w) + fJ2(x2Jw) + f33(x3jw) + e, where 
w = Jexp( -1 + 0 . 2  * x2) ,  will have the error e ,  which is normally distributed and 
homoskedastic. Tteat w as known and estimate this rescaled regression in Stata 
by using regress with the no constant option. Compare the results with those 
given in section 5.3, where the weight w was estimated. Is there a big difference 
here between the GLS and FGLS estimators? 

3. Consider the same DGP as that in section 5.3. Suppose that we incorrectly assume 
that u � N(O ,o-2x�) . Then FGLS estimates can be obtained by using regress 
with [pweight=1/x2sq] , where x2sq=x22. How different are the estimates of ({31 , fJ2 , {33 ) from the OLS results? Can you explain what has happened in terms of 
the consequences of using the wrong skedasticity function? Do the standard errors 
change much if robust standard errors are computed? Use the estat hettest 
command to check whether the regression errors in the transformed model are 
homoskedastic. 

4. Consider the same dataset as in section 5.4 .  Repeat the analysis of section 5 .4  
using the dependent variables drugexp and totothr, which are in  levels rather 
than logs (so heteroskedasticity is more likely to be a problem ) . First, estimate the 
two equations using OLS with default standard errors and robust standard errors, 
and compare the standard errors. Second, estimate the two equations jointly using 
sureg, and compare the estimates with those from OLS. Third, use the bootstrap 
prefix to obtain robust standard errors from sureg, and compare the efficiency of 
joint estimation with that of OLS. Hint: It is much easier to compare estimates 
across methods if the estimates command is used; see section 3.4.4. 

5. Consider the same dataset as in section 5.5. Repeat the analysis of section 5.5 
using all observations rather than restricting the sample to ages between 21 and 
65 years. First, declare the survey design. Second, compare the unweighted mean 
of hgb and its standard error, ignoring survey design, with the weighted mean 
and standard error allowing for aJl features of the survey design. Tbjrd, do a 
similar comparison for least-squares regression of hgb on age and female. Fourth, 
estimate this same regression using regress with pweights and cluster-robust 
standard errors, and compare with the survey results. 

6. Reconsider the dataset from section 5.4.3. Estimate the parameters of each equa­
tion by OLS. Compare these OLS results with the SUR results reported in sec­
tion 5.4.3. 

J'j . . ' ' 

9 
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6 . 1  Introduction 

The fundamental assumption for consistency of least-squares estimators is that the 
model error term is unrelated to the regressors, i .e . ,  E(uix) = 0. 

If this assumption fails, the ordinary least-squares ( OLS) estimator is inconsistent 
and the OLS estimator can no longer be given a causal interpretation. Specifically, the 
OLS estimate � can no longer be interpreted as estimating the marginal effect on the 
dependent variable y of an exogenous change in the jth regressor variable x j· This is a 
fundamental problem because such marginal effects are a key input to economic policy. 

The instrumental-variables (rv) estimator provides a consistent estimator under the 
very strong assumption that valid instruments exist, where the instruments z are vari­
ables that are correlated with the regressors x that satisfy E( uiz) = 0. 

The IV approach is  the original and leading approach for estimating the parameters 
of the models with endogenous regressors and errors-in-variables models. Mechanically, 
the IV method is no more difficult to implement than OLS regression. Conceptually, the 
IV method is more difficult than other regression methods. Practically, it can be very 
difficult to obtain valid instruments, so E(uiz) = 0. Even where such instruments exist, 
they may be so weakly correlated with endogenous regressors that standard asymptotic 
theory provides a po

_
or guide in fir lite samples. 

6 .2  IV estimation 

IV methods are more widely used in econometrics than in  other applied areas of statistics. 
This section provides some intuition for IV methods and details the methods. 

6.2.1 Basic IV theory 

We introduce IV methods in the simplest regressi�:m model, one where the dependent 
variable y is regressed on a single regressor x: 

y = (3x + u (6 . 1) 

171 
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The model is written without the intercept. This leads to no loss of generality if both 
y and x are measured as deviations from their respective means. 

For concreteness, suppose y measures earnings, x measures years of schooling, and 
u is the error term. The simple regression model assumes that x is uncorrelated with 
the errors in (6 . 1) .  Then the only effect of x on y is a direct effect via the term (3x. 
Schematically, we have the following path diagram: 

X -f y 
/ 

u 

The absence of a directional arrow from u to x means that there is no association 
between x and u. Then the OLS estimator 13 = Li x;y.j Li x? is c:onsistent for {3. 

The error u embodies all factors other than schooling that determine earnings. One 
such factor in u is ability. However, high ability will induce correlation between x and 
u because high (low) ability will on average be associated with high (low) years of 
schooling. Then a more appropriate schematic diagram is 

X -> y 
T / 
u 

where now there is an association between x and u. 

The OLS estimator (3 is then inconsistent for (3, because 13 combines the desired 
djrect effect of schooling on earnings ((3) with the indirect effect that people with high 
schooling are likely to have high ability, high u, and hence high y. For example , if one 
more year of schooling is found to be associated on average with a $1,000 increase in 
annual earnings, we are not sure how much of this increase is due to schooling per se ((3) 
and how much is due to people with higher schooling having on average hjgher ability 
(so higher u) . 

The regressor x is said to be endogenous, meaning it arises within a system that 
influences u. By contrast, an exogenous regressor arises outside the system and is 
unrelated to u. The in·consistency of 13 is referred to as endogeneity bias, because the 
bias does not disappear asymptotically. 

The obvious solution to the endogeneity problem is to include as regressors controls 
for ability, a solution called the control-function approach. But such regressors may 
not be available. Few earnings-schooling datasets additionally have measures of ability 
such as IQ tests; even if they do, there are questions about the extent to which they 
measure inherent ability. 

The IV approach provides an alternative solution. We introduce a (new) instrumental 
variable, z, which has the property that changes in z are associated with changes in x 
but do not lead to changes in y (except indirectly via x ). This leads to the following 
path cliagTam: 

J 
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Z ---> X -+ y 
T / 
u 

For example, proximity to college (z) may determine college attendance (x) but not 
directly determine earnings (y). 

The IV estimator in this simple example is !JIV = Li ZiYd L; Z;Xi . This can be 
interpreted as· the ratio of the correlation of y with z to the correlation of x with z or, 
after some algebra, as the ratio of dyjdz to dxjdz. For example, if a one-unit increase 
in z is a.::;sociated with 0 .2  more years of education and with $500 higher earnings, then 
P1v = $500/0.2 = $2 ,  500, so one more year of schooling increases earning-s by $2 ,  500. 

The IV estimator P1v is consistent for /3 provided that the instrument z is uncorre­
latecl with the error u and correlated with the regressor x. 

6.2.2 Model setup 

vVe now consider the more general regression model with the scalar dependent variable 
y1 , which depends m: m endogenous regressors, denoted by y2, and K1 exogenous 
regTessors (including an intercept) ,  denoted by x1 . This model is called a structural 
equation, with 

Yli = Y�;/31 + x� ./32 + Ui, i = 1, . . . , N (6 .2) 
The regression errors 'E.i are assumed to be uncorrelated with Xt ·i. but are correlated with 
YZi · This correlation leads to the OLS estimator being inconsistent for {3. 

To obtain a consistent estimator, we assume the existence of at least m IV xz for y2 that satisfy the a.::;sumption that E(ui[Xzi) = 0 .  The instruments xz need to be 
correlated with y2 so that they provide some information on the variables being instru­
mented. One way to motivate this is to assume that each component Yzj of y2 satisfies 
the fi rst-stage equation (also called a reduced-form model) 

(6 .3) 

The first-stage equations have only exogenous variables on the right-hand side. The ex­
ogenous regressors x1 in (6 .2) can be used as instruments for themselves. The challenge 
is to come up with at least one additional instrument x2 . Often y2 is scalar, m = 1 ,  
and we need to  find one additional instrument xz . More generally, with m endogenous 
regressors, we need at least m additional instruments x2. This can be difficult because 
x2 needs to be a variable that can be legitimately excluded from the structural model 
( 6.2) for y1 . 

The model (6 .2) can be more simply written as 

(6.4) 

where the regressor vector x'; = [Y; i xU combine� endogenous and exogenous variables, 
and the dependent variable is denoted by y rather than y1 .  We similarly combine the 
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instruments for these variables. Then the vector of IV (or, more simply, instruments) 
is z� = [xi, �;] ,  where x1 serves as the (ideal) instrument for itself and x2 is the 
instrument for y2, and the instruments z satisfy the conditional moment restriction 

E(uilzi) = 0 

In summary, we regress y on x using instruments z. 

6.2.3 IV estimators: IV, 2SLS, and G M M  

(6.5) 

The key (and in many cases, heroic) assumption is (6.5). This implies that E(ziui) = 0 , 
and hence the moment condition, or population zero-correlation condition, 

(6.6) 

IV estimators are solutions to the sample analog of (6.6) . 

We begin with the case where dim(z) = dim(x), called the just-identified case, where 
the number of instruments exactly equals the number of regressors. Then the sample 
analog of (6.6) is L�1 z:(y; - x�.B) = 0. As usual, stack the vectors � into the matrix 
X, the scalars Y i  into the vector y, and the vectors z ';  into the matrix Z. Then we have 
Z' (y - X(3) = 0. Solving for (3 leads to the IV estimator 

13rv = (Z'x)-1Z'y 

A second case is where dim(z) < dim(x), called the not-identified or underidentified 
case, where there are fewer instruments than regressors. Then no consistent IV estimator 
exists. This situation often arises in practice. Obtaining enough instruments, even 
just one in applications with a single endogenous regressor, can require considerable 
ingenuity or access to unusually rich data. 

A third case is where dim(z) > dim(x), called the overidentified case, where there are 
more instruments than regressors. This can happen especially when economic theory 
leads to clear exclusion of variables from the equation of interest, freeing up these 
variables to be used as instruments if they are correlated with the included endogenous 
regressors. Then Z'(y - X(3) = 0 has no solution for (3 because it is a system of dim(z) 
equations in only dim(x) unknowns. One possibility is  to arbitrarily drop instruments 
to get to the just-identified case. But there are more-efficient estimators. One estimator 
is the two-stage least-squares (2SLS) estimator, 

f3zsLs = {X'Z(Z'z)-1Z'X} - l X'Z(Z'Zt1 Z'y 
This estimator is the most �fficient estimator if the errors Ui are independent and ho­
moskedastic. And it equals f31v in the just-identified case. The term 2SLS arises because 
the estimator can be computed in two steps. First, estimate by OLS the first-stage re­
gressions given in (6.3) ,  and second, estimate by OLS the structural regression (6 .2) with 
endogenous regressors replaced by predictions from the first step. 

I 



6.2.4 Instrument validity and relevance 175 

A quite general estimator is the generalized method of moments ( GMM) estimator 

j3GMM = (X'ZWZ'X) � I X'ZWZ'y (6.7) 

where W is any full-rank symmetric-weighting matrL'<. In general, the weights in  W 
may depend both on data and on unknown parameters. For just-identified models, 
all choices of W lead to the same estimator. This estimator minimizes the objective 
function 

Q({3) = { � (y - X{3)'Z} W { �Z '(y - X{3) } (6.8) 

which is a matrix-weighted quadratic form in Z'(y - X{3). 
For GMM, some choices of W are better than others. The 2818 estimator is obtained 

with weighting matrix W = (Z'z) - 1 .  The optimal GMM estimator uses W = § -1 , so 

.BacMM = ( x'z§-1 z'x) -l x'z§-1z'y 

where § is an estimate of Var(N�1f2Z' u) . If the errors u; are independent and het­
eroskedastic, then § = 1/ N 2.:::�1 urz;z:, where u; = y; - x:,6 and ,6 is a consistent 
estimator, usually t"3zsLS· The estimator reduces to .Brv in the just-identified case. 

In later sections, we consider additional estimators. In particular, the limited­
information maximum-likelihood (LIML) estimator, while asymptotically equivalent to 
2SL8, has been found in recent research to outperform both 2SLS and GMM in fi11ite 
samples. 

6.2.4 Instrument validity and relevance 

All the preceding estimators have the same starting point. The instruments must satisfy 
condition (6.5) . This condition is impossible to test in the just-identified case. And even 
in the overidentified case, where a test is possible (see section 6.3.7) , instrument validity 
relies more on pers1iasive argument, economic theory, and norms established in prior 
related empirical studies. 

Additionally, the instruments must be relevant. For the model of section 6.2.2 , this 
means that after controlling for the remaining exogenous regressors x 1 ,  the instruments 
x2 must account for significant variation in y2 . Intuitively, the stronger the associa­
tion between the instruments z and x, the stronger will be the identification of the 
model. Conversely, instruments that are only marginally relevant. are referred to as 
weak instruments. 

The first consequence of an instrument being weak is that estimation becomes much 
less precise, so standard errors can become many' times larger, and t statistics many 
times smaller, compared with those from (inconsistent) OLS. Then a promising t statistic 
of 5 from OLS estimation may become a t  statistic: of 1 from IV estimation. If this loss 
of precision is critical, then one needs to obtain better instruments or more data. 
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The second conseq1:ence is that even though IV estimators are consistent, the stan­
dard asymptotic theory may provide a poor approximation to the actual sampling dis­
tribution of the IV estimator in typical fi11ite-sample sizes. For example, the asymptotic 
critical values of standard Wald tests will lead to tests whose actual size differs con­
siderably from the nominal size, and hence the tests are potentially misleading. This 
problem arises because in fi.nite samples the IV estimator is not centered on {3 even 
though in infinite samples it is consistent for {3. The problem is referred to as finite­
sample bias of IV, even in situations where formally the mean of the estimator does 
not exist . The question "How large of a sample size does one need before these biases 
become unimportant?" does not have a simple answer. This issue is considered further 
in sections 6.4 and 6.5 .  

6.2 .5 Robust standard-error estimates 

Table 6.1 provides a summary of three leading variants of the IV family of estimators. 
For just-identified models, we use the IV estimator because the other .models collapse 
to the IV estimator in that case. For overidentifiecl models, the standard estimators are 
2SLS and optimal GMM. 

The formulas given for estimates of the VCEs are robust e�timates, where S is 
an estimate of the asymptotic variance of ffiz'u. For heteroskedastic errors, S = 
N-1 L,�1 urz1z;, and we use the vce (robust) option. For clustered errors, we use the 
vce(cluster clustvar) option. 

Table 6 . 1 .  IV estimators and their asymptotic variances 

Estimator Definition and estimate of the VCE 

IV (just-identified) i3rv = (Z'x) -1Z'y 
V(i3) = (Z'x)-1S(Z'X)- 1Z  

2SLS �2§_LS = {X'Z(Z'Z)-1 Z'X} -1 X'Z(Z'Z)-1Z1y 
V(/3) = (X'Z(Z'z)-1Z 'Xt1 X'Z(Z'Z) -1 S(Z'Z)-1Z'X 

X {X'Z(Z'z)-1Z'X} - 1  

Optimal GMM iJoGMM = ( X'ZS-tZ'X) -t X'ZS-lZ'y 
V(i3ocrvuvrl = ( X'ZS-1Z'X) - 1  
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6.3 I V  example 

All estimators in  this chapter use the i vregress command. This command, introduced 
in Stata 10, is a significant enhancement of the earlier ivreg command and incorporates 
several of the features of the user-written i vreg2 command. The rest of this section 
provides application to an example with a single endogenous regressor. 

6.3.1 The ivregress command 

The ivregress command performs IV regression and yields goodness-of-fit statistics, 
coefficient estimates, standard errors, t statistics, p-values, and confidence interval:;. 
The syntax of the command is 

i vregress estimator depvar [ varlistl ] ( varlist2 
[ weight ] [ , options ] 

varlist_iv� [ if ]  [ in ]  

Here estimator is one of 2sls (2SLS), gllllll (optimal GMM), or liml (limited-information 
maximum likelihood) ; depvar is the scalar dependent variable; varlistl is the list of 
exogenous regressors; varlist2 is the list of endogenous regressors; and varlist_iv is the 
list of instruments for the endogenous regressors. Note that endogenous regressors 
and their instruments appear inside parentheses. If the model has several endogenous 
variables, they are all listed on the left-hand side of the equaliLy. Bec.;a\llie there is no iv 
option for estimator, in the just-identified case we use the 2sls option, because 2SLS is 
equivalent to IV in that case. 

An example of the command is i vregress 2sls y xi x2 (y2 y3 = x3 x4 x5) .  This 
performs 2SLS estimation of a structural-equation model with the dependent variable, y; 
two exogenous regressors, x1 and x2; two endogenous regressors, y2 and y3; and three 
instruments , x3, x4, and x5. The model is overidentified because there is one more 
instrument than there are endogenous regressors. 

In terms of th_e model of section 6 .2.2 , y1 is depvar, x1 is varlistl ,  Y2 is varlist2 , 
and x2 is varlisLiv. In the just-identified case, varlist2 and varlist_iv have the same 
number of variables, and we use the 2sls option to obtain the IV estimator. In the 
overidentified case, varlisLiv has more variables than does varlist2 . 

The first option yields considerable output from the first-stage regression. Several 
useful tests regarding the instruments and the goodness of fi.t of the first-stage regression 
are displayed; therefore, this option is more convenient than the user running the first­
stage regression and conducting tests. 

The vee ( vcetype) option specifies the type of standard errors reported by Stat a. The 
options for vcetype are robust, which yields heteroskedasticity-robust standard errors; 
unadjusted, which yields nonrobust standard ·errors; cluster clustvar; bootstrap; 
j ackknife;  and hac kernel. Various specification test statistics that are automatically 
produced by Stata are made more robust if the vee (robust) option is used. 
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For the overidentified models fitted by GMM, the wmatrix ( wmtype) option specifies 
the type of weighting matrix used in the objective function [see W in (6.7)] to obtain op­
timal GM!Vl. Different choices of wmtype lead to different estimators. For heteroskedastic 
errors, set wmtype to robust. For correlation between elements of a cluster, set wmtype 
to cluster clustvar, where clustvar specifies the variable that identifi.es the cluster. For 
time-series data with heteroskedasticity- and autocorrelation-consistent (HAC) errors, 
set ·wmtype to hac kernel or hac kernel # or hac kernel opt; see [R] ivregress for 
additional details. If vee ( )  is not specified when wmatrixO is specified, then vcetype 
is set to wmtype. The igmm option yields an iterated version of the GMM estimator. 

6.3.2 Medical expenditures with one endogenous regressor 

We consider a model with one endogenous regressor, several exogenous regressors, and 
one or more excluded exogenous variables that serve as the identifying instruments. 

The dataset is an extract from the Medical Expenditure Panel Survey (MEPS) of 
individuals over the age of 65 years, similar to the dataset described in section 3.2 .1 .  
The equation to be estimated has the dependent variable ldrugexp, the log of total 
out-of-pocket expenditures on prescribed medications. The regressors are an indicator 
for whether the individual holds either employer or union-sponsored health insurance 
(hLempunion), number of chronic conditions (totchr) ,  and four sociodemographic vari­
ables: age in years (age), indicators for whether female (female) and whether black or 
Hispanic (blhisp ), and the natural logarithm of annual household income in thousands 
of dollars (line). 

We treat the health insurance variable hLempunion as endogenous. The intuitive 
justification is that having such supplementary insurance on top of the near universal 
Medicare insurance for the elderly may be a choice variable. Even though most indi­
viduals in the sample are no longer working, those who expected high future medical 
expenses might have been more likely to choose a job when they were working that 
would provide s1,1pplementary health insurance upon retirement. Note that Medicare 
did not cover drug expenses for the time period we study. 

We use the global macro x2list to store the names of the variables that are treated 
as exogenous regressors. We have 

• Read data,  define global x2list, and summarize data 
use mus06dat a .dta 
global x2list totehr age female blhisp line 
summarize ldrugexp hi_empunion $x2list 

Variable Obs Mean Std. Dev. 

ldrugcxp 10391 
hi_empunion 10391 

totehr 10391 
age 10391 

female 10391 

blhisp 10391 

6 .  479668 
. 3796555 
1 .  860745 
75 . 04639 
.5797325 

. 1703397 

1. 363395 
.4853245 
1 . 290131 

6 . 69368 
. 4936256 

.3759491 

Min 

0 
0 
0 

65 
0 

0 
line 10089 2 . 743275 . 9131433 -6 . 907755 

Max 

10 . 18017 

9 
9 1  

1 
5 . 744476 
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Around 38% of the sample has either employer or union-sponsored health insurance 
in addition to Medicare insurance . Subsequent analysis drops those observations with 
missing data on line. 

6.3.3 Available instruments 

We consider four potential instruments for hLempunion. Two reflect the income status 
of the individual and two are based on employer characteristics. 

The ssira tio instrument is the ratio of an individual's social security income to the 
individual's income from all sources, with high values indicating a significant income 
constraint. The lowineome instrument is a qualitative indicator of low-income status. 
Both these .instruments are likely to be relevant, because they are expected to be neg­
atively correlated with having supplementary insurance. To be valid instruments, we 
need to assume they can be omitted from the equation for ldrug.exp , arg11ing that the 
direct role of income is adequately captured by the regressor line. 

The firmsz instrument measures the size of t he firm's employed labor force, and 
the mul tle instrument indicates whether the firm is a large operator with multiple 
locations. These variables are intended to capture whether the individual has access 
to supplementary insurance through the employer . These two variables are irrelevant 
for those who are retired, self-employed, or purchase insurance privately. In that sense, 
these two instruments could potentially be weak. 

� Summarize available instruments 
summarize ssiratio lowincome multlc firmsz if line ! = .  

Variable Obs Mean Std. Dev.  Min Max 

ssiratio 10089 . 5365438 . 3678175 0 9 . 25062 
loY income 10089 . 1874319 . 3902771 0 

multlc 10089 .0620478 . 2412543 0 
firmsz 10089 . 1405293 2 . 170389 0 50 

We have four available instruments for one. endogenous regressor . The obvious ap­
proach is t o  use all available instruments, because in theory this leads t o  the most 
efficient estimator .  In practice, it may lead to larger small-sample bias because the 
small-sample biases of IV estimators increase "tYith the number of instruments (Hahn 
and Hausman 2002) . 

At a minimum, it is informative to use eorrela te to view the gross correlation be­
tween endogenous variables and instruments and between instruments. When multiple 
instruments are available, as in the case of overidentified models, then it is actually the 
partial correlation after controlling for other available instruments that matters. This 
important step is deferred to sections 6.4.2 and 6.4 . 3. 
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6.3.4 IV estimation of an  exactly identified model 

We begin with IV regression of ldrugexp on the endogenous regressor hLempunion, 
instrumented by the single instrument ssira tio, and several exogenous regres�ors. 

We use i vregress with the 2sls estimator and the options vce(robust) to control 
for heteroskedastic errors and first to provide output that additionally reports results 
from the first-stage regression. The output is in two parts: 

. * IV estimation of a just-identified model with single endog regressor 

. ivregress 2sls ldrugexp (hi_empunion = ssiratio) $x2list ,  vee (robust) first 

First-stage regressions 

Number of obs 10089 
F (  6 ,  10082) 1 19 . 18 
Prob > F 0 . 0000 
R-squared 0 .  0761 
Adj R-squared 0 . 0755 
Root MSE 0. 4672 

Robust 
hi_empunion Coef . Std.  Err. t P> l t l  (95/. Conf. I;;.terval] 

totehr . 0 127865 . 0036655 3 . 4 9  0 . 000 . 0056015 .0199716 
age - . 0086323 . 0007087 -12 . 18  0 . 000 - . 0100216 -. 0072431 

female - .  07345 . 0096392 -7.62 0 . 000 - .  0923448 - . 0545552 
blhisp - . 06268 .0122742 -5 . 1 1 0 .000 - . 08674 - . 0386201 

line . 0483937 . 0066075 7 . 32 o . ooo . 0354417 . 0613456 
ssiratio - . 1916432 . 0236326 -8 . 1 1  0 . 000 - . 2379678 - . 1453186 

_.cons 1 .  028981 . 0581387 17.70 o . ooo . 9 150172 1 . 142944 

Instrumental variables (2SLS) regression Number of obs 10089 
\lald ehi2(6) 2000 . 86 
Prob > ehi2 0 . 0000 
R-se_uared 0 . 0640 
Root MSE 1 . 3177 

Robust 
ldrugexp Coef . Std. Err .  z P> l z l  [95/. Conf . Interval] 

hi_empunion - . 8975913 .2211268 -4 . 06  0 . 000 - 1 . 330992 - . 4641908 
totehr . 4502655 . 0101969 4 4 . 1 6  0 . 000 . 43028 . 470251 

age - .  0132176 . 0029977 -4 .41  o . ooo - .0190931 - . 0073421 
female - . 020406 . 0326114 -0.63 0 . 531 - . 0843232 . 0435113 
blhisp - . 2174244 .0394944 - 5 . 5 1  0 . 000 - . 294832 -. 1400167 

line .0870018 . 0226356 3 . 84 0 . 000 . 0426368 . 1313668 
cons 6 . 78717 . 2688453 25.25 o . ooo 6.  260243 7 . 314097 

Instrumented:  hi_empunion 
Instrument s : totehr age female blhisp line ssiratio 
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The first part, added because of the first option, reports results from the first­
stage regression of the endogenous variable hLempunion on all the exogenous variables, 
here ssira tio and all the exogenous regressors in the structural equation. The first­
stage regression has reasonable explanatory power, and the coefficient of ssira tio is 
negative, as expected, and highly statistically significant. In models with more than 
one endogenous regTessor, more than one first-stage regTession is reported if the first 
option is used. 

The second part reports the results of intrinsic interest, those from the IV regres­
sion of ldrugexp on hLempunion and several exogenous regressors. Supplementary 
insurance has a big effect. The estimated coefficient of hLempunion is �0.898, indicat­
ing that supplementary-insured individuals have out-of-pocket drug expenses that are 
90% lower than those for people without employment or union-related supplementary 
insurance. , 

6.3.5 IV estimation of an overidentified model 

vVe next consider estimation of an overidentified model. Then different estimates are 
obtained by 2SLS estimation and by different variants of GMM. 

We use two instruments, ssira tio and m ul tlc, for hLempunion, the endogenous 
regressor. The first estimator is 2SLS; obtained by using 2sls with standard errors 
that correct for heteroskeda::;ticity with the vee (robust) option. The second esti­
mator is optimal GMM given heteroskedastic errors; obtained by using gmm with the 
wmatrix (robust) option. These are the two leading estimators for overidentifi.ed IV 
with cross-section data and no clustering of the errors. The third estimator adds igmm 
to iterate to convergence. The fourth estimator is one that illustrates optimal GMM 
with clustered errors by clustering on age. The final estimator is the same as the first 
but reports default sta::1dard errors that do not adjust for heteroskedasticity. 

• Compare 5 estimators and variance estimates for overidentified models 
global i vmodel "ldrugexp (hi_empunion = ssira tio mul tlc) $x2list" 
quietly ivregres s  2sls $ivmodel, vce (robust) 
estimates store TwoSLS 
quietly ivregres s  gmm $ivmode l ,  wmatrix(robust) 
estimates store GMM_het 

quietly ivregress gmm $ivmodel, wmatrix(robust) igmm 
estimates store GMM_igmm 

quietly ivregress gmm $ivmodel, wmatrix(cluster age) 
estimates store GMM_clu 

quietly i vregress 2sls $i vmodel 
estimates store TwoSLS_def 
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estimates table TwoSLS GMM_het GMM_igmm GMM_clu TwoSLS_def , b ( % 9.5f)  s e  

Variable TwoSLS GMM_het GMM_igmm GMM_clu TwoSLS_-f 

hi_em pu.nion - 0 . 98993 -0 . 99328 -0 . 99329 - 1 . 03587 -0 . 98993 
0 .  20459 0 . 20467 0 . 20467 0 . 20438 0 . 19221 

totcbr 0 . 45121 0 . 45095 0. 45095 0 . 44822 0 . 45121 
0.  01031 0. 01031 0 . 01031 0 . 01325 0 . 01051 

age -0 . 01414 -0. 01415 -0. 01415 -0 .01185 -0 .01414 
0 . 00290 0 . 00290 0 . 00290 0 . 00626 0 . 00278 

female - O . C2784 -0 . 02817 -0 . 02817 -o .  02451 -0 . 02784 
0. 03217 0 . 03219 0 . 03219 0 . 02919 0 . 03117 

blhisp -0 . 22371 -0 . 22310 -0 . 22311 -0 .20907 - 0 . 22371 
0 . 03958 0 . 03960 0 . 03960 0 . 05018 0 . 03870 

line 0 . 09427 0 . 0 9446 0 .  09446 0 . 09573 0 . 09427 
0 .02188 0 . 02190 0 . 02190 0 . 01474 0 . 02123 

cons 6 . 87519 6 . 87782 6 . 87783 6 . 72769 6 .  87519 
0 . 25789 0 . 25800 0 . 25800 0 . 50588 0 . 24528 

legend: b/se 

Compared with the just-identified IV estimates of section 6.3.4, the parameter estimates 
have changed by less than 10% ( aside from those for the statistically insignificant regres­
sor female) . The standard errors are little changed except for that for hLempunion, 
which has fallen by about 7%, reflecting efficiency gain due to additional instruments. 

Ne.-:t we compare the five different overidentified estimators. The differences between 
2SLS, optimal GMM given heteroskedasticity, and iterated optimal GMM are negligible. 
Optimal GMM with clustering differs more. And the final column shows that the default 
standard errors for 2SLS differ little from the robust standard errors in the first column, 
reflecting the success of the log transformation in eliminating heteroskedasticity. 

6.3 .6 Testing for regressor endogeneity 

The preceding analysis treats the insurance variable, hLempunion, as endogenous. If 
instead the variable is exogenous, then the IV estimators (IV, 2SLS, or GMM) are still 
consistent, but they can be much less efficient than the OLS estimator. 

The Hausman test principle provides a way to test whether a regressor is endogenous. 
If there is little difference between OLS and IV estimators, then there is no need to 
instrument, and we conclude that the regressor was exogenous. If instead there is 
considerable difference, then we needed to instrument and the regressor is endogenous. 
The test usually compares just the coefficients of the endogenous variables. In the 
case of just one potentially endogenous regressor with a coefficient denoted by {3, the 
Hausman test statistic � � 2 

TH = 
!fJr;_ � f3c:._Ls) 

V(f3rv � PoLs) 
is x2(1 ) distributed under the null hypothesis that the regressor is exogenous. 

J 
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Before considering implementation of the test, we first obtain the OLS estimates to 
compare them with the earlier IV estimates. We have 

. * Obtain DLS estimates to compare with preceding IV estimates 

. regress ldrugexp hi_empunion $x2list, vee (robust) . 
Linear regression Number of obs : 10089 

F(  6 ,  10082) 376.85 
Prob > F 0 . 0000 
R-squared 0 . 1770 
Root MSE 1 . 236 

Robust 
ldrugexp Coef.  S td. Err.  t P> l t l  [95/. Conf . Interval] 

hi_empunion .0738788 . 0259848 2 . 84 0 . 004 . 0229435 . 1248141 
totchr .4403807 .0093633 47 .03  0 . 000 . 4220268 .4587346 

age - . 0035295 . 001937 - 1 . 82 0 . 068 - . 0073264 . 0002675 
female .0578055 . 0253651 2 . 28 0 . 023 . 0080848 . 1075262 
blhisp - . 1513068 . 0341264 -4.43 0 . 000 - . 2182013 - .0844122 

line . 0 104815 . 0137126 0 . 76 0 . 445 - . 0163979 . 037361 
cons 5 . 861131 . 1571037 37.31  0 . 000 5 . 553176 6. 169085 

The OLS estimates differ substantially from the just-identifi ed IV estimates given in 
section 6.3.4. The coefficient of hLempunion has an OLS estimate of 0.074, greatly 
different from the IV estimate of -0.898. This is strong evidence that hLempunion is 
endogenout>. Some coefficients of exogenous variables also change, notably, those for age 
and female. Note also the loss in precision in using IV. Most notably, the standard error 
of the instrumented regTessor increases from 0.026 for OLS to 0.221 for IV, an eightfold 
increase, indicating the potential loss in efficiency due to IV estimation. 

The hausman command can be used to compute TH under the assumption that 
V(.8rv - .BoLs) = V(.8rvf- V(.8oLs ) ;  see section 12.7.5. This greatly simplifi es analysis 
because then all that is needed are coefficient estimates and standard errors from sepa­
rate IV estimation (IV, 2SLS, or GMM) and OLS estimation. But this assumption is too 
strong. It is correct only if J3oLS is the fully efficient estimator under the null hypothesis 
of exogeneity, an aSsumption that is valid only under the very strong assumption that 
model errors are independent and homoskedastic. One possible variation is to perform 
an appropriate bootstrap; see section 13.4.6. 

The postestimation estat endogenous command implements the related Durbin­
Wu-Hausman (DWH) test. Because the DWH test uses the device of augmented re­
gressors, it produces a robust test statistic (Davidson 2000). The essential idea is the 
following. Consider the model as specified in section 6.2 . 1. Rewrite the structural equa­
tion (6.2) with an additional variable, v 1 , that is the error from the first-stage equation 
(6.3) for yz. Then 

Yli = fJ1Y2i + x�J32 + P'VH + u, 

Under the null hypothesis that Y2i is exogenoust E(vliuiiY2i, xtJ = 0. If v1 could be 
observed, then the test of exogeneity would be the test of Ho : p = 0 in the OLS regression 
of y1 on y2, x 1 ,  and v1 . Because v1 is not directly observed, the fitted residual vector 
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i:h from the first-stage OLS regression (6.3) is instead substituted. For independent 
homoskedastic errors, this test is asymptotically equivalent to the earlier Hausman test. 
In the more realistic case of heteroskedastic errors, the test of H0 : p = 0 can still be 
implemented provided that we use robust variance estimates. This test can be extended 
to the multiple endogenous regTessors case by including multiple residual vectors and 
testing separately for correlation of each with the error on the structural equation . . 

vVe apply the test to our example with one potentially endogenous regres�or, 
hLempunion, instrumented by ssira tio. Then 

. • Robust Durbin-Wu-Hausmon test of endogeneity implemented by estat endogenous 

. ivregress 2sls ldrugexp (hi_empunion = s siratio) $x2list, vce (robust) 

Instrumental variables (2SLS) regression Number of obs = 10089 
Wald chi2(6) 2000 . 8 6  

Robust 
ldrugexp Coef .  Std. Err. 

hi_empunion - . 8975913 . 2211268 
totchr .4502655 . 0101969 

age - .  0132176 . 0029977 
f"male - . 020406 .0326114 
blhisp - . 2174244 .0394944 

line .0870018 . 0226356 
cons 6 .  78717 . 2688453 

Instrumented: hi_empunion 

z P> l z.l 

-4 .06  0 .000 
44 . 16  0 . 000 
-4 .41  0 . 000 
-0 . 63  0 . 531 
- 5 . 5 1  0 . 000 
3 . 84 0 . 000 

25 . 25 0 . 000 

Prob > chi2 
R-squared 
Root MSE 

[95/. Coni . 

- 1 . 330992 
.43028 

- . 0190931 
- . 0843232 

- . 294832 
. 0426368 
6 . 260243 

Instruments :  totchr age female blhisp line ssiratio 
estat endogenous 

Tests of endogeneity 
Ho: voriables are exogenous 

Robust score chi2 (1 )  
Robust regression F ( 1 , 10081) 

24.935 (p  = 0. 0000) 
2 6 . 4333 (p = 0 . 0000) 

0 . 0000 
0 . 0640 
1 .  3177 

Interval] 

- .  4641908 
. 470251 

- . 0073421 
. 0435113 

- . 1400167 
. 1313668 
7 . 314097 

The last line of output is the robustifiecl DWH test and leads to strong l'ejection of the 
null hypothesis that hLempunion is exogenou�. We conclude that it i::; endogenou::;. 

We obtain exactly the same te�t statistic when we manually perform the robustified 
DWH test. We have 

• Robust Durbin-Wu-Hausman tes t  of endogeneity implemented manually 
quietly regress hi_empunion ssiratio $x2list 

quietly predict vlhat, resid 
quietly regress ldrugexp hi_empunion v1hat $x2list, vce(robust)  
test v1hat 

( 1) v1hat = 0 
F ( 1 ,  10081) 

Prob > F 
26 .43 

0 . 0000 
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The validity of an instrument cannot be tested in a just-identified model. But it is 
possible to test the validity of overidentifying instruments in an overidentified model 
provided that the parameters of the model are estimated using optimal GMM. The same 
test has several names, including overidentifying restrictions (OIR) test, overidentified 
(om) test, Hansen's test, Sargan's test, and Hansen-Sargan test. 

The starting point is the fitted value of the criterion function (6..8) after optimal 
GMM, i .e . ,  Q(�) = {( 1/  N)(y - X�)'Z}S-1 { ( 1 /N)Z'(y - X�)}. If the population 
moment conditions E{Z'(y - Xt3)} = 0 are correct, then Z'(y - X�) � 0 ,  so Q(�) 
should be close to zero. Under the null hypothesis that all instruments are valid, it can 
be shown that Q(�) has an asymptotic chi-squared distribution with degrees of freedom 
equal to the number of overidentifying restrictions. 

Large values of Q(�) lead to rejection of Ho : E{Z'(y - X{3)} = 0. Rejection is 
interpreted as indicating that at least one of the instruments is not valid. Tests can have 
power in other directions, however, as emphasized in section 3.5.5. It is possible that 
rejection of H 0 indicates that the model X/3 for the conditional mean is misspecified. 
Going the other way, the test is only one of validity of the overidentifying instruments, 
so failure to reject Ho does not guarantee tl1at a ll the instrument:; are valid. 

The test is implemented with the pm;te::;timation esta t overid command following 
th<.' i vregress gmm command for an overidentified model. We do so for the optimal 
GM�I estimator with heteroskedastic errors and instruments, ssira tio and multc .  The 
example below implements est at overid under the overidentifying restriction . 

. * Test of overidentifying restrictions following ivregress gmm 

. quietly ivregress � ldrugexp (hi_empunion � ssiratio multlc) 
> $x2list, wmatrix (robust)  

estat overid 
Test of overide�tifying restriction: 

Hansen's J chi2 (1)  = 1 . 04754 (p = 0 . 3061) 

The test statistic is -x2 (1) distributed because the number of overident.ifying restrictions 
equals 2 - 1 = 1. Because p > 0.05, we do not reject the null hypothesis and conclude 
that the overidentifying restriction is valid. 

(Continued on ne.xt page) 
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A similar test using all four available instruments yields 
• • Test of overidentifying restrictions following ivregress gmm 
. ivregress gmm ldrugexp (hi_empunion � s siratio lowincome multle firmsz) 
> $x2list, ltlllatrix(robust) 
Instrumental variables (GMM) regression Number of obs c 10089 

Wald chi2(6) = 20 42.12 
Prob > ehi2 0 . 0000 
R-squared 0 . 0829 

GMM weight matrix: Robust Root MSE = 1 .  3043 

Robust 
ldrugexp Coef. Std. Err . z P> l z l  [95% Conf . Interval] 

hi_empunion - . 8 124043 . 1846433 -4 .40  0 . 000 - 1 . 174299 - . 45051 
totehr . 449488 . 010047 44.74 0 . 000 . 4297962 . 4 691799 

age - . 0124598 . 0027466 -4 .54 0 . 000 - . 0178432 - . 0070765 
female - .  0104528 . 0306889 - 0 .3 4  0 . 733 - . 0706019 . 0496963 
blhisp - . 20 61018 . 0 382891 -5.38 0 . 000 - .  28114 71 - . 1310566 

line .0796532 . 0203397 3 . 92 0 . 000 . 0397882 . 1 195183 
_cons 6 . 7126 . 2425973 27.67 0 . 000 6 .  237118 7 . 188081 

Instrumented: hi_empunion 
Instruments :  totchr age female blhisp line ssiratio lowincome multlc 

finnsz 

estat overid 

Test of overidentifying restriction: 
Hansen·s J chi2(3) = 1 1 . 5903 (p = 0 . 0089) 

Now we reject the null hypothesis at level 0.05 and, barely, at level 0.01. Despite this 
rejection, the coefficient of the endogenous regTessor hLempunion is -0.812, not all that 
different from the estimate when ssira tio is the only instrument . 

6.3 .8 IV estimation with a binary endogenous regressor 

In our example, the endogenous regressor hLempunion is a binary variable. The IV 
methods we have used are valid under the assumption that E(u ilz;) = 0, which in our 
example means that the error in the structural equation for ldrugexp has a mean of 
zero conditional on the exogenous regressors [x1 in (6.2)] and any instruments such as 
ssira tio. The reasonableness of this assumption does not change when the endogenous 
regressor hLempunion is binary. 

An alternative approach adds more structure to explicitly account for the binary 
nature of the endogenous regTessor by changing the first-stage model to be a latent­
variable model similar to the probit model presented in chapter 14. Let y1 depend in 
part on y2 , a binary endogenous regressor. We introduce an unobserved latent variable, 
y2, that determines whether Y2 = 1 or 0. The models (6.2) and (6.3) become 

Yli = fJ1Y2i + x;.J32 + u, 
• I I 

'Y2i = xli1i"Jj + x2i1r2j + Vi 
if Y2;. > 0 
otherwise 

(6 .9) 



6.3.8 IV estimation with a binary endogenous regressor 187 

The errors (ui , Vi) are assumed to be correlated bivariate normal with Var(u.,) = a2 • 
Var(vi) = 1, and Cov(u;, vi) = po·2 . 

The binary endogenous regressor y2 can be viewed as a treatment indicator. If 
y2 = 1, we receive treatment (here access to employer- or union-provided insurance), and 
if y2 = 0, we do not receive treatment. The Stata documentation refers to (6 .9) as the 
treatment-effects model, though the treatment-effects literature is vast and encompasses 
many models and methods. 

The treatreg command fits (6 .9) by maximum likelihood (IVIL), the default, or 
two-step methods. The basic syntax is 

trea treg depvar [ indepvars ] ,  treat ( depvar _t = indepvars_t) [ twostep ] 

where depv�r is YI , indepvars is x 1 ,  depvar_t is y2 ,  and indepvars_t is x1 and x2 . 

We apply this estimator to the exactly identified setup of section 6.3.4, with the 
single instrument ssira tio. We obtain 

* Regression with a dummy variable regressor 
treatreg ldrugexp $x2list, treat(hi_empunion = ssiratio $x2list) 

(output omitted ) 

Treatment-effects model -- MLE 

Log likelihood � -22721 . 082 

ldrugexp 
totchr 

age 
female 
blhisp 

line 
hi_empunion 

_cons 

hi_empunion 
ssiratio 

totchr 
age 

female 
blhisp 

line 
_cons 

/athrho 
/lnsigma 

rho 
sigma 

lambda 

Coef.  Std.  Err.  

. 4555085 . 0 110291 
-. 0183563 . 0 022975 
-. 0618901 .0295655 
- . 2524937 .0391998 

. 1 275888 . 0171264 
- 1 . 412868 . 0821001 

7 . 27835 . 1905198 

- . 4718775 . 0344656 
. 0385586 . 0099715 

- .  0243318 . 0019918 
- . 1942343 . 0260033 
- . 1950778 . 0359513 

. 1 346908 . 0150101 
1.  462713 . 1 597052 

. 7781623 . 044122 

. 3509918 . 0151708 

. 6516507 .0253856 
1 . 420476 . 0215497 

. 925654 . 048921 

LR test of indep .  eqns . (rho = 0) : 

z 

4 1 . 30 
-7 .99  
-2 .09  
- 6 . 44 

7 .45 
-17.21 
38.20 

- 1 3 . 69 
3 . 87 

-12 .22 
-7 .47 
-5 .43 

8 . 97 
9 . 16 

17. 64 
23 . 14 

chi2 (1)  

Number of obs 
Wald chi2(6) 
Prob > chi2 

10089 
1931 .55  

0 . 0000 

P> l z l  [95!. Conf . In terv all 

0 . 000 .4338919 .4771252 
0 . 000 - . 0228594 - . 0138531 
0 . 036 - . 1 198374 - . 0039427 
0 . 000 - . 3293239 - . 1756635 
0 . 000 . 0940217 . 16 1 1559 
0 . 000 - 1 . 573781 - 1 . 251954 
0 . 000 6 . 904938 7 . 651762 

0 . 000 - . 5394288 - . 4043262 
0 . 000 . 0190148 . 0581023 
0 . 000 - . 0282355 - . 020428 
0 .000  - . 2451998 - . 1432688 
0 .000  - . 265541 - . 1246146 
0 . 000 . 1052715 . 16411 
0 . 000 1 . 149696 1 .  775729 

0 . 000 . 6916848 . 8646399 
0 . 000 . 3212577 . 380726 

. 5990633 . 6986405 
1 .  378861 1 . 463347 
.8297705 1 .  021537 

8 6. 8 0  Prob > chi2 � 0 . 0000 
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The key output is the first set of regression coefficients. Compared with IV estimates 
in section 6.3.4, the coefficient of hLempunion has increased in absolute value from 
-0.898 to -1.413, and the standard error has fallen greatly from 0.221 to 0.082. The 
coefficients and standard errors of the exogenous regressors change much less. 

The quantities rho, sigma, and lamda denote, respectively, p, u, and pu. To ensure 
that a > 0 and IPI < 1, treatreg estimates the transformed parameters 0.5 X ln{(l +. 
p) / ( 1 -p) } ,  reported as /a thrho, and lnu, reported as /lnsigma. If the error correlation 
p = 0, then the errors ·u and v are independent and there is no endogeneity problem. The 
last l ine of output clearly rejects Ho : p = 0, so hLempunion is indeed an endogenous 
regressor. 

Which method is better: regular IV or (6.9)? Intuitively, (6.9) imposes more struc­
ture. The benefit may be increased precision of estimation, as in tbis example. The 
cost is a greater chance of misspecification error. If the errors are heteroskedastic, as 
is likely, the IV estimator remains consistent but the treatment-effects estimator given 
here becomes inconsistent. 

More generally, when regressors in nonlinear models, such as binary-data models 
and count-data models, include endogenous regressors, there is more than one approach 
to model estimation; see also section 17.5 . 

6.4 Weak instruments 

In this section, we assume that the chosen instrument is valid, so IV estimators are 
consistent. 

Instead, our concern is with whether the instrument is weak, because then asymp­
totic theory can provide a poor guide to actual finite-sample distributions. 

Several diagnostics and tests are provided by the est at first stage command fol­
lowing ivregress.  These are not exhaustive; other tests have been proposed and are 
currently being developed. The user-written ivreg2 command (Baum, Schaffer, and 
Stillman 2007) provides similar information via a one-line command and stores many 
of the resulting statistics in e ( ) . We focus on i vregress because it is fully supported 
by Stata. 

6.4.1 Finite-sample properties of IV estimators 

Even when IV estimators are consistent, they are biased in finite samples. This result has 
been formally established in overidentified models. In just-identified models, the first 
moment of the IV estimator does not exist, but for simplicity, we follow the literature 
and continue to use the term "bias" in this case. 

The fi.nite-sample properties of IV estimators are complicated. However, there are 
three cases in which it is possible to say something about the finite-sample bias; see 
Davidson and MacKinnon (2004, ch. 8.4). 
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First, when the number of instruments is very large relative to the sample size 
and the first-stage regression fits very well, the IV estimator may approach the OLS 
estimator and hence will be similarly biased. This case of many instruments is not 
very relevant for cross-section microeconometric data, though it can be relevant for 
panel-data IV estimators such as Arellano-Bond. Second,· when the correlation between 
the structural-equation error u and some components of the vector v of first-stage­
equation errors is high, then asymptotic theory may be a poor guide to the fi.nite-sample 
distribution. Third, if we have weak instruments in the sense that one or more of the 
first-stage regressions have a poor fit, then asymptotic theory may provide a poor guide 
to the finite-sample distribution of the IV estimator, even if the sample has thousands 
of observations. 

In what follows, our main focus will be on the third case, that of weak instruments. 
More precise definitions of weak instruments are considered in the next section. 

6.4.2 Weak instruments 

There are several approaches for investigating the weak IV problem, based on analysis 
of the first-stage reduced-form equation(s) and, particularly, the F statistic for the joint 
significance of the key instruments. 

Diagnostics for weak instruments 

The simplest method is to use the pairwise correlations between any endogenous regres­
sor and instruments. For our example, we have 

. • Correlations of endogenous regressor with instruments 

. correlate hi_empunion ssiratio lowincome multlc firmsz if line ! � .  
(obs=10089) 

hi_empu.nion 
ssiratio 

low income 
multlc 
firmsz 

hi_emp-n ssiratio lowinc-e multlc firmsz 

1 . 0000 
-0 . 2124 1 . 0000 

... -0 . 1 164 0 . 2539 
0 . 1198 - 0 . 1904 
0 . 0374 - 0 . 0446 

1. 0000 
-0 . 0625 
-0 .0082 

1 . 0000 
0 . 1873 1 .  0000 

The gross correlations of instruments with the endogenous regressor hLempunion are 
low. Tbis will lead to considerable efficiency loss using IV compared to OLS. But the 
correlations are not so low as to immediately fiag a problem of weak instruments. 

For IV estimation that uses more than one instrument , we can consider the joint 
correlation of the endogenous regressor with the several instruments. Possible measures 
of this correlation are R2 from regression of the endogenous regressor y2 on the several 
instruments x2 , and the F statistic for test of overall fit in this regression. Low values 
of R2 or F are indicative of weak instruments. However, this neglects the presence of 
the structural-model exogenous regressors x1 in t_he fi.rst-stage regression (6.3) of y2 on 
both x2 and x1 . If the instruments x2 add little extra to explaining y1 after controlling 
for x1 , then the instruments are weak. 

· 
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One commonly used diagnostic is, therefore, the F statistic for joint significance 
of the instruments x2 in first-stage regression of the endogenous regressor Y2 on x2 
and x 1 . This is a test that 1t"2 = 0 in (6.3). A widely used rule of thumb suggested 
by Staiger and Stock (1997) views an F statistic of less than 10 as indicating weak 
instruments. This rule of thumb is ad hoc and may not be sufficiently conservative 
when there are many overidentifying restrictions. There is no clear critical value for the 
F statistic because it depends on the criteria used, the number of endogenous variables, 
and the number of overidentifying restrictions (excess instruments) . Stock and Yogo 
(2005) proposed two test approaches, under the assumption of homoskedastic errors, 
that lead to critical values for the F statistic, which are provided in the output from 
estat firststage, discussed next. The fi rst approach, applicable only if there are at 
least two overidentifying restrictions, suggests that the rule of thumb is reasonable. The 
second approach can lead to F statistic critical values that are much greater than 10 in 
models that are overidentified. 

A second diagnostic is the partial R2 between Y2 and x2 after controlling for x1 . 
This is the R2 from OLS regression of 1) the residuals from OLS of Y2 on x1 on 2) the 
residuals from OLS of x1 on x2 . There is no consensus on how low of a value indicates a 
problem. For structural equations with more than one endogenous regressor and hence 
more than one first-stage regression, a generalization called Shea's partial R2 is used. 

Formal tests for weak instruments 

Stock and Yogo (2005) proposed two tests of weak instruments. Both use the same 
test statistic, but they use different critical values based on different criteria. The 
test statistic is the aforementioned F statistic for joint significance of instruments in 
the first-stage regression, in the common special case of just one endogenous regTessor 
in the original structural model. With more than one endogenous regressor in the 
structural model, however, there will be more than one first-stage regression and more 
than one F statistic. Then the test statistic used is the minimum eigenvalue of a matrix 
analog of the F statistic that is defined in Stock and Yogo (2005, 84) or in [R] ivregress 
postestimation. This statistic was originally proposed by Cragg and Donald (1993) 
to test nonidentification. Stock and Yogo presume identification and interpret a low 
minimum eigenvalue (equals the F statistic if there is just one endogenous regressor) 
to mean the instruments are weak. So the null hypothesis is that the instruments are 
weak against the alternative that they are strong. Critical values are obtained by using 
two criteria we now elaborate. 

The first criterion addresses the concern that the estimation bias of the IV estimator 
resulting from the use of weak instruments can be large, sometimes even exceeding the 
bias of OLS. To apply the test, one first chooses b, the largest relative bias of the 2SLS 
estimator relative to OL S, that is acceptable. Stock and Yoga's tables provide the test 
critical value that varies with b and with the number of endogenous regressors (m) and 
the number of exclusion restrictions (K2) .  For example, if b = 0.05 (only a 5% relative 
bias toleration), m = 1, and K2 = 3, then they compute the critical value of the test to 

I 
' 



6.4.4 Just-identified model 191 

be 13 .91 ,  so we reject the null hypothesis of weak instruments if the F statistic (which 
equals the minimum eigenvalue when m = 1) exceeds 13.91. For a larger 10o/e relative­
bias toleration, the critical value decreases to 9.08. Unfortunately, critical values are 
only available when the model has at least two overidentifying restrictions. So with one 
endogenous regressor, we need at least three instruments: 

The second test, which can be applied to both just-identified and overidentified 
models, addresses the concern that weak instruments can lead to size distortion of Wald 
tests on the parameters in finite samples. The Wald test is a joint statistical significance 
of the endogenous regressors in the structural model [131 = 0 in (G .2) ] at a level of 0.05. 
The practitioner chooses a tolerance for the size distortion of this test. For example, 
if we will not tolerate an actual test size greater than r = 0.10, then with m = 1 and 
K 2 = 3, the critical value of the F test from the Stock� Yogo tables is 22.30. If, instead, 
r = 0.15, then the critical value is 12.83. 

The test statistic and critical values are printed following the ivregress postesti­
mation esta t f irststage command. The critical values are considerably larger than 
the values used for a standard F test of the joint significance of a set of regressors. We 
focus on the 2SLS estimator, though critical values for the LIML estimator are also given. 

6.4.3 The estat firststage command 

Following ivregress ,  various diagnostics and tests for weak instruments are provided 
by est at first stage. The syntax for this command is 

estat firststage [ ,  foreenonrobust all ] 
The foreenonrobust option is used to allow use of estat f irststage even when 
the preceding i vregress· command used the vee (robust) option. The reason is that 
the underlying theory for the tests in estat firststage assumes that regression er­
rors are Gaussian and independent and identically distributed ( i . i .d. ) .  By using the 
foreenonrobust option, we are acknowledging that we know this, but we are nonethe­
less willing to use the tests even if, say, heteroskedasticity is present . 

If there is more than one endogenous regressor, the all option provides separate sets 
of results for each endogenous regressor in addition to the key joint statistics for the 
endogenous regressors that are automatically provided. It also produces Shea's partial 
R2 . 

6.4.4 Just-identified model 

We consider a just-identified model with one endogenous regressor, with hLempunion 
instrumented by one variable, ssira tio. Because we use vee (robust) in ivregress, 
we need to add the foreenonrobust option. We add the all option to print Shea's 
partial R2, which is unnecessary here because we have only one endogenous regTessor. 
The output is in four parts. 
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• Weak instrument tests - just-identified model 
quietly ivregress 2sls ldrugexp (hi_empunion = ssiratio) $x2list, vce(robust) 
estat firststage, forcenonrobust all 

Instrumental variables (2SLS) regression Number of obs 10089 
F( 6 ,  10082) c 1 1 9 . 1 8  
Prob > F 0 . 0000 
R-squared 0 .  0761 
Adj R-squared 0 . 0755 
Root MSE . 46724 

Robust 
hi_empunion Coef.  Std. Err. t P> l t l  [95/. Conf . Interval] 

totchr . 0127865 . 0036655 3 . 49 0 . 000 . 0056015 . 0 199716 
age - . 0086323 . 0007087 -12 . 18  0 .000  - . 0100216 - . 0072431 

female - . 07345 . 0096392 -7.62 0 . 000 - . 0923448 - . 0545552 
blhisp - . 06268 . 0122742 -5 . 11 0 . 000 - . 08674 - . 0386201 

line . 0483937 . 0 066075 7 . 32 0 . 000 . 0354417 . 0613456 
ssiratio - . 1916432 . 0236326 - 8 . 1 1  0 . 000 - . 2379678 - . 1453186 

cons 1 . 028981 . 0581387 17 .70  0 . 000 . 9150172 1 . 142944 

(no endogenous regressors) 
( 1) ssiratio = 0 

F(  1 '  10082) = 6 5 . 7 6  
Prob > F = 0 . 0000 

First-stage regression summary statistics 

Adjusted Partial Robust 
Variable R-sq. R-sq. R-sq. F ( 1, 10082) Prob > F 

hi_empunion 0 . 0761 0 . 0755 0 . 0179 65 .7602 0 . 0000 

Shea "s partial R-squared 

Shea"s 
Variable 

Shea "s 
Partial R-sq. Adj . Partial R-sq. 

hi_empunion 0 . 0179 

Minimum e igenvalue statistic 
Critical Values 
Ho: Instruments are Ye� 

2SLS relative bias 

2SLS Size of nominal 5/. Wald 
LIML Size of nominal 5/. Wald 

183.98 

tes t  
tes t  

0 . 0174 

# of endogenous regressors: 
# of excluded instruments :  

5 /.  10/. 20/. 30/. 
(not available) 

10/. 15/. 20/. 25/. 
1 6 . 38 8 . 9 6  6 . 66 5 . 53 
1 6 . 3 8  8 . 96 6 . 66 5 . 53 

l 
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The first part gives the estimates and related statistics for the first-stage regression. 
The second part collapses this output into a summary table of key diagnostic statis­

tics that are useful in suggesting weak instruments. The first two statistics are the R2 
and adjusted-R2 from the first-stage regression. These are around 0.08, so there will be 
considerable loss of precision because of rv estimation. They are not low enough to flag 
a weak-instruments problem, although, as already noted, there may still be a problem 
because ssira tio may be contributing very little to this fi t. To isolate the explanatory 
power of ssira tio in explaining hLempunion, two statistics are given. The partial R2 
is that between hLempunion and ssira tio after controlling for totchr, age, female, 
blhisp, and line. This is quite low at 0.0179, suggesting some need for caution. The 
final statistic is an F statistic for the joint significance of the instruments excluded from 
the structural model. Here this is a test on just ssira tio, and F = 65 .76 is simply 
the square of the t statistic given in the table of estimates from the first-stage regres­
sion ( 8 . l l2 = 65.76 ) . This F statistic of 65.76 is considerably larger than the rule of 
thumb value of lO that is sometimes suggested, so ssira tio does not seem to be a weak 
instrument . 

The thjrd part gives Shea's partial R2 , which equals the previously discussed partial 
R2 because there is just one endogenous regressor. 

The fourth part implements the tests of Stock and Yogo. The first test i::; not 
available because the model is just-identified rather than overiclentified by two or more 
restrictions. The second test gives critical values for both the 2SLS estimator and the 
LIML estimator. We are considering the 2SLS estimator. If we are willing to tolerate 
distortion for a 5% Wald test based on the 2SLS estimator, so that the true size can be 
at tnost 10%, then we reject the null hypothesis if the test statistic exceeds 16.38. It 
is not exactly dear what test statistic to use here since theory does not apply exactly 
because of heteroskedasticity. The reported minimum eigenvalue statistic of 18:3.98 
equals the F statistic that ssira tio = 0 if default standard errors are used in the 
first-stage regression. We instead used robust standard errors (vce (robust ) ) ,  which 
led to F = 65.76. The theory presumes homoskedastic errors, which is clearly not 
appropriate here. But both F statistics gTeat.ly exceed the critical value of 16 .:38, so we 
feel comfortable in rejecting the null hypothesis of weak instruments. 

6.4.5 Overidentified model 

For a model with a single endogenous regressor that is overidentifiecl, the output is of 
the same format aH the previous example. The F statistic wm now be a joint tet>t for 
the several instruments. If there are three or more instruments, so that there <:U'e two 
or more overidentifying restrictions, then the relative-bias criterion can be used. 

vVe consider an example with three overidenti:fying restrictions: 
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* Weak instrument tests - t�o or more overidentifying restrictions 
quietly ivregress gmm ldrugexp (hi_empunion � ssiratio lo�income multlc firmsz) 

> $x2list , v ce(robust) 

estat firststage ,  forcenonrobust 
Instrumental variables (2SLS) regression 

Robust 
hi_empunion Coef. S td. Err. t P> i t l  

totchr . 0133352 . 0 036559 3 . 65 0 .000  
age - . 0 079562 . 0007103 - 1 1 . 2 0  0 . 000 

female - . 0724447 . 0096004 -7 .55  0 . 000 
blhisp - . 0675607 . 012208 -5 .53  0 . 000 

line . 040988 . 0064527 6 . 35 0 . 000 
ssiratio - . 1689516 . 0230641 -7.33 0 . 000 

lowincome - . 0 636927 . 0122671 -5 . 19 0 . 000 
multlc . 1 150699 . 0210091 5 . 48 0 . 000 
firmsz . 0036505 . 0 018937 1 .  93 0 . 054 

cons .9898542 . 0583976 1 6 . 9 5  0 . 000 

(no endogenous regressors) 
1) ssiratio = 0 
2) lowincome :::. 0 
3) multlc � 0 
4) fixmsz = 0 

F (  4 ,  10079) 44.82 
Prob > F 0 . 0000 

First-stage regression summary statistics 

Variable R-sq. 

hi_empunion 0 . 0821 

Adjusted 
R-sq. 

0 . 0812 

62. 749 

Partial 
R-sq. 

0 . 0243 

Number of obs � 10089 
F( 9 ,  10079) 9 6.79  
Prob > F 0 . 0000 
R-squared 0 . 0821 
Adj R-squared 0 . 0812 
Root MSE .46579 

[95/. Conf . Interval] 

. 0061689 . 0205015 
- . 0093486 - . 0065637 
- . 0912635 - . 053626 
- . 0914908 - . 0436306 

. 0 283394 . 0536366 
- . 2 141619 - . 1237414 
- . 0877386 - . 0396467 

. 0738879 . 1562519 
- . 0000616 . 00736?.5 

.8753833 1 . 104325 

Robust 
F (4 , 10079) Prob > F 

44 .823 0 . 0000 

Minimum eigenvalue statistic 
Critical Values 
Ho: Instruments are �eak 

·# of endogenous regressors: 
# of excluded instruments : 4 

5/. 10/. 20/. 30/. 
2SLS relative bias 16 .85  1 0 . 27 6 .  71 5 . 34 

10/. 15/. 20'l, 25/. 
2SLS Size of nominal 5/. Wald test 24.58 1 3 . 9 6  10 .26  8 . 3 1  
L I ML  Size of nominal 5/. Wald test 5 . 44 3 . 87 3 . 3 0  2 . 98 

Using either F = 44.82 or the rmmmum eigenvalue of 62.749, we firmly reject the 
null hypothesis of weak instruments. The endogenous regressor hLempunion, from 
structural-model estimates not given, has a coefficient of -0.812 and a standard error 
of 0.185 compared with -0.898 and 0.221 when ssira tio is the only instrument. 

l 

I 
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6.4.6 More than one endogenous regressor 

With more than one endogenous regressor, est at firststage reports weak-instruments 
diagnostics that include Shea's partial R2 and the tests based on the minimum eigen­
value statistic. The all option additionally leads to reporting for each endogenous 
regressor the first-stage regression and associated F statistic and partial R2. 

6.4. 7 Sensitivity to choice of instruments 

In the main equation, �Lempunion has a strong negative impact on ldrugexp. This con­
trasts with a small positive effect that is observed in the OLS results when hLempunion 
is treated as exogenous; see section 6.3.6. If our instrument ssira tio is valid, then this 
would suggest a substantial bias in the OLS result. But is this result sensitive to the 
choice of the instrument? 

To address this q�;.estion, we compare results for four just-identified specifications, 
each estimated using just one of the four available instruments. We present a table with 
the structural-equation estimates for OLS and for the four IV estimations, followed by 
the minimum eigenvalue statistic (which equals the F statistic because we use just one 
endogenous regressor) for each of the four IV estimations. We have 

• Compare 4 just-identified model estimates with different instruments 
quietly regress  ldrugexp hi_empunion $x2list, vce (robust) 
estimates store DLSO 

quietly ivregres s  2sls ldrugexp (hi_empunion=ssiratio) $x2list, vce (robust) 
estimates store IV_INSTl 
quietly estat firststage, forcenonrobust 
scalar mel = r (mi�eig) 
quietly ivregress 2sls ldrugexp (hi_empunion=lowincome) $x2list, vce (robust) 
estimates store IV_INST2 

quietly estat firststage, forcenonrobust 
scalar me2 = r(mineig) 

quietly ivregre ss 2sls ldrugexp (hi_empunion=multlc) $x2list, vce(robust) 
estimates store IV_INST3 
quietly estat firststage , forcenonrobust 

scalar me3 = r (mineig) 

quietly ivregress 2sls ldrugexp (hi_empunion=firmsz) $x2list, vce(robust) 
estimates store IV_INST4 

quietly estat firststage, forcenonrobust 
scalar me4 = r(mineig) 

(Continued on next page) 
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estimates table OLSO IV_INSTl IV_INST2 IV_INST3 !V_INST4, b(/.8.4f)  s e  

Variable DLSO IV INSTl 

hi_empunion 0 . 0739 - 0 . 8976 
0 . 0260 0 . 2211 

totchr 0 . 4404 0 . 4503 
0 . 0094 0 . 0102 

age - 0 . 0035 -0. 0132 
0 . 0019 0 . 0030 

female 0 . 0578 - 0 . 0204 
0 . 0254 0 . 0326 

blhisp -0  . . 1513 -0 . 2174 
0 . 0341 0 . 0395 

line 0 . 0105 0 . 0870 
0 . 0137 0 . 0226 

cons 5 .8 611  6 . 7872 
0 . 1571 0 . 2638 

display "Minimum eigenvalues are:  

IV INST2 

0 . 1170 
0 . 3594 
0 . 4399 
0 . 0100 

-0 . 0031 
0 . 0041 
0 . 0613 
0 . 0381 

- 0 . 1484 
0 . 0416 
0 . 0071 
0 . 0311 
5. 8201 
0 . 3812 

11 mel 

IV_INST3 IV_INST4 

- 1 . 3459 - 2 . 9323 
0 . 4238 1 . 4025 
0 . 4548 0 . 4710 
0 . 0116  0 . 0203 

- 0 . 0177 - 0 . 0335 
0 . 0048 0 . 0143 

- 0 . 0565 -0 . 1842 
0 .  0449 0 . 1203 

-0. 2479 - 0 . 3559 
0 . 0489 0 . 1098 
0 . 1223 0 . 2473 
0 . 0371 0 . 1130 
7 . 2145 8 . 7267 
0 . 4419 1 .  3594 

legend: b/se 
_s(2) me2 _s(2) me3 _s(2) 

Minimum eigenvalues are: 183. 97973 54. 328603 55 . 157581 9 . 9595082 
me4 

., 

The different instruments produce very different IV estimates for the coefficient of the 
endogenous regressor hLempunion, though they are within two standard errors of each 
other (with the exception of that with lowincome as the instrument) . All differ greatly 
from OLS estimates, aside from when lowincome is the instrument (IV_INST2) . The 
coefficient of the most highly statistically significant regTessor, totchr,  changes little 
with the choice of instrument. Coefficients of some of the other exogenous regressors 
change considerably, though there is no sign reversal aside from f emale. 

Because all models are just-identified with one endogenous regressor, the minimum 
eigenvalue statistics can be compared with the critical value given in section 6.4.4. If 
we are willing to tolerate distortion for a 5% Wald test based on the 2SLS estimator so 
that the true size can be at most 10%, then we reject the null hypothesis if the test 
statistic exceeds 16.38. By this criterion, only the fi.nal instrument, firmsz, is weak . . 

When we do a similar sensitivity analysis by progressively adding lowincome, 
mul tlc, and firmsz as instruments to an originally just-identifi.ed model with ssira tio 
as the instrument, there is little change in the 2SLS estimates; see the exercises at the 
end of this chapter. 

There are several possible explanations for the sensitivity in the just-identifi.ed case. 
The results could reflect the expected high variability of the IV estimator in a just­
identified model, variability that also reflects the differing strength of different instru­
ments. Some of the instruments may not be vaJid instruments. Perhaps it is equally 
likely to be the case that the results reflect model misspecification-relative to a model 
one would fit in a serious empirical analysis of ldrugexp, the model used in the exam­
ple is rather simple. While here we concentrate on the statistical tools for exploring 
the issue, in practice a careful context-specific investigation based on relevant theory is 
required to satisfactorily resolve the issue. 
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6 .5 Better inference with weak instruments 
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The preceding section considers diagnostics and tests for weak instruments. If instru­
ments are not weak, then we use standard asymptotic theory. A different approach when 
weak instruments are present is to apply an alternative asymptotic theory that may be 
more appropriate when instruments are weak or to use estimators other than 2SLS, for 
which the usual asymp-:;otic theory may provide a more reasonable approximation when 
instruments are weak. 

6.5.1 Conditional tests and confidence intervals 

The conditional approach focuses on inference on the coefficient of the endogenous 
regressor in .the structural model. Critical values, p-values, and confidence intervals are 
obtained that are of asymptotically correct size, assuming i .i .d. errors, no matter how 
weak the instruments. 

The user-written condi vreg command, developed by Mikusheva and Poi (2006), is 
a significant enhancement of an earlier version of condivreg. It implements methods 
that are surveyed and further developed in Andrews, Moreira, and Stock (2007). The 
critical values obtained are typically larger than the usual asymptotic critical values, as 
can be seen in the example below. 

The condi vreg command has the same basic syntax as ivregress, except that 
the specific estimator used (2sls or liml) is passed as an option. The default is to 
report a corrected p-value for the test of statistical significance and a corrected 95% 
confidence interval based on the likelihood-ratio (LR) test statistic. Under standard 
asymptotic theory the Wald, LR, and Lagrange multiplier (LM) tests are asymptotically 
equivalent under local alternatives . Here, instead, the LR test has better power than the 
LM test, and the Wald test has very poor power. The lm option computes the LM test 
and associated confidence interval , and there is no option for the Wald. The ar option 
computes the size-corrected p-value for an alternative test statistic, the Anderson-Rubin 
test statistic. The leve l (#)  option is used to give confi.dence intervals other than 95%, 
and the test (# )  option is used to get p-values for tests of values other than zero for 
the coefficient of the endogenous regressor. 

We consider the original example with the single instrument ssira tio for the 
hLempunion variable. vVe have 

(Continued on next page) 
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. * Conditional test and confidence intervals when weak instruments 

. condivreg ldrugexp (hi_empunion = ssiratio) $x2list, 1m ar 2sls test(O) 

Instrumental variables (2SLS) regression 
First-stage results Number of obs 10089 

F (  6 ,  10082) 319 . 62  
F (  1 ,  10082) 183.98 Prob > F 0 . 0000 
Prob > F 0 . 0000 R-squared 0 . 0640 
R-squared 0 .  0761 Adj R-squared = 0 . 0634 
Adj R-squared 0 . 0755 

ldrugexp Coef. Std.  Err. t P> l t l  

hi_empunion - .  8975913 . 2079906 -4 .32 0 . 000 
totchr . 4502655 . 0104225 43 .20  0 . 000 

age - . 0132176 . 0028759 -4 . 60 0 . 000 
female - . 020406 . 0315518 -0 .65  0 .518  
blhisp - . 2174244 . 0386879 -5 . 62 0 . 000 

line . 0870018 . 0220221 3 . 95 0 .000  
cons 6 . 78717 .2555229 2 6 . 5 6  0 . 000 

Instrumented: hi_empunion 
Instrument s :  totchr age female blhisp line ssiratio 

Root MSE 1 . 318 

[95/. Conf . Interval]. 

- 1 . 305294 - . 4898882 
.4298354 .4706957 

- . 0188549 - . 0075802 
- . 0822538 . 0414418 
- . 2932603 - . 1415884 

. 0438342 . 1301694 
6 . 286294 7 . 288046 

Confidence set and p-value for hi_empunion are based on normal approximation 

Test 

Conditional LR 
Anderson-Rubin 
Score (LM) 

Coverage-corrected confidence sets and p-values 
for Ho: _b [hi_empunionl = 0 

LIML estimate of _b[hi_empunion] = - . 8975913 

Confidence Set 

[ - 1 . 331227, - . 5061496] 
[-1 . 331227, -. 5061496] 
[ -1 . 331227, - . 5 061496] 

p-value 

0 . 0000 
0 . 0000 
0 . 0000 

The first set of output is the same as that from ivregress with default standard errors 
that assume i.i.d. errors. It includes the first-stage F = 183.98, which strongly suggests 
weak instruments are not a problem. All three size-corrected tests given in the second 
set of output give the same 95% confidence interval of [ - 1.331, -0.506] that is a bit 
wider than the conventional asymptotic interval of [ -1 .305, -0.490 ]. This again strongly 
suggests there is no need to correct for weak instruments. The term "confidence set" is 
used rather than confidence interval because it may comprise the union of two or more 
disjointed intervals. 

The preceding results assume i.i .d. model errors, but errors are heteroskedastic here. 
This is potentially a problem, though from the output in section 6.3.4, the robust stan­
dard error for the coefficient of hLempunion was 0.221 ,  quite similar to the nonrobust 
standard error of 0.208. 

Recall that tests suggested f irmsz was a borderline weak instrument. When we 
repeat the previous command with firmsz as the single instrument, the corrected con­
fidence intervals are considerably broader than those using conventional asymptotics; 
see the exercises at the end of this chapter. 

l .
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6.5.2 U M L estimator 
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The literature suggests several alternative estimators that are asymptotically equivalent 
to 2SLS but may have better finite-sample properties than 2SLS. 

The leading example is the LIML estimator. This is <based on the assumption of 
joint normality of errors in the structural and first-stage equations. It is an ML esti­
mator for obvious reasons and is a limited-information estimator when compared with 
a full-information approach that specifies structural equations (rather than first-stage 
equations) for all endogenous variables in the model. 

The LIML estimator preceded 2SLS but has been less widely used because it is known 
to be asymptotically equivalent to 2SLS. Both are special cases of the k-class estimators. 
The two estimators differ in fi.nite samples, however, because of differences in the weights 
placed on instruments. Recent research has found that LIML has some desirable finite­
sample properties, especially if the instruments are not strong. For example, several 
studies have shown that LIML has a smaller bias than either 2SLS or GMM. 

The LIML estimator is a special c ase of the so-called k-class estimator, defined as 

where the structural equation is denoted here as y = X(3 + u. The LIML estimator sets 
k equal to the minimum eigenvalue of (Y'MzY)-112Y'Mx,Y(Y'MzYJ- 112 ,  where 
Mx, = I - X1 (X�X�)- 1X 1 ,  Mz = I - Z(Z'z)- I Z ,  and the first-stage equations are 
Y = Zll + V. The estimator has a VCE of 

� (� ) 2 { ' ( )-1  }-1 
V f3k-ctas" = s X I - kMz X 

where s2 = u'u/ N ender -the assumption that the errors u and V are homoskedastic. 
A leading k-class estimator is the 2SLS estimator, when k = 1 .  

The LIML estimator is performed by using the ivregress liml command rather 
than ivregress 2sls.  The vee (robust) option provides a robust estimate of the VCE 
for LIML when errors are heteroskedastic. In that case, the LIML estimator remains 
asymptotically equivalent to 2SLS. But in finite samples, studies suggest LIML may be 
better. 

6.5.3 Jackknife IV estimator 

The jackknife IV estima:or (JIVE) eliminates the correlation between the first-stage fitted 
values and the structural-equation error term that is one source of bias of the traditional 
2SLS estimator. The hope is that this may lead to smaller bias in the estimator. 

Let the subscript ( -i) denote the leave-one-out operation that drops the ith ob­
servation. Denote the structural equation by y; = x;f3 + u , ,  and consider first-stage 
equations for both endogenous and exogenous regressors, so x� = z;n + v; . Then, 
for each i = 1, . . .  , N, we estimate the parameters of the first-stage model with the 
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ith observation deleted, regressing X{-i) on Z(-i ) •  and given estimate IIi construct 
the instrument for observation i as JC; = z�ft,. Combining for i = 1, . . .  , N yields an 

instrument matrix denoted by X(-i) with the ith row x�, leading to the JIVE 

The user-written j ive command (Poi 2006) has similar synta.."'< to ivregress,  except 
that the specific estimator is passed as an option. The variants are uji vel and uji ve2 
(Angrist , Imbens, and Krueger 1999) and j ive! and j ive2 (Blomquist and Dahlberg 
1999). The default is uji vel .  The robust option gives heteroskedasticity-robust stan­
dard errors. 

There is mixed evidence to date on the benefits of using JIVE; �;;ee the articles cited 
above and Davidson and MacKinnon (2006). Caution should be exercised in its use. 

6.5.4 Comparison of 2SLS, L IML, J IVE, and G M M  

Before comparing various estimators, we introduce the user-written ivreg2 command, 
most recently described in Baum, Schaffer, and Stillman (2007). This overlaps consid­
erably with i vregress but also provides additional estimators and statistics, and stores 
many results conveniently in e ( ) .  

The format of ivreg2 is similar to  that of ivregress, except that the particular es­
timator used is provided as an option. We use ivreg2 with the gmm and robust options. 
When applied to an overidentified model, this yields the optimal GMM estimator when 
errors are heteroskedastic. It is equivalent to ivreg gmm with the wmatrix(robust) 
option. 

We compare estimators for an overidentified model with four instruments for 
hLempunion. We have 

. • Variants of IV Estimators: 2SLS, LIML, JIVE, GMM_het , GMM-het using IVREG2 

. global ivmodel "ldrugexp (hi_empunion = ssiratio lowincome multlc firmsz) 
> $x2list" 

quietly ivregress 2sls $ivmodel, vce (robust) 
estimates store TWOSLS 
quietly ivregress liml $ivmodel ,  vce (robust) 

estimates store LIML 
quietly j ive $i vmodel, robust 
estimates store JIVE 
quietly ivregress gmm $ivmodel , wmatrix(robust) 

estimates store GMM_het 
quietly ivreg2 $ivmode l ,  gmm robust 
estimates store IVREG2 
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estimates table TWOSLS LUlL JIVE GMM_het IVREG2 , b (/.7 .4£)  se 

Variable TWDSLS LIML JIVE GMM_het IVREG2 

hi_empunion -0 . 8623 -0 .9156 -0 .9129 -0. 8124 -0 .8124 
0 . 1868 0 . 1989 0 . 1 998 0 . 1846 0 . 1861 

totchr 0 . 4499 0 . 4504 0 . 4504 0 . 4495 0 . 4495 
0 . 0101 0 . 0102 0. 0 102 0 . 0100 0 . 0101 

age -0.0129 - 0 . 0134 -0. 0134 - 0 . 0125 -0. 0125 
0 . 0028 0 . 0029 0 . 0029 0 . 0027 0 . 0028 

female -0 . 0176 -0 . 0219 -0 .0216 -0 . 0105 -0.0105 
0 . 0310 0 . 0316 0 . 0317 0 . 0307 0 . 0309 

blhisp -0.2150 -0.2186 -0 . 2185 -0 . 2061 -0 . 2061 
0 . 0386 0 . 0391 0 . 0391 0 . 0383 0 . 0385 

line 0 . 0842 0 . 0884 0 . 0882 0 . 0797 0 . 0797 
0 . 0206 0 . 0214 0 . 0214 0 . 0203 0 . 0205 

cons 6 . 7536 6 . 8043 6 . 8018 6. 7126 6. 7126 
0 . 2446 0 . 2538 0 . 2544 0 . 2426 0 . 2441 . 

legend : b/se 

Here there is little variation across estimators in estimated coefficients and standard 
errors. As expected, the last two columns give exactly the same coefficient estimates, 
though the standard errors differ slightly. 

6 . 6  3SlS systems estimation 

The preceding estimators are asymmetric i n  that they specify a structural equation for 
only one variable, rather than for all endogenous variables. For example, we specified a 
structural model for ldrugexp, but not one for hLempunion. A more complete model 
specifies structural equations for all endogenous variables. 

Consider a multiequation model with m (;::. 2) linear structural equations, each of 
the form 

For each of the m endogenous regTessors Yj ,  we specify a structural equation with the 
endogenous regressors y j ,  the subset of endogenous variables that determine y j, and the 
exogenous regressors Xj, the subset of exogenous variables that determine Yj ·  Model 
identification is secured by rank and order conditions, given in standard graduate texts , 
requiring that some of the endogenous or exogenous regressors are excluded from each 
Yi equation. 

The preceding IV estimators remain valid in this system. And specification of the 
full system can aiel in providing instruments, because any exogenous regressors in the 
system that do not appear in Xj can be used as instruments for W ·  

Under the strong assumption that errors are i .i .d. , more-efficient estimation is possi­
ble by exploiting cross-equation correlation of errors, just as for the SUR model discussed 
in section .5 .4. This estimator is called the three-stage least-squares (3SLS) estimator. 
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We do not pursue it in detail, however, because the 3SLS estimator becomes inconsistent 
if errors are heteroskedastic, and errors are often heteroskedastic. 

For the example below, we need to provide a structural model for hLempunion 
in addition to the structural model already specified for ldrugexp. We suppose that 
hLempunion depends on the single instrument ssira tio, on ldrugexp, and on female 
and blhisp. This means that we are (arbitrarily) excluding two regressors, age and 
line. This ensures that the hLempunion equation is overidentified. If instead it was 
just-identified, then the system would be just-identified because the ldrugexp is just­
identified, and 3SLS would reduce to equation-by-equation 2SLS. 

The syntax for the reg3 command is similar to that for sureg, with each equation 
specifi ed in a separate set of parentheses. The endogenous variables in the system are 
simply determined, because they are given as the first variable in each set of parentheses. 
We have 

. • 3SLS estimation requires errors to be homoskedastie 
. reg3 (ldrugexp hi_empunion totehr age female blhisp line) 
> (hi_empunion ldrugexp totebr female blhisp ssiratio) 
1bree-stage least-squares regression 

Equation Dbs Parms RMSE 11R-sq" ehi2 p 

ldrugexp 10089 6 1 .  314421 0 . 0686 1920.03 0 . 0000 
hi_empunion 10089 5 1 . 709026 -11 . 3697 6 1 . 58 0 . 0000 

Coef . Std. Err. z P> l z l  [95/. Conf . Interval] 

ldrugexp 
hi_empunion - . 8771793 . 2057101 -4 .26  0 .  DOD  - 1 . 280364 - . 4739949 

totebr .4501818 .0104181 43.21  0 . 000 . 4297626 . 470601 
age - . 0138551 . 0027155 -5 . 10 0 . 000 - .  0191774 - . 0085327 

female - . 0190905 . 0314806 - 0 . 6 1  0 . 544 - . 0807914 .0426104 
blhisp - .  2191746 . 0385875 -5 . 68 0 . 000 - . 2948048 - . 1435444 

line . 0795382 . 0190397 4 . 18 0 . 000 . 0422212 . 1 168552 
_cons 6. 847371 . 2393768 28.60 0 . OD D  6 .  378201 7 .  316541 

hi_empunion 
ldrugcxp 1 .  344501 . 3278678 4 . 10 0 . 000 . 7018922 1 .  98711 

totebr - . 5774437 . 1437134 -4.02 0 . 000 - .  8591169 - . 2957706 
female - . 1343657 . 0368424 -3.65 0 . 000 - . 2065754 - . 0621559 
blhisp . 1587661 . 0711773 2 . 23 0 . 026 . 0192612 . 2982709 

ssiratio - .  4167723 .05924 -7 .04  0 . OD D  - . 5328805 - . 300664 
cons - 6 . 982224 1 . 841294 - 3 .79  0 . 000 -10 . 59109 -3 . 373353 

Endogenou� variables :  ldrugexp hi_empunion 
Exogenous variabl e o :  totebr age female blhisp line ssira tio 
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i 6.7 Stata resources 

The i vregress command, introduced in Stata 10, is a major enhancement of the earlier 
command ivreg. The user-written ivreg2 command (Baum, Schaffer, and Stillman 
2007) has additional features including an extension of Ramsey's RESET test, a test 
of homoskedasticity, and additional tests of endogeneity. The user-written condivreg 
command enables inference with weak instruments assuming i.i .d. errors. The user­
written j ive command performs JIVE estimation. Estimation and testing with weak 
instruments and with many instruments is an active research area. Current official 
commands and user-w::-itten commands will no doubt be revised and enhanced, and 
new user-written commands may be developed. 

The ivregress command is also important for understanding the approach to IV 
estimation and Stata commands used in IV estimation of several nonlinear models in­
cluding the commands ivprobi t and i vtobi t. 

6.8 Exercises 

1 .  Estimate by 2SLS the same regression model as in section 6.3.4, with the instru­
ments mul tlc and firmsz. Compare the 2SLS estimates with OLS estimates. 
Perform a test of endogeneity of hLempunion. Perform a test of overidentifica­
tion. State what you conclude. Throughout this exercise, perform inference that 
is robust to heteroskedasticity. 

2. Repeat exercise 1 using optimal GMM. 

3. Use the model and instruments of exercise 1. Compare the following estimators: 
2SLS, LIML, and optimal GMM given heteroskedastic errors. For the last model, 
estimate the parameters by using the user-written ivreg2 command in addition 
to i vregress. 

4. Use the model of exercise 1. Compare 2SLS estimates as the instruments ssira tio, 
lowincome, mul tlc, and firmsz are progressively added. 

5. Use the model-and instruments of exercise 1. Perform appropriate diagnostics and 
tests for weak instruments using the 2SLS estimator. State what you conclude. 
Throughout this exercise, perform inference assuming errors are i.i .d. 

6. Use the model and instruments of  exercise 1. Use the user-written condivreg 
command to perform inference for the 2SLS estimator. Compare the results with 
those using conventional asymptotics. 

7. Use the model and instruments of exercise 1. Use the user-written j ive command 
and compare estimates and standard errors from the four different variants of JIVE 
and from optimal GMM. Throughout this exercise, perform inference that is robust 
to heteroskedasticity. 

8. Estimate the 3SLS model of section 6.6, and compare the 3SLS coefficient estimates 
and standard errors in the ldrugexp equation with those from 2SLS estimation 
(with default standard errors) . 
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9. This question considers the same earnings-schooling dataset a.s that analyzed in 
Cameron and Trivedi (2005, 1 1 1 ) .  The data are in mus06ivklingdata .  dta. The 
describe command provides descriptions of the regressors. There are three en­
dogenous regressors-years of schooling, years of work experience, and experience­
squared-and three instruments-a college proximity indicator, age, and age­
squared. Interest lies in the coefficient of schooling. Perform appropriate diag­
nostics and tests for wea.k instruments for the following model. State what you 
conclude. The following commands yield the IV estimator: 

. use mus06klingdata.dta , clear 
. global x2list black south76 smsa76 reg2-reg9 smsa66 
> sinmom14 nodaded nomomed daded momed f amedl-famed8 
. ivregress 2sls wage76 (grade76 exp76 expsq76 � col4 age76 agesq76) $x2list, 
> vee (robust) 
. estat firststage 

10. Use the same dataset a.s the previous question. Treat only grade76 a.s endogenous , 
let exp76 and expsq76 be exogenous, and use col4 as the only instrument. Per­
form appropriate diagnostics and tests for a weak instrument and state what you 
conclude. Then use the user-written condivreg command to perform inference, 
and compare the results with those using conventional a.symptotics. 

1 1 .  When an endogenous variable enters the repession nonlinearly, the obvious IV 
estimator is inconsistent and a modification is needed. Specifically, suppose y1 = 
f3y� + u, and the .first-stage equation for yz is yz = 1r2z + v, where the zero­
mean errors u and v are correlated. Here the endogenous regressor a:epears 
in the structural equation a.s y� rather than y2. The IV estimator is f31v = 
(L; ZiY�J - I Li ZiY! i ·  This can be implemented by a regular IV regression of 
y on y� with the instrument z: regress y� on z and then regress Yl on the first-
stage prediction {J. If instead we repess Yz on z at the first stage, giving yz, and 
then regress y1 on (y2 )2, an inconsistent estimate is obtained. Generate a simula­
tion sample to demonstrate these points. Consider whether this example can be 
generalized to other nonlinear models where the nonlinearity is in  regressors only, 
so that Y1 = g(yz) '{3 + u, where g(y2) is a nonlinear function of Yz · 

I 
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7 Q uantile regression 

7 .1 I ntroduction 

The standard linear regression is  a useful tool for summarizing the average relationship 
between the outcome variable of interest arid a set of regressors, based on the conditional 
mean function E(yJx). This provides only a partial view of the relationship. A more 
complete picture would provide information about the relationship between the outcome 
y and the regressors x at different points in the conditional distribution of y. Quantile 
regression ( QR) is a statistical tool for building just such a picture. 

Quantiles and percentiles are synonymous-the 0.99 quantile is the 99th percentile. 
The median, defined as the middle value of a set of ranked data, is the best-known 
specific quantile. The sample median is an estimator of the population median. If 
F(y) = Pr(Y :::; y) defines the cumulative distribution function (c.d.f.), then F(ymed) = 

1/2 is the equation whose solution defines the median Ymoo = F-1( 1/2 ) .  The quantile 
q, q E (0, 1) ,  is defined as that value of y that splits the data into the proportions q 
below and 1 - q above, i .e . ,  F(yq) = q and Yq = p-1(q) .  For example, if y0_99 = 200, 
then Pr(Y :::; 200) = 0.99. These concepts e."(tend to the conditional quantile regression 
function, denoted as Qq (yJx) ,  where the conditional quantile will be taken to be linear 
in x. 

QRs have considerable appeal for several reasons. Median regression, also called 
least absolute-deviations regression, is more robust to outliers than is mean regression. 
QR, as we shall see, permits us to study the impact of regressors on both the location 
and scale parameters of the model, thereby allowing a richer understanding of the data. 
And the approach is semiparametric in the sense that it avoids assumptions about 
parametric distributio:1 of regression errors. These features make QR especially suitable 
for heteroskedastic data. 

Recently, computation of QR models has become easier. This chapter explores the 
application of QR using several of Stata's QR commands. We also discuss the presen­
tation and interpretation of QR computer output using three examples, including an 
extension to discrete count data. 

7.2 QR 

In this section, we briefly review the theoretical background of QR analysis. 
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Let ei denote the model prediction error. Then ordinary least squares (OLS) mini­
mizes L:. e;, median regression minimizes I:, le i  I, and QR minimizes a sum that gives 
the asymmetric penalties ( 1 - q) lei I for overprediction and q lei I for underprediction. 
Linear progTamming methods need to be used to obtain the QR estimator, but it is still 
asymptotically normally distributed and easily obtained using Stata commands. 

7 .2 .1  Conditional quantiles 

Many applied econometrics studies model conditional moments, especially the condi­
tional mean function. Suppose that the main objective of modeling is the conditional 
prediction of y given x. Let fj(x) denote the predictor function and e(x) = y - fj(x) 
denote the prediction error. Then 

L{ e(x)} = L{y - fj(x)} 

denotes the loss associated with the prediction error e. The optimal loss-minimizing 
predictor depends upon the function L( · ) .  If L(e) = e2, then the conditional mean 
function, E (y[x) = x' {3 in the linear case, is the optimal predictor. If the loss criterion 
is absolute error loss, then the optimal predictor is the conditional median, denoted by 
med(ylx). If the conditional median function is linear, so that med(ylx) = x'{3, then 
the optimal predictor is fj = x'/3, where /3 is the least absolute-deviations estimator 
that minimizes I;; [y; - x�f31· 

Both the squared-error and absolute-error loss functions are symmetric, which im­
plies that the same penalty is imposed for prediction error of a given magnitude regard­
less of the direction of the prediction error. The asymmetry parameter q is specified. It 
lies in the interval (0, 1) with symmetry when q = 0.5 and increasing asymmetry as q 
approaches 0 or 1. Then the optimal predictor is the qth conditional quantile, denoted 
by Qq(y[x), and the conditional median is a special case when q = 0 .5 .  QR involves 
inference regarding the conditional quantile function. 

Standard conditional QR analysis assumes that the conditional QR Qq (y[x) is lin­
ear in x. This model can be analyzed in Stata. Recent theoretical advances cover 
nonparametric QR; see Koenker (2005). 

Quite apart from the considerations of loss function (on which agreement may be 
difficult to obtain) , there are several attractive features of QR. First, unlike the OLS 
regression that is sensitive to the presence of outliers and can be inefficient when the 
dependent variable has a highly nonnormal distribution, the QR estimates are more 
robust. Second, QR also provides a potentially richer characterization of the data. For 
example, QR allows us to study the impact of a covariate on the full distribution or any 
particular percentile of the distribution, not just the conditional mean. Third, unlike 
OLS, QR estimators do not require existence of the conditional mean for consistency. 
Finally, it is equivariant to monotone transformations. This means that the quantiles of 
a transformed variable y, denoted by h(y), where h( -)  is a monotonic function, equal the 
transforms of the quantiles ofy ,  so Qq{h(y)} = h{Qq(y)} .  Hence, if the quantile model 
is expressed as h(y), e.g. , lny, then one can use the inverse transformation to translate 

\:J J ··.:[ 
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the results back to y. This is not possible for the mean, because E{h(y)} =f. h{E(y)} .  
The equivariance property for quantiles continues to hold in the regression context, 
assuming that the conditional quantile model is correctly specifi ed; see section 7.3.4. 

7.2.2 Computation of QR estimates and standard errors 

Like OLS and maximum likelihood, QR is an extremum estimator. Computational im­
plementation of QR is different, however, because optimization uses linear programming 
methods. 

The qth QR estimator f3q minimizes over {3q the objective function 

N 
Q({3q) = L qjy; - x:f3qi + 

N 

L (1 - q) jy, - x:f3q i  (7.1) 

where 0 < q < 1 ,  and we use f3q rather than {3 to make clear that different choices of q 
estimate different values of {3. If q = 0.9, for example, then much more weight is placed 
on prediction for observations with y ;::: x' {3 than for observations with y < -:< {3. Often, 
estimation sets q = 0.5 ,  giving the least absolute-deviations estimator that minimizes 
Li. iy; - x;f3o.s l · 

The objective function ( 7.1 ) is not differentiable, so the usual gradient optimization 
methods cannot be applied. Instead it is a linear program. The classic solution method 
is the simplex method that is guaranteed to yield a solution in a finite number of simplex 
iterations. 

The estimator that minimizes Q(f3q) is an m estimator with well-established asymp­
totic properties. The QR.estimator is asymptotically normal under general conditions; 
see Cameron and Trivedi (2005, 88). It can be shown that 

/3q ;:.. N({3q, A -1BA -t )  (7.2) 

where A = L:;.; q(1 - q)x,x�, B = Li fu9 (Oj x;)x;x�, and fu9 (0 j x) is the conditional 
density of the error term uq = y - x' {3 q evaluated at Uq = 0. This analytical ex­
pression involves f uo (Ojx;) ,  which is awkward to estimate. Estimates of the VCE using 
the paired bootstrap method (see chapter 13) are often preferred, though this adds to 
computational intensity. 

7.2.3 The qreg, bsqreg, and sqreg commands 

The Stata commands for QR estimation are similar to those for ordinary regression. 
There are three variants-qreg, bsqreg, and sqreg-that are commonly used. The 
fi.rst two are used for estimating a QR for a specified value of q, without or with bootstrap 
standard errors, respectively. The sqreg command is used when several different values 
of q are specified simultaneously. A fourth command, used less frequently, is iqreg, for 
interquartile range regression. 
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The basic QR command is qreg, with the following syntax: 

qreg depvar [ indepvars ] [ if ]  [ in ]  [ weight ] [ , options ] 

A simple example with the qreg options set to default is qreg y x z. This will estimate 
the median regression, y;.,cd = {31 + f3zx + f3Jz, i .e. , the default q is 0.5. The reported 
standard errors are those obtained using the analytical formula (7.2). The quantile ( )  
option allows one to choose q .  For example, qreg y x z ,  quantile ( . 75) sets q = 0.75. 
The only other options are leve 1 ( #) to set the level for reported confidence intervals 
and two optimization-related options. There is no vee ( )  option for qreg. 

The bsqreg command is instead used to obtain bootstrap standard errors that as­
sume independence over i but, unlike (7 .2) ,  do not require an identical distribution. The 
standard errors from bsqreg are robust in the same sense as those from vee ( )  for other 
commands. The command syntax is the same as for qreg. A key option is reps ( # ) ,  
which sets the number of bootstrap replications. This option should b e  used because 
the default is only 20. And for replicability of results, one should first issue the set 
seed command. For example, give the commands set seed 10101 and bsqreg y x z ,  
reps(400) quantile ( .  75) . 

The iqreg command, used for interquartile range regression, has similar syntax and 
options. If data are clustered, there is no vee (cluster clustvar) option, but a clustered 
bootstrap could be used; see chapter 13. 

When QR estimates are obtained for several values of q,  and we  want to test whether 
regression coefficients for different values of q differ, the sqreg command is used. This 
provides coefficient estimates and an estimate �f the simultaneous or joint VCE of {3q 
across different specified values of q, using the bootstrap. The command syntax is 
again the same as qreg and bsqreg, and several quantiles ca:n now be specifi.ed in 
the quantile( )  option. For example, sqreg y x z ,  quantile ( . 2 ,  . 5 ,  . 8) reps(400) 
produces QR estimates for q = 0.2, q = 0 .5 ,  and q = 0.8, together with bootstrap 
standard errors based on 400 replications. 

7.3  QR for medical expenditures data 

We present the basic QR commands applied to the log of mec'.ical expenditures. 

7.3 .1  Data summary 

The data used in this example come from the Medical Expenditure Panel Survey (MEPS) 
and are identical to those discussed in section 3.2 .  Again we  consider a regression 
model of total medical expenditure by the Medicare elderly. The dependent variable 
is ltotexp, so observations with zero expenditures are omitted. The explanatory vari­
ables are an indicator for supplementary private insurance (suppins ) , one health-status 
variable (totchr), and three sociodemographic variables (age, female, white). 

l 
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7.3.2 QR estimates 

We first summarize the data: 

• Read in log of medical expenditures data and summarize 
use mus03data .dta , clear 
drop if ltotexp == . 

(109 observations deleted) 
summarize ltotexp suppins totchr age female white, separator(O) 

Variable Obs Mean Std. Dev. Min Max 

ltotexp 2955 8 . 059866 1 . 367592 1 . 098612 1 1 . 74094 
suppins 2955 . 5915398 .4916322 0 
totchr 2955 1 .  808799 1 . 294613 0 7 

age 2955 74. 24535 6 . 375975 65 90 
female 2955 . 5840948 .4929608 0 

white 2955 . 9736041 . 1603368 0 

209 

The major quantiles of 1 totexp can be obtained by using summarize , detail, 
and specific quantiles can be obtained by using cen tile. We instead illustrate them 
graphically, using the user-written qplot command. We have 

. • Quantile plot for ltotexp using user-written command qplot 

. qplot ltotexp, recast(line) scale ( 1 . 5 )  

The plot, shown i n  figure 7 . 1 ,  is the same as a plot of  the empirical c.d.f. o f  ltotexp, 
except that the a.'<es are reversed. We have, very approximately, q0.1 = 6, q0 . 25 = 7, 
qo.s = 8, qo.1s = 9, and q0,9 = 10. The distribution appears to be  reasonably symmetric, 
at least for 0.05 < q < 0.95. 

0 .2 .4 .6 
fraction of the data 

.8 . 1 

Figure 7 . 1 .  Quantiles of the dependent variable 

7 .3.2 QR estimates 

The basic QR output for the median regression, with standard errors computed using 
the default option, is illustrated with the qreg command. 
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. • Basic quantile regression for q = 0 . 5  

. qreg ltotexp suppins totchr age female white 
Iteration 1 :  WLS sum of weigh ted deviations 
Iteration 1 :  sum of a bs. weigh ted deviations 
Iteration 2 : ·  sum of abs. weighted deviations 
Iteration 3 :  sum of abs. weighted deviations = 

Iteration 4: sum of a bs. weigh ted deviations = 

Iteration 5 :  sum of a bs. weigh ted deviations 
Iteration 6 :  sum of a bs. weigh ted deviations 
note: alternate solutions exist 
Iteration 7: sum of a bs. weigh ted deviations 
Iteration 8 :  sum of a bs. weigh ted deviations 
Iteration 9 :  sum of abs. weighted deviations 
Iteration 10 : sum of abs. weighted deviations 
Iteration 1 1 :  sum of abs . weighted deviations 
Iteration 1 2 :  sum of abs. l<eighted deviations 
Iteration 1 3 :  sum of abs. weighted deviations 
Iteration 14: sum of abs. weighted deviations 
Iteration 1 5 :  sum of abs. weighted deviations 
Iteration 1 6 :  sum of abs. weighted deviations 

Median regression 

2801. 6338 
2801.9971 
2799.5941 
2799.5058 
2799 . 1722 
2797.8184 
2797. 6548 

2797. 0458 
2797. 0439 
2797. 0309 

2797 .021  
2797 .0134 
2796. 9984 
2796.9961 
2796.9901 
2796. 9889 
2796.9831 

Number of obs 
Raw sum of deviations 3110 .961  (about 8 . 111928) 
Min sum of deviations 2796.983 Pseudo R2 

ltotexp Coef . Std. Err. t P> l t l  :sst. Conf . 

suppins .2769771 . 04 71881 5 . 87 0 . 000 . 1844521 
totchr .3942664 . 0178276 22 . 12  0 . 000 . 3593106 

age .0 148666 . 003655 4 .07  0 . 000 . 0077 
female - . 0880967 . 0468492 - 1 . 88 0 . 060 - . 1799571 

white .4987456 . 1428856 3 .49  0 . 000 .218 5801 
cons 5. 648891 . 3000798 18 .82 0 . 000 5 . 060504 

2955 

0 . 1009 

Interval] 

. 369502 
.4292222 
. 0220331 
. 0037637 
.7789112 
6 . 237278 

The iterations here refer to simplex iterations rather than the usual Newton-R.aphson 
(or related gradient-method) iterations. All regressors, aside from female, are highly 
statistically significant with expected signs. 

7.3.3 Interpretation of conditional quantile coefficients 

Consider the standard bivariate regression model, for simplicity, with the conditional 
mean function E(y; lx;) = {30 + {31xi. This can be written as 

(7.3) 

where the error u; satisfies E(y; lx;) = 0.  

We denote the qth conditional quantile function of y given x as Qq(y lx) .  (The 
notation Qq(ylx) is used because it is analogous to E(ylx) . ] In general, (7.3) implies 
that 

Qq(Y ilxi ) = fJ1 + {3zx; + F; 2 (q) 
where F,, is the distribution function of u;. Conditional on Xi, the quantile depends 
on the distribution of u i  via the term F,;:: 1 (q). Tbis will depend on x; if, for example, 

l :1 
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errors are heteroskedastic. Then, i n  general, Qq(y ix) at different values o f  q will differ 
in more than just the iri tercept and may well even be nonlinear in x .  

In the special case that errors are independent and identically distributed (i . i .d .) ,  
considerable simplification occurs as F;;:/(q) = F;;1 (q) ,  -which does not vary with i .  
Then the conditional quantile is 

Here the conditional quantile functions have a common slope, differing only in the 
intercepts {30 + F;; 1 (q) .  In such a simple case, there is no need to use QR to obtain 
marginal effects (MEs) at different quantiles, because the quantile slope coefficient f32 
does not vary with the quantile. 

More generally, errors are not i . i .d . ,  for example, because of heteroskedasticity, and 
more than just the intercept varies. The standard quantile approach is to specify the 
conditional quantile fl:nction to be linear, though with intercept and slope parameters 
that may well vary with the quantile. In the general K-regressor, the standard linear 
conditional quantile function is 

The MEs after QR can be obtained in the usual way. For the jth (continuous) 
regressor, the ME is 

8Qq(yix) 
_ 

f3 . 
8x · - qJ J 

As for linear least-squares regression, the ME is given by the slope coefficient and is 
invariant across individuals, simplifying analysis. The interpretation is somewhat deli­
cate for discrete changes that are more than infinitessimal, however, because the partial 
derivative measures the impact of a change in Xj under the assumption that the in­
dividual remains in the same quantile of the distribution after the change. For larger 
changes in a regressor, the individual may shift into a different quantile. 

7.3.4 Retransformation 

For our example, with the dependent variable ltotexp = ln(totexp), the results from 
qreg give marginal effects for ln(totexp). We may want instead to compute the ME on 
totexp, not ltotexp. 

The equivariance property of QR is relevant. Given Qq(lnylx) = x'(3q, we have 
Qq (yix) = exp{Qq(lnylx)} = exp(x'(Jq) .  The ME on y in levels, given QR model x'(3q 
in logs, is then 
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This depends on x. The average marginal effect (AME) is { N- 1 L,�1 exp(x�,6q) }{3qj and 
can be estimated if we use the postestimation predict command to obtain exp(x£,Bq )  
and then average. We obtain 

* Obtain multiplier to convert QR coeffs in logs to AME in level s .  
quietly predict xb 

generate expxb = exp(xb) 
quietly summarize expxb 
display "Multiplier of QR in logs coeffs to get Al'IE in levels = " r(mean) 

Multiplier of QR in logs coeffs to get AME in levels = 3746.7178 

For example, the AME oLtotchr on ln(totexp) is 0.3943 from the output above. The 
implied AME of totchr on the levels variable is therefore 37 46.7 x 0.3943 = 14 77. One 
more chronic condition increases the conditional median of expenditures by $1 ,477. 

The equivariance property that Qq(y !x) = exp{ Qq( lnylx)} is exact only if the condi­
tional quantile function is correctly specified. This is unlikely to be the case because the 
linear model will inevitably be only an approximation. One case where the linear model 
is exact is where all regressors are discrete and we specify a fully saturated model with 
indicator variables as regressors that exhaust all possible interactions between discrete 
regressors. We pursue this in the second end-of-chapter exercise. 

7 . 3 .5 Comparison of estimates at different quantiles 

QRs can be  performed at different quantiles, specifically the quartiles q = 0.25, 0.50, and 
0.75. Here we do so and compare the results with one another and with OLS estimates. 
The QR standard errors use the default formula, (7.2) , except that for median regression 
(q = 0.50) we additionally use bsqreg to obtain bootstrap standard errors, with the 
reps 0 option set to 400 and the random-number generator seed set to 10101. We 
obtain 

* Compare (1 )  DLS;  (2-4) coeffs across quantiles ;  (5)  bootstrap SEs 
quietly regress ltotexp suppins totchr age female white 
estimates store OLS 

quietly qreg ltotcxp suppins totchr age female white ,  quantile ( . 25) 
estimates store QR_25 
quietly qreg ltotexp suppins totchr age female white, quantile ( . 50) 
estimates store QR_50 
quietly qreg ltotexp ouppins totchr age female whit e ,  quantile ( . 75 )  

estimates store QR_75 
set seed 10101 

quietly bsqreg ltotexp suppins totchr age female white, quant ( . 50) reps(400) 

estimates store BSQR_50 

J . . 
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estimates table DLS QR_25 QR_50 QR_75 BSQR_50, b(/.7 .3f)  s e  

Variable OLS QR_25 QR_50 QR_75 BSQR_50 

suppins 0 . 257 0 . 386 0 . 277 0 . 149 0 . 277 
0 . 046 0 . 055 0. 047 0 . 060 0 . 059 

totchr 0 . 445 0 . 459 0 . 394 0 . 374 0 . 394 
0 . 018 0 . 022 0 . 018 0 . 022 0 . 020 

.age 0 . 013 0 . 016 0 . 0 1 5  0 . 018 0 . 015 
0 . 004 0 . 004 0 . 004 0 . 005 0 . 004 

female -0. 077 -0 .016  -0. 088 -0 . 122 -0. 088 
0 . 046 0 . 054 0 . 047 0 . 060 0 . 052 

white 0 . 318 0 . 338 0 . 499 0 . 193 0 . 499 
0 . 14 1  0 . 166 0 . 143 0 . 182 0 . 233 

_cons 5 . 898 4 . 748 5 . 649 6 . 600 5 . 649 
0 . 296 0 . 363 0 . 300 0 . 381 0 . 385 

legend : b/se 

The coefficients vary across quantiles. Most noticeably, the highly statistically sig­
nificant regressor suppins (supplementary insurance) has a much gTeater impact at the 
lower conditional quantiles of expenditure. The standard errors are smaller for median 
regression (q = 0.50) than for the upper and lower quantiles (q = 0.25, 0.75), reflecting 
more precision at the center of the distribution. OLS coefficients differ considerably 
from the QR coefficients, even those for median regression. Comparing the third and 
fifth columns, for median regression the standard errors in this example are 10%-50% 
higher when estimated using the bootstrap method rather than the default method. 
We mainly use the default standard errors in this chapter for the simple reason that 
programs then run considerably faster. 

7 .3 .6 Heteroskedasticlty test 

One reason for coefficients differing across quantiles is the presence of heteroskedastic 
errors. From output not shown here, the OLS standard errors are similar whether the 
default or robust estimates are obtained, suggesting little heteroskedasticity. And the 
logarithmic transformation of the dependent variable that has been used often reduces 
heteroskedasticity. 

We use est at hettest to test against heteroskedasticity, which depends on the same 
variables as those in the regression. Then 

• Test for heteroskedasticity in linear model using estat hettest 
quietly regress ltotexp suppins totchr age female white 
estat hettest suppins totchr age female white, iid 

Breusch-Pagan I Cook-Weisberg test for heteroskedasticity 
Ho:  Constant variance 
Variables :  suppins totchr age female· white 
chi2(5) 7 1 . 38 
Prob > chi2 � 0 . 0000 

The null hypothesis of homoskedasticity is soundly rejected. 
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7 .3 . 7 Hypothesis tests 

It is possible to conduct hypothesis tests of equality of the regression coefficients at 
different conditional quantiles. 

Consider a test of the equality of the coefficient of suppins from QR with q = 0 .25 , 
q = 0.50, and q = 0.75. We first estimate using sqreg, rather than qreg or sqreg, to 
obtain the full covariance matrix of coefficients, and then we test. Because this uses the 
bootstrap, we need to set the seed and number of bootstrap replications. 

• Simultaneous QR regression with several values of q 
set seed 10101 

sqreg ltotexp suppins totchr age female white ,  q ( . 25  . 50 .75) reps(400) 
(fitting base model) 
(bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 
> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 

> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 
> . . . . . . . . .  · · · · · · · · · · · · · · · · · ·  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
> · · · · · · · · ·  . . . . . · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·  . . .  · · · · · ·  · · · · · · · · · · · · ·  

> . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ) 

Simultaneous quantile regression N=ber of obs = 2955 
bootstrap(400) SEs . 25 Pseudo R2 = 0 . 1292 

. 50 Pseudo R2 = 0 . 1009 

. 75 Pseudo R2 c 0 . 0873 

Bootstrap 
ltotexp Coef . Std. Err. t P> l t l  [95/. Conf. Interval] 

q25 
suppins .3856797 . 059541 6 . 48 0 . 000 .2589335 .5024259 

totchr .4 59022 . 0244648 18 .76  o .  000 . 4 1 10522 .5069919 
age . 0155106 . 0043515 3 . 5 6  0 . 000 . 0069783 . 0240429 

female - . 0160694 . 0579008 -0 .28 0 . 781 - . 1295996 . 0974608 
white . 3375935 . 1 076673 3 . 14 0 . 002 . 1264829 .5487042 

cons 4 .  747962 .3454094 13 .75  0 . 000 4 . 070694 5 . 42523 

q50 
suppins . 2769771 . 0535382 5 . 17 0 . 000 . 1720011 . 381953 
totchr . 3942664 .0188346 20 .93 0 . 000 .357336 .4311967 

age . 0148666 .0044951 3 . 31 0 .001  . 0060528 . 0236803 
female - . 0880967 .0506032 -1 .74  0 . 082 - . 1873178 . 0 111244 

white I .4987456 . 2135776 2 .34  0 . 020 .0799694 . 9 175219 
cons 5. 548891 .4015098 14 .07  0 .000 4 . 861623 6 . 436159 

q75 
suppins . 1488548 . 0649661 2 . 29 0 . 022 . 0214 712 .2762383 
totchr . 3735364 . 022233 1 6 . 80 o . ooo . 3299425 .4 171302 

age . 0182506 .0049719 3 . 67 0 . 000 . 0085018 . 0279995 
female - . 1219365 . 0542792 -2 .25 0 . 025 - .  2283654 - . 0155077 

white . 1931923 . 1 92686 1 . 0 0  0 . 31 6  - . 1846205 . 5710051 
cons 6 . 599972 . 4187657 15 .76  0 .000  5 .  778869 7 . 421075 

sqreg estimates a QR function for each specified quantile. Some of the coefficients 
appear to differ across the quantiles, and we use the test command to perform a 
Wald test on the hypothesis that the coefficients on suppins are the same for the three 

l .: I 

_j 
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quantiles. Because we  are comparing estimates from different equations, we  need a prefix 
to indicate the equation. Here the prefix for the model with q = 0.25, for example, is 
[q25] . To test that coefficients on the same variable have the same value in different 
equations, we use the syntax 

test [ eqname = eqname . . .  J : varlist 

We obtain 

. * Test of coefficient equality across QR with different q 

. test [q25=q50=q75] : suppins 
( 1 )  [q25) suppins - [q50)suppins = 0 
( 2) [q25)suppins - [q75) suppins = 0 

· F( 2, 2949) 5 . 32 
Prob > F = 0 . 0050 

The null hypothesis of coefficient equality is rejected at a level of 0.05. 

7.3.8 Graphical display of coefficients over quantiles 

An attractive way to present QR results is via a graphical display of coefficients of interest 
and their respective confidence intervals. This can be done manually by estimating the 
parameters of the QR model for a range of values of q, saving the results to file, and 
producing separate graphs for each regressor of the estimated coefficient plotted against 
the quantile q. 

This is done automatically by the user-written grqreg command, which provides 
95% confidence intervals in addition to estimated coefficients. One of the qreg, bsqreg, 
or sqreg commands must fi.rst be executed, and the confidence intervals use the stan­
dard errors from whichever command is used. The grqreg command does not have 
enormous flexibility. In particular, it plots coefficients for all regressors, not just se­
lected regressors. 

We use grqreg with the options cons to include the intercept in the graph, ci to 
include a 95% confidence interval, and ols and olsci to include the OLS coefficient and 
its 95% confidence interval. The graph option scale ( 1 . 1 ) is added to increase the size 
of the axis titles. The command uses variable labels on the y a.'Cis of each plot, so we 
provide better variable labels for two of the regressors. We have 

* Plots of each regressor's coefficients as quantile q varies 
quietly bsqreg ltotexp suppins totchr age female white, quantile ( . 50) reps(400) 
label variable suppins " = 1  if supp ins" 

label variable totchr " #  of chronic condns" 
grqr cg,  cons ci ols olsci scale ( 1 . 1 )  

In  figure 7.2, the horizontal lines are the OLS point estimates and confidence intervals 
(these do not vary with the quantile) .  The top middle plot shows that the coefficient 
on suppins is positive over most of the range of q, with a much larger effect at lower 
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quantiles. In the lower quantiles, the point estimates suggest that supplementary in­
surance is associated with 20-25% higher medical expenditures (recall that because the 
dependent variable is in logs, coefficients can be interpreted as semielasticitie5 ). Notice 
that confidence intervals widen at both the extreme upper and lower quantiles. 
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Figure 7.2. QR and OLS coefficients and confidence intervals for each regTessor as q 
varies from 0 to 1 

7.4 QR for generated heteroskedastic data 

To gain more insight on QR, we consider a simulation example where the quantiles are 
known to be linear, and we specify a particular form of multiplicative heteroskedasticity. 

7.4.1 Simulated dataset 

We use a simulated dataset, one where the conditional mean of y depends on the re­
gressors x2 and x 3 , while the conditional variance depends on only x 2 . 

If y = x'{3 + u and u = x' a x  e:, and it is assumed that x' a > 0 and that ti i s  
i . i .d. ,  then the quantiles are linear i n  x with the qth condit!.onal quantile Qq(yix) = 
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x1{,8 + a x F,-1 (q)}; see Cameron and Trivedi (2005, 86) . So for regressors that appear 
in the conditional mean but not in the heteroskedasticity function (i.e., Cl.j = 0), the QR 
coefficients do not change with q, while for other regressors the coefficients change even 
though the conditional quantile function is linear in x. 

If we let y = fJ1 + fJ2x2 + (33X3 + u, where u = (o1 + azx2) x e, then the QR 
coefficients for x2 will change with q while those for X3 will not. This result requires 
that Ql + 02X2 > 0, SO we generate x2 from a X2( 1) distribution. 

The specifi c data-generating process (DGP) is 

y = 1 + 1 X X2 + 1 X X3 + u; X2 � X2 (1 ) , X3 � N(O, 25) 

u = (0.1 + 0.5 x x2) x e; e � N(O, 25) 

We expect that the QR estimates of the coefficient of x3 will be relatively unchanged at 
1 as the quantiles vary, while the QR estimates of the coefficient of X2 will increase as q 
increases (because the heteroskedasticity is increasing in x2) . 

We first generate the data as follows: 

• Generated dataset with heteroskedastic errors 
set seed 10101 

set obs 10000 
obs was 2955, now 10000 

generate x2 = rchi2(1)  

generate x 3  = 5•rnormal (O)  
generate e = 5•rnormal(O)  

generate u = ( . 1+0. 5•x2)•e 
generate y = 1 + 1•x2 + 1•x3 + u 
summarize e x2 x3 u y 

Variable Obs Mean 

e 10000 - . 0536158 
x2 10000 1 . 010537 
x3_ 10000 - . 0037783 

u 10000 .0013916 
y 10000 2 .  00815 

Std. Dev. 

5 . 039203 
1 . 445047 
4 . 975565 
4 . 715262 
7 . 005894 

Min Max 

-17. 76732 18 . 3252 
3 . 20e-08 14 . 64606 

-17 . 89821 18 . 15374 
-51 . 39212 68.7901 
-40. 17517 86. 42495 

The summary statistics confirm that x3 and e have a mean of 0 and a variance of 25 
and that x2 has a mean of 1 and a variance of 2, as desired. The output also shows that 
the heteroskedasticity has induced unusually extreme values of u and y that are more 
than 10 standard deviations from the mean. 

Before we analyze the data, we run a quick check to compare the estimated coef­
ficients with their theoretical values. The output below shows that the estimates are 
roughly in line with the theory underlying the DGP. 
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. • Quantile regression for q = . 25 ,  .50  and .75 

. sqreg y x 2  x 3 ,  quantileC .25  . 50 .75)  
(fitting base model) 
(bootstrapping . . . . . . . . . . . . . . . . . . . .  ) 
Simultaneous quantile regression 

bootstrap (20) SEs 

Bootstrap 

Number of obs = 

. 25 Pseudo R2 = 
.50 Pseudo R2 
. 75  Pseudo R2 = 

10000 
0 . 5186 
0 . 5231 
0 . 5520 

y Coef. Std. Err.  t P> l t l  [95/. Conf. Interval] 

q25 
x2 - . 6961591 . 0675393 -10 .31  .o . ooo 
x3 .9991559 . 0040589 246 . 16 o . ooo 

cons . 6398693 . 0225349 28.39 0 . 000 

q50 
x2 1 . 070516 . 1 139481 9 .39  o .ooo 
x3  1 .  00124 7 . 0036866 271 .59  0 . 000 

_cons . 9 688206 . 0282632 34.28 0 . 000 

q75 
x2 2 . 821881 .0787823 35.82 0 . 000 
x3 1 .  004919 .0042897 234.26 0 . 000 

_cons 1 . 297878 . 026478 49 .02 o.ooo 

• Predicted coefficient o f  x 2  f o r  q = . 25 ,  . 50 and .75  
quietly summarize e ,  detail 

- . 8285497 
.9911996 
. 5956965 

.84 71551 

. 9940204 
. 913419 

2 . 667452 
.996 5106 
1 .  245976 

display "Predicted coefficient of x2 for q = . 25, . 50, and . 75"  
> _newline 1+ . 5•r (p25) _newline 1+. 5•r(p50) _newline 1 + . 5 •r (p75) 
Predicted coefficient of x2 for q = . 2 5 ,  . 5 0 ,  and .75 
- . 7404058 
.97979342 
2 . 6934063 

- . 5637686 
1 .  007112 
. 6840422 

1 . 293877 
1 .  008473 
1. 024222 

2.97631 
1 . 013328 

1 . 34978 

For example, for q = 0.75 the estimated coefficient of x2 is 2.822, close to the theoretical 
2.693. 

We study the distribution of y further by using several plots. We have 

• Generate scatterplots and qplot 
quietly kdensity u, scale ( 1 . 25) lwidth(medthick) saving (density, replace) 
quietly qplot y ,  recast(line) scale ( 1 . 4 )  lwidth(medthick) 

> saving(quanty ,  replace) 
quietly scatter y x 2 ,  scale ( 1 . 25) saving(yversusx2, replace) 
quietly scatter y x 3 ,  scale ( 1 .25) saving(yversusx3, replace) 
graph combine density.gph quanty . gph yversusx2 .gph yversusx3. gph 

This leads to figure 7.3. The first panel, with the kernel density of u, shows that the 
distribution of the error u is essentially symmetric but has very long tails. The second 
panel shows the quantiles of y and indicates symmetry. The third panel plots y against 
x2 and indicates heteroskedasticity and the strongly nonlinear way in which x2 enters 
the conditional variance function of y. The fourth panel shows no such relationship 
between y and x3. 
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Here X2 affects both the conditional mean and variance of y ,  whereas x3  enters only 
the conditional mean function. The regressor x2 will impact the conditional quantiles 
differently, whereas x::; will do so in a constant way. The OLS regression can only display 
the relationship between average y and (x2, x3) .  QR, however, can show the relationship 
between the regressors and the distribution of y. 

7.4.2 QR estimates 

We next estimate the regression using OLS (with heteroskeda.sticity-robust standard 
errors) and QR at q = 0.25, 0 .50,  and 0.75, with bootstrap standard errors. The saved 
results are displayed in a table. The relevant commands and the resulting output are 
as follows: 

• DLS and quantile regression for q = . 25 ,  . 5 ,  .75 
quietly regress y x2 x3 

estimates store DLS 

quietly regress y x2 x3, vce (robust) 
estimates store DLS_Rob 
quietly bsqreg y x2 x3,  quantileC .25 )  reps(400) 
estimates store QR_25 

quietly bsqreg y x2 x3 ,  quantile ( . 50) reps
.
(400) 

estimates store QR_50 

quietly bsqreg y x2 x 3 ,  quantile( .  75)  reps(400) 
estimates store QR_75 
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estimates table OLS OLS_Rob QR_25 QR_50 QR_75 , b(/.7.3f) se 

· Variable OLS DLS_Rob QR_25 QR_50 QR_75 

x2 1 .  079 1 . 079 -0 . 696 1 . 071 2 . 822 
0 . 033 0 . 1 16 0 .  070 0 . 077 0 . 079 

x3 0 . 996 0 .996  0 . 999 1 . 001 1 . 005 
0 . 009 0 . 009 0 .  004 0 . 003 0 . 004 

_cons 0 . 922 0 . 922 0 . 640 0 . 969 1 . 298 
0 . 058 0 . 086 0 . 020 0 . 020 o. 022 

legend: b/se 

The median regression parameter point estimates of {30, 5 ,2 and {30.5,3 are close to the 
true values of 1. Interestingly, the median regression parameter estimates are much more 
precise than the OLS parameter estimates. This improvement is possible because OLS is 
no longer fully efficient when there is heteroskedasticity. Because the heteroskedasticity 
depends on x2 and not on x3, the estimates of (3q2 vary over the quantiles q, while (3q3 
is invariant with respect to q.  

We can test whether this is the case by using the bsqreg command. A test of 
fJo.2s,2 = /30.75,2 can be interpreted as a robust test of heteroskedasticity independent of 
the functional form of the heteroskedasticity. The test is implemented as follows: 

• Test equality of coeff of x2 for q=.25 and q=.75 
set seed 10101 

quietly sqreg y x2 x3, q (. 25 . 75) reps(400) 
test [q25]x2 = [q75]x2 

( 1) [q25] x2 - [q75] x2 = 0 
F( 1, 9997) = 156 5. 58 

Prob > F = 0 . 0000 
test [q25]x3 = [q75]x3 

( 1) [q25]x3 - [q75]x3 = 0 
F( 1 ,  9997) 1 .  94 

Prob > F = 0 . 1633 

The test outcome leads to a strong rejection of the hypothesis that X2 does not affect 
both the location and scale of y. As expected, the test for x3 yields a p-value of 0 .16 ,  
which does not lead to a rejection o f  the null hypothesis. 

7.5 QR for count data 

QR is usually applied to continuous-response data because the quantiles of discrete 
variables are not unique since the c.d.f. is discontinuous with discrete jumps between 
fiat sections. By convention, the lower boundary of the interval defines the quantile in 
such a case. However, recent theoretical advances have extended QR to a special case 
of discrete variable model�the count regression. 
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In this section, we present application ofQR to counts, the leading example of  ordered 
discrete data. The method, proposed by Machado and Santos Silva (2005), enables QR 
methods to be applied by suitably smoothing the count data. We presume no knowledge 
of count regression. 

7 .5 . 1 Quantile count regression 

The key step in the quantile count regression (QCR) model of Machado and Santos Silva 
is to replace the discrete count outcome y with a continuous variable, z = h(y) , where 
h(·) is a smooth continuous transformation. The standard linear QR methods are then 
applied to z. Point and interval estimates are then retransformed to the original y-scale 
by using functions that preserve the quantile properties. 

The pa�ticular transformation used is 

z = y + u 

where u "' U(O, 1) is a pseudorandom draw from the uniform distribution on (0, 1 ) .  This 
step is called "jittering'' the count . 

Because counts are nonnegative, the conventional count models presented in chap, 
ter 17 are based on an exponential model for the conditional mean, exp(x',B), rather 
than a linear function x'/3. Let Qq(yjx) and Qq(z jx) denote the qth quantiles of the 
conditional distributions of y and z, respectively. Then, to allow for the exponentiation, 
the conditional quantile for Qq(z jx) is specified to be 

Qq(z jx) = q + exp(x' i3q) (7.4) 

The additional term q appears in the equation because Qq(zjx) is bounded from below 
by q, because of the jittering operation. 

To be able to estimate the parameters of a quantile model in the usual linear form 
x! {3, a log transformation is applied so that In( z-q) is modeled, with the adjustment that 
if z - q < 0 then v�:e use ln(e:) , where e is a small positive number. The transformation 
is justified by the property that quantiles are equivariant to monotonic traJJsformation 
(see section 7 .2 .1) and the property that quantiles above the censoring point are not 
affected by censoring from below. Postestimation transformation of the z quantiles back 
to y quantiles uses the ceiling function, with 

(7.5) 

where the symbol I r 1 in the right-hand side of (7.5) denotes the smallest integer greater 
than or equal to r. 

To reduce the effect of noise due to jittering, the parameters of the model are esti­
mated multiple times using independent draws from the U(O, 1 )  distribution, and the 
multiple estimated coefficients and confidence interval end.12oints are averaged. Hence, 
the estimates of the quantiles of y counts are based on Qq(yjx) = IQq(z jx) - 11 

I q + exp(x'/3q ) - 1 1 , where /3 denotes the average over the jittered replications. 
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7.5.2 The qcount command 

The QCR method of Machado and Santos Silva can be performed by using the user­
written qcount command (Miranda 2007). The command syntax is 

qcount depvar [ indepvars ] [ if ]  [ in ] ,  quantile(  number) [ repetition ( #) ] 

where quantile(number) specifies the quantile to be estimated and repetition (#) 
specifies the number of jittered samples to be used to calculate the parameters of the 
model with the default value being 1,000. The postestimation command qcount..mfx 
computes MEs for the model, evaluated at the means of the regressors. 

For example, qcount y xi x2, q( 0 . 5) rep (500) estimates a median regression of 
the count y on xl and x2 with 500 repetitions. The subsequent command qcount...m:fx 
gives the associated MEs. 

7 .5.3 Summary of doctor visits data 

We illustrate these commands using a dataset on the annual number of doctor visits 
(docvis) by the Medicare elderly in the year 2003. The regressors are an indicator 
for having private insurance that supplements Medicare (privat e) ,  number of chronic 
conditions (totcbr), age in years (age ) ,  and indicators for female and white. We have 

• Read in doctor visits count data and summarize 
use mus07qrcnt . dta,  clear 
summarize docvis private totchr age female Yhite , 

Variable Obs Mean Std. Dev.  

doc vis 3677 6 . 822682 7 . 394937 
private 3677 .4966005 . 5000564 

totchr 3677 1 .  843351 1. 350026 
age 3677 74. 24476 6 . 376638 

female 3677 . 6010335 .4897525 
white 3677 .9709002 . 1681092 

separator (0) 
Min Max 

0 144 
0 
0 8 

65 90 
0 
0 

The dependent variable, annual number of doctor visits (docvis ) ,  is a count. The me­
dian number of visits is only 5, but there is a long right tail. The frequency distribution 
shows that around 0.5% of individuals have over 40 visits, and the maximum value is 
144. 

To demonstrate the smoothing that occurs with jittering, we create the variable 
docvisu, which is obtained for each individual by adding a random uniform variate to 
doc vis. We then compare the quantile plot of the smoothed docvisu with that for the 
discrete count docvis. We have 

• Generate jittered values and compare quantile plots 
set seed 10101 
generate docvisu = docvis + runiform( )  
quietly qplot docvis i f  docvis < 4 0 ,  recast(line) scale ( 1 . 25)  

> lwidth(medthick) saving(docvisqplot,  replace) 
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. quietly qplot P,ocvisu if docvis < 40, recast(line) scale ( 1 . 25) 
> lwidth(medthick) saving(docvisuqplot, replace) 

. graph combine docvisqplot . gph docvisuqplot . gph 
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For graph readability, values in excess of 40 were dropped. The graphs are shown in 
figure 7.4. 

0 . . 2 . 4  .6 .8 0 
fracuon of the data 

. 2  .4 .6  . 8  
fraction o f  the data 

Figure 7.4. Quantile plots of count docvis (left) and its jittered transform (right) 

The common starting point for regression analysis of counts is Poisson or negative 
binomial regression. We use the latter and simply print out the MEs of a change in 
the conditional mean of a change in each regressor, evaluated at sample means of the 
regressors. These_will be compared later with MEs for the median obtained with qcount. 

• Marginal effects from conventional negative binomial model 
quietly nbreg docvis private totchr age female white ,  vce (robust) 
m.fx 

Marginal effects after nbreg 
y = predicted number of events (predict) 

6 . 2779353 

variable dy/dx Std. Err. z P> l z l  95/. c .  I .  

private• 1 . 082549 . 21481 5 . 04 0 . 000 . 661523 1 . 50358 
totchr 1 .  885011 . 0771 24.45 0 . 000 1 .  7339 2 . 03613 

ago . 0340016 . 01767 1 . 9 2  0 . 054 - . 000622 . 068626 
female• - . 1401461 . 21798 -0 . 64 0 . 520 - .  567381 . 287089 

white• . .<;905679 .57117 0 . 8 6  0 . 390  - .  62891 1 .  61005 

(•) dy/dx is for discrete change of dummy variable from 0 to 

X 

.4966 
1. 84335 
74. 2448 
. 601033 

. 9709 
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7 .5.4 Results from QCR 

We estimate the parameters o f  the QCR model a t  the median. We obtain 

• Quantile count regression 
set seed 10101 
qcount docvis private totchr age female whit e ,  q(0 .50)  rep(500) 

> . • . • . . . . . . • . . . . . . . . . . . . . . . . . . . . . . • . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

> . . . . . • • . . . . . . • • . . . . . . . . . . . . . . . • . . . . . • • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

> . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

> . • • . . . . . . . • . • . . . . . . . . . . . . . . . . . . . . . . . . . . • . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

> . . . . . • . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . .  

Count Data  Quantile Regression 
( Quantile 0 . 5 0  ) 

Number of obs 3677 
No .  j ittered samples 500 

docvis Coef . Std.  ErT .  z P> l z l  [95/. Conf . Interval] 

private .2026897 . 0409784 4 . 95  0 .  000 . 1223735 .283006 
totchr .3464992 .0181838 19 .06  0 .  000 . 3108596 .3821387 

age . 0084273 . 0033869 2 . 49 0 . 0 1 3  . 0017891 .0 150655 
female . 0025235 . 04131 0 . 0 6  0 . 9 5 1  - . 0784427 . 0834896 

white . 1200776 . 0980302 1 . 22 0 . 221 - . 072058 . 3122132 
cons . 0338338 . 2525908 0 . 13 0 . 893 -. 4612352 . 5289027 

The statistically significant regressors have the expected signs. 
The parameters of the model estimated use an exponential functional form for the 

conditional quantile. To interpret results, it is easier to use the MEs. The qcount. mfx 
command gives two sets of !viEs after conditional QR. The first is for the jittered variable 
Qq(zix), and the second is for the original count Qq(yix) . We have 

• Marginal effects after quantile regression for median 
set linesize 81 

qcount_mfx 
Marginal effects after qcount 

y � Qz(0 . 50 I X) 
5 . 05849 ( 0 . 0975) 

ME Std. Err. z P> l z l  [ 95/. C . I  ] 

private . 92617897 . 1 8594172 4 . 9 8  0 .  0000 0. 5617 1 . 2906 
totcbr 1. 5795119 . 07861945 20 . 1  0 . 0000 1 . 4254 1 . 7336 
age . 03841567 .01533432 2 . 51 0 . 0122 0 . 0084 0 . 0685 
female . 0 1150027 . 1 8822481 .0611  0 . 9513 - 0 . 3574 0 . 3804 
white .5 1759079 .40076951 1 . 29 0 . 1965 -0. 2679 1 . 3031 

X 

0 . 5 0  
1 . 84 

74.24 
0 . 60 
0 . 97 
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Marginal effects after qcount 
y = Qy( D .5D IX ) 

= 5 

ME [95/. C. Set] X 

private 0 
totchr 1 
age 0 
female . 0 
white 0 

0 1 
1 1 
0 0 
-1 
-1 

0 
1 

0 . 50 
1 . 84 

74.24 
0.  60 
0 . 97 
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The set linesize 81 command is added to avoid output wraparound, because the out­
put from qcount...mfx takes 81 characters and the Stata default line size is 80 characters. 

The estimated MEs for the conditional quantile Qq(zjx) of tJ:le jittered variable de­
fined in (7.4) differ by around 20% from those from the negative binomial model given 
earlier, aside from a much greater change for the quite statistically insignificant regres­
sor female. Of course, the difference between negative binomial estimates and QCR 
estimates depends on the quantile q. Comparisons between negative binomial and QCR 
estimates for some other quantiles will show even larger differences than those given 
above. 

The second set of output gives the estimated MEs for the conditional quantile of the 
original discrete count variable Qq(yjx) defined in (7 .5) .  These are discretized, and only 
that for totchr is positive. We note in passing that if we estimate the niodel using qreg 
rather than q count, then the estimated coefficients are 1 for private, 2 for totchr, 0 
for the other three reg-ressors, 1 for the intercept, and all standard errors are zero. 

The qcount command allows one to study the impact of a regressor at different 
points in the distribution. To explore this point, we reestimate with q = 0.75. We have 

* Quantile count regression for q = 0 . 75 
set seed 10101 

quietly qcount docvis private totchr age female w hite, q ( 0 . 75) rep(500) 
qcount_mfx 

Marginal effects after qcount 
y = Q z ( 0 . 7 5 I X )  

9 . 06557 ( 0. 1600) 

ME 

private 1 . 2255773 
totchr 2 . 3236279 
age .02647556 
female - . 00421291 
white 1 . 1880327 

Std.  Err. 

.33167392 

. 13394814 

. 02547965 
. 3283728 

. 8 1448878 

z P> l z l  [ 95/. C . I  ] 

3 . 7  0 . 0002 0 . 5755 1 .  8757 
17 . 3  0 . 0000 2 .0611  2 . 5862 
1 . 04 0 .  2988 -0 .0235 0 . 0764 

- .  0128 0. 9898 -0 . 6478 0 . 6394 
1 . 4 6  0 . 1447 - 0 . 4084 2 . 7844 

X 

0 . 5 0  
1 . 84 

74.24 
0 . 6 0  
0 . 9 7  
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Marginal effects after qcount 
y � Qy(O .  75 IX )  

� 9 

ME [95/. C .  Set] X 

private 
totchr 2 
ago 0 
female 0 
Yhite 

0 
2 
0 
-1 
-1 

1 
2 
0 

0 
2 

0 . 50 
1 . 84 

74 . 24 
0 .60  
0 .97  

Chapter 7 Quantile regression 

For the highly statistically significant regressors, private and totchr, the MEs are 
30-50% higher than those for the conditional median. 

7.6 Stata resources 

The basic Stata commands related to qreg are bsqreg, iqreg, and sqreg; see [R] qreg 
and [R] qreg postestimation. Currently, there are no options for cluster-robust vari­
ance estimation. The Stata user-written qplot command is illustrated by its author in 
some detail in Cox (2005). The user-written grqreg command was created by Azevedo 
(2004). The user-written qcount command was created by Miranda (2007). 

7. 7 Exercises 
1. Consider the medical expenditures data example of section 7.3, e..'<cept"use totexp 

rather than ltotexp as the dependent variable. Use the same sample, so still 
drop if ltotexp== . Estimate the parameters of the model with q = 0.5 using 
qreg, and comment on the parameter estimates. Reestimate using bsqreg and 
compare results. Use sqreg to estimate at the quantiles 0.25, 0.50, and 0. 75. 
Compare these estimates with each other (and their precision) and also with OLS 
(with robust standard errors ) .  Use the Stata user-writter1 grqreg command after 
bsqreg to further compare estimates as qreg varies. 

2. Use the medical expenditures data of section 7.3. Show that the median of 
1 totexp equals the exponential of the median of totexp. Now add a single regres­
sor, the indicator female. Then any conditional quantile function must be linear in 
the regressor, with Qq (ln ylx) = aq1 + aq2female and Qq(ylx) = /3q1 + {3q2female. 
Show that if we estimate qreg 1 totexp female, then predict, and finally exponen­
tiate the prediction, we get the same prediction as that directly from qreg totexp 
female. Now add another regressor, say, totchr. Then the conditional quantile 
may no longer be linear in f emale and totchr. Repeat the prediction exercise 
and show that the invariance under the transformation property no longer holds. 
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3. Use the medical expenditures data example of section 7.3 with the dependent 
variable 1 totexp. Test the hypothesis that heteroskedasticity is a function of 
the single variable totchr, which measures the number of chronic conditions. 
Record the test outcome. Next test the hypothesis that the location and scale of 
the dependent variable expenditures varies with totchr. What is the connection 
between the two parts of this question? 

4. Use the medical expenditures data of section 7.3, and estimate the parameters 
of the model for 1 totexp using qreg with q = 0.5 . Then estimate the same 
parameters using bsqreg with the number of bootstrap replications set at 10, 50, 
100, and 400. In  each ca.se, use the same seed of 10101. Would you say that a 
high number of replications produces substantially different standard errors? 

5. Consider the heteroskeda.stic regression example of section 7.4. Change the spec­
ification of the variance function so that the variance function is a function of X3 
and not x2; i .e . ,  reverse the roles of x2 and x3• Estimate QRs for the generated 
data for q = 0.25, 0.50, and 0.75. Compare the results you obtain with those given 
in section 7.3.2. Next vary the coefficient of x3 in the variance function, and study 
its impact on the QR estimates. 

6. Consider the heteroskeda.sticity example of section 7.4. There the regression error 
is symmetrically distributed. Suppose we want to study whether the differences 
between OLS and QR results are sensitive to the shape of the error distribution. 
Make suitable changes to the simulation data, and implement an analysis similar 
to that in section 7.4 with asymmetric errors. For example, first draw u from the 
uniform distribution and then apply the transformation -,\ log(u), where A >  0. 
(This generates draws from the exponential distribution with a mean of A and a 
variance of A 2. ) 

7. Use the data from section 7.5, except let the dependent count variable be totchr, 
and drop totchr from the regressors. Using the user-written qcount command, 
estimate qcount regressions for q = 0.25, 0.50, and 0. 75. Use qcount.mfx to 
calculate the MEs. Store and print the results in tabular form. Explain how the 
mfx command works in the case of qcount regressions and whether there are any 
differences in the interpretation compared with the standard Poisson regression. 

8. When the number of regressors in the QR is very large and one only wants to gen­
erate graphs for selected coefficients, it may be necessary to write one's own code 
to estimate and save the coefficients. This would be followed by a suitable twoway 
plot. The following program uses postfile to save the output in bsqrcoef 1 .  dta, 
forva1ues to loop around values of q = 0.1(0 .1 )0 .9 ,  and bsqreg to estimate boot­
strap standard errors. Run the following program, and use bsqrcoefl . dta and 
the t-wo-way command to generate a plot for the coefficient of suppins as q varies. 
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• Save coefficients and generate graph for a range of quantiles 
use mus03data .dta , clear 
drop if ltotexp == . 
capture program drop mus07plot 
program mus07plot 
postfilc myfile percentile b1 upper lower using bsqrcoef 1 . dta, replace 
forvalues tau1=0 . 1 0 ( 0 . 1 ) 0 . 9  { 

} 

set seed 10101 
quietly bsqreg ltotexp suppins age female white totchr, quantile( "tau 1 ' )  Ill 

reps(400) 
matrix b = e (b) 
scalar b1=b [1, 1) 
matrix V = e (V) 
scalar v1=V [ 1 , 1) 
scalar df=e(df_r) 
scalar upper = b1 + invttail (df , . 025) •sqrt (v1) 
scalar lower = b 1  - invttail (df , . 025)•sqrt (v1)  
post myfile C ' tau1 ' )  (b1 )  (upper) (lower) 
matrix drop V b 
scalar drop b1 v1 upper lower df 

postclose myfile 
end 
mus07plot 
program drop mus07plot 
use bsqrcoef 1 . dta,  clear 
twoway connected b1 percentile I I line upper percentile ! l line lower percentile,  Ill 

title( "Slope Estimat es" )  subtitle( "Coefficient of suppins " )  I I I 
xtitle( "Quantile " ,  size(medlarg e) ) I I I 
ytitle( "Slope and confidence bands " , size (medlarge) ) Ill 
legend( label ( 1  "Quantile slope coefficient " )  I I I 
la bel(2 "Upper 95/. bs confidence band" ) la bel(3 "Lower 95/. bs confidence band" ) )  

graph save bsqrcoef l . gph, replace 
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8.1 I ntroduction 

Panel data or longitudinal data are repeated measurements at different points in time 
on the same individual unit, such as person, firm, state, or country. Regressions can 
then capture both variation over units, similar to regression on cross-section data, and 
variation over time. 

Panel-data methods are more complicated than cross-section-data methods. The 
standard errors of panel-data estimators need to be adjusted because each additional 
time period of data is not independent of previous periods . Panel data requires the use 
of much richer models and estimation methods. Also different areas of applied statistics 
use different methods for essentially the same data. The Stata xt commands, where xt 
is an acronym for cross-section time series, cover many of these methods. 

We focus on methods for a short panel, meaning data on many individual units and 
few time periods. Examples include longitudinal surveys of many individuals and panel 
datasets on many firms. And we emphasize microeconometrics methods that attempt 
to estimate key marginal effects that can be given a causative interpretation. 

The essential panel-Q.ata methods are given in this chapter, most notably, the impor­
tant distinction between fixed-effects and random-effects models. Chapter 9 presents 
many other panel-data methods for the linear model, including those for instrumental­
variables (rv) estimation, estimation when lagged dependent variables are regressors, 
estimation when panels are long rather than short, and estimation of mixed models 
with slope parameters that vary across individuals. Chapter 9 also shows how methods 
for short panels are applicable to other forms of clustered data or hierarchical data, such 
as cross-section individual data from a survey conducted at a number of villages, with 
clustering at the village level. Nonlinear models are presented in chapter 18. 

8.2 Panel-data methods overv1ew 

There are many types of panel data and goals of panel-data analysis, leading to different 
models and estimators for panel data. We provide an overview in this section, with 
subsequent sections illustrating many of the various models and estimation methods. 

229 
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8.2 .1  Some basic considerations 

First, panel data are usually observed at regular time intervals, as is the case for most 
time-series data. A common exception is growth curve analysis where, for example, 
children are observed at several irregularly spaced intervals in time, and a measure such 
as height or IQ is regressed on a polynomial in age. 

Second, panel data can be balanced, meaning all individual units are observed in all 
time periods (T; = T for all i ) ,  or unbalanced (T; =I= T for some i ) .  Most xt commands 
can be applied to both balanced and unbalanced data. In either case, however, estimator 
consistency requires that the sample-selection process does not lead to errors being 
correlated with regressors. Loosely speaking, the missingness is for random reasons 
rather than systematic reasons. 

Third, the dataset may be a short panel (few time periods and many individuals) , 
a long panel (many time periods and few individuals ) , or both (many time periods and 
many individuals ). This distinction has consequences for both estimation and inference. 

Fourth, model errors are very likely correlated. Microeconometrics methods empha­
size correlation (or clustering) over time for a given individual, with independence over 
individual units. For some panel datasets, such as country panels, there additionally 
may be correlation across individuals. Regardless of the assumptions made, some cor­
rection to default ordinary least-squares ( OLS) standard errors is usually necessary and 
efficiency gain� using generalized least squares ( GLS) may be possible. 

Fifth, regression coefficient identification for some estimators can depend on regres­
sor type. Some regressors, such as gender, may be time invariant with Xit = Xi for 
all t. Some regressors, such as an overall time trend, may be individual invariant with 
Xit = Xt for all i. And some may vary over both time and individuals. 

Sixth, some or all model coefficients may vary across individuals or over time. 

Seventh, the microeconometrics literature emphasizes the fixed-effects model. This 
model, explained in the next section, permits regressors to be endogenous provided 
that they are correlated only with a time-invariant component of the error. Most other 
branches of applied statistics instead emphasize the random-effects model that assumes 
that regressors are completely exogenous. 

Finally, panel data permit estimation of dynamic models where lagged dependent 
variables may be regressors. Most panel-data analyses use models without this compli­
cation. 

In this chapter, we focus on short panels (T fixed and N __, oo) with model errors 
assumed to be independent over individuals. Long panels are treated separately in 
section 8.10. We consider linear models with and without fixed effects, and both static 
and dynamic models. The applications in this chapter use balanced panels. Most 
commands can also be applied to unbalanced panels, as demonstrated in some of the 
exercises, though one should also then check for panel-attrition bias. 
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· 8.2. 2 Some basic panel models 

There are several different linear models for panel data. 
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The fundamental distinction is that between fixed-effects and random-effects models. 
The term "fixed effects" is misleading because in both types of models individual-level 
effects are random. Fi.xed-effects models have the added complication that regressors 
may be correlated with the individual-level effects so that consistent estimation of re­
gression par9:meters requires eliminating or controlling for the fixed effects. 

Individual-effects model 

The individual-specific-effects model for the scalar dependent variable Yit specifies that 
(8.1) 

where X;t are regressors, a; are random individual-specific effects, and tit  is an idiosyn­
cratic error. 

Two quite different models for the a., are the fixed-effects and random-effects models. 

Fixed-effects model 

In the fixed-effects (FE) model, the ai in (8 .1 ) are permitted to be correlated with the 
regressors Xit ·  This allows a limited form of endogeneity. We view the error in (8.1) 
a s  U it = a; + tit and permit X;t to be correlated with the time-invariant component 
of the error ( a;) , while continuing to assume that X;t is uncorrelated with the idiosyn­
cratic error tit ·  For example, we assume that if regressors in an earnings regression 
are correlated with unobserved ability, they are correlated only with the time-invariant 
component of ability, captured by a;. 

One possible estimation method is to jointly estimate a1, . . .  , aN and {3. But for a 
short panel, asymptotic theory relies on N -> oo, and here as N -> oo so too does the 
number of fixed effects to estimate. This problem is called the incidental-parameters 
problem. Interest .lies in estimating {3, but first we need to control for the nuisance or 
incidental parameters, a ; .  

Instead, i t  i s  still possible to  consistently estimate {3, for time-varying regressors, 
by appropriate differencing transformations applied to (8 .1 )  that eliminate a; .  These 
estimators are detailed in sections 8.5 and 8:9. 

The FE model implies that E(y;t [a; ,  X;t) = a; + X�t/3, assuming E(tit la; , X;t) = 0, 
so {3j = 8E(y<t [a i , X;t) /8xj,it · The attraction o f the FE model is that we can obtain a 
consistent estimate of the marginal effect of the jth regressor on E(y;t [a; ,  X;t) , provided 
Xj,it is time varying, even if the regressors are endogenous (albeit, a limited form of 
endogeneity ). 

At the same time, knowledge of {3 does not give complete information on the pro­
cess generating Yit. In particular for predictiori, we need an estimate of E(y;t [X; t )  
E(a;[X;t) + x� t/3, and E(a; [Xi t) cannot be consistently estimated in short panels. 
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In nonlinear FE models, these results need to be tempered. It is not always possible 
to eliminate O:"i, which is shown in chapter 18. And even if it is, consistent estimation of 
{3 may still not lead to a consistent estimate of the marginal effect 8E(YitiO:"i, Xit)/8xj,it ·  

Random-effects model 

In the random-effects (RE) model, it is assumed that O:"i in (8.1) is purely random, a 
stronger assumption implying that O:"i is uncorrelated with the regressors. 

Estimation is then by a feasible generalized least-squares (FGLS) estimator, given in 
section 8.6. Advantages of the RE model are that it yields estimates of all coefficients 
and hence marginal effects, even those of time-invariant regressors, and that E(YitiXit) 
can be estimated. The big disadvantage is that these estimates are inconsistent if the 
FE model is appropriate. 

Pooled model or population-averaged model 

Pooled models assume that regressors are exogenous and simply write the error as Uit 
rather than using the decomposition a:-, + cit ·  Then 

Yit = a + X;tf3 + Uit (8.2) 

Note that Xit here does not include a constant, whereas in cross-section chapters, xi 
additionally included a constant term. 

OLS estimation of the parameters of this model is straightforward, but inference 
needs to control for likely correlation of the error Uit over time for a given individ­
ual (within correlation) and possible correlation over individuals (between correlation) . 
FGLS estimation of (8.2) given an assumed model for the within correlation of Uit is 
presented in section 8.4. In  the statistics literature, this is called a population-averaged 
model. Like RE estimators, consistency of the estimators requires that regressors be  
uncorrelated with Uit· 

Two-way-effects model 

A standard extension of the individual effects is a two-way-effects model that allows 
the intercept to vary over individuals and over time: 

(8.3) 

For short panels, it is common to let the time effects It be fixed effects. Then (8.3) 
reduces to ( 8.1 ) ,  if the regTessors in ( 8.1) include a set of time dummies (with one time 
dummy dropped to avoid the dummy-variable trap) .  
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Mixed linear models 

If the RE model is appropriate, richer models can permit slope parameters to also 
vary over individuals or time. The mixed linear model is a hierarchical linear model 
that is quite flexible and permits random parameter variation to depend on observable 
variables. The random-coefficients model is a special case that specifies 

where (O'i ,aY � ({3, � ) .  For a long panel with few i�dividuals, O'i and ,Bi can instead be 
parameters that can be estimated by running separate regressions for each individuaL 

8.2.3 Cluster-robust inference 

Various estimators for the preceding models are given in subsequent sections. These 
estimators are usually based on the assumption that the idiosyncratic error Eit "' (0, 
u;). This assumption is often not satisfied in panel applications. Then many panel 
estimators still retain consistency, provided that Eit are independent over i, but reported 
standard errors are incorrect. 

For short panels, it is possible to obtain cluster-robust standard errors under the 
weaker assumptions that errors are independent across individuals and that N -> oo. 
Specifically, E(EitEJ,) = 0 for i =I= j ,  E(EitEi�) is unrestricted, and Eit may be het­
eroskedastic. Where applicable, we use cluster-robust standard errors rather than the 
Stata defaults. For some, but not all, xt commands, the vee (robust) option is avail­
able. This leads to a cluster-robust estimate of the variance-covariance matrix of 
the estimator (veE) for some commands and a robust estimate of the VCE for some 
commands. Otherwise, the vee(bootstrap) or vee ( j aekknife) options can be used 
because, for xt commands, these usually resample over clusters. 

8.2.4 The xtreg command 

The key command for estimation of the parameters of a linear panel-data model is the 
xtreg command. The command syntax is 

xtreg depvar [ indepvars ] [ if ]  [ in ]  [ weight ] [ , options ] 

The individual identifier must first be declared with the xtset command. 
The key model options are population-averaged model (pa), FE model ( fe), RE model 

(re and mle), and between-effects model (be). The individual models are discussed in 
detail in subsequent sections. The weight modifier is available only for fe ,  mle, and pa. 

The vee (robust) option provides c luster-robust estimates of the standard errors, 
for all models but be and mle. Stata 10 labels the estimated VCE as simply "Robust" 
because the use of xtreg implies that we are in a clustered setting. 
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8.2 .5 Stata linear panel-data commands 

Table 8. 1 summarizes xt commands for viewing panel data and estimating the param­
eters of linear panel-data models. 

Data summary 
Pooled OLS 
Pooled FGLS 
Random effects 
Fixed effects 
Random slopes 
First-differences 
Static IV 

Dynamic IV 

Table 8 .1 .  Summary of xt commands 

xtset; xtdescribe; xtsum; xtdata; xtline; xttab; xttrans 

regress 
xtge e ,  family (gaussian) ; xtgls; xtpcse 
xtreg, re; xtregar, re 
xtreg, fe ;  xtregar, f e  

xtmixed; xtrc 

regress (with differenced data) 
xtivreg; xthtaylor 
xtabond; xtdpdsys; xtdpd 

The core methods are presented in this chapter, with more specialized commands 
presented in chapter 9. Readers with long panels should look at section 8.10 (xtgls, 
xtpcse, xtregar) and data input may require first reading section 8 . 1 1 .  

8 .3  Panel-data summary 

In this section, we present various ways to summarize and view panel data and estimate 
a pooled OLS regression . The dataset used is a panel on log hourly wages and other 
variables for 595 people over the seven years 1976-1982. 

8.3.1 Data description and summary statistics 

The data, from Baltagi and Khanti-Akom ( 1990), were drawn from the Panel Study 
of Income Dynamics (:Psm) and are a corrected version of data originally used by 
Cornwell and Rupert ( 1988). 
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The mus08psidextract . d ta dataset has the following data: 

. • Read in dataset and describe 

. use mus08psidextract .dta ,  clear 
(PSID wage data 1976-82 from Baltagi and Khanti-Akom (1990))  
. describe 

Contains data from mus08psidextract . dt a  
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obs: 4 , 165 PSID wage data 1976-82 from Baltagi 
and Khanti-Akom (1990) 

vars:  22 
size: 295,715 

storage 
variable name type 

exp float 

wks float 
occ float 

ind float 

south float 

smsa float 

ms float 
fem float 
union float 
ed float 
blk float 
lwage float 
id float 
t float 
tdum1 byte. 
td\lln2 byte 
tdum3 byte 
tdum4 byte 
tdum5 byte 
tdum6 byte 
tdum7 ·· .  byte 
exp2 float 

Sorted b y :  i d  t 

( 9 9 . 1 /.  of memory free) 

display value 
format label 

/.9.0g 

/.9 . 0g 
/.9 . 0g 

/.9 . 0g 

/.9 . 0g 

/.9 .0g 

/.9 .0g 
/.9 . 0g 
/.9.0g 
/.9.0g 
/.9.0g 
/.9.0g 
/.9.0g 
/.9 . 0g 
/.8.0g 
/. 8.0g 
/.8.0g 
/.8.0g 
/.8 .0g 
/.8.0g: 
/.8.0g 
/.9 .0g 

16 Aug 2007 16 :29  
(_d ta has notes) 

variable label 

years of full-time work 
experience 

weeks worked 
occupation; occ==1 if in a 

blue-collar occupation 
industry ;  ind==1 if working in a 

manufacturing industry 
residence ; south==1 if in the 

South area 
smsa==1 if in the Standard 

metropolitan statistical area 
marital status 
female or male 
if wage set be a union contract 
years of education 
black 
log wage 

t== 1 . 0000 
t== 2 . 0000 
t== 3 . 0000 
t== 4 . 0000 
t== 5 . 0000 
t== 6 . 0000 
t== 7 . 0000 

There are 4,165 individual-year pair observations. The variable labels describe the 
variables fairly clearly, though note that lwage is the log of hourly wage in cents, the 
indicator fem is 1 if female, id is the individual identifier, t is the year, and exp2 is the 
square of exp. 

(Continued on next page) 
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Descriptive statistics can be obtained by using the command summarize: 

• Summary of dataset 
summarize 

Variable Dbs Mean Std. Dev. Min Max 

exp 4165 1 9 . 85378 10 . 96637 51 
wks 4165 46 . 81152 5 . 129098 5 52 
occ 4165 . 5 1 11645 .4999354 0 
ind 4165 .3954382 .4890033 0 

south 4165 . 2902761 .4539442 0 

smsa 4165 . 6537815 .475821 0 
ms 4165 .8144058 .3888256 0 

fem 4165 . 1 12605 .3161473 0 
union 4165 .3639856 .4812023 0 

ed 4165 12 . 84538 2 . 787995 4 17 

blk 4165 .0722689 .2589637 0 
h1age 4165 6. 676346 . 4615122 4 . 60517 8 .537 

id 4165 298 1 7 1 . 7821 595 
t 4165 4 2 . 00024 7 

tdumi 4165 . 1 428571 .3499691 0 
-�---- ·  

tdum2 4165 . 1428571 .3499691 0 
tdum3 4165 . 1 428571 .3499691 0 
tdum4 4165 . 1428571 . 3499691 0 
tdum5 4165 . 1428571 .3499691 0 
tdum6 4165 . 1 428571 .3499691 0 

tdum7 4165 . 1 428571 . 3499691 0 
exp2 4165 514.405 4 96.9962 2601 

The variables take on values that are within the expected ranges, and there are no 
missing values. Both men and women are included, though from the mean of fem only 
11% of the sample is female. Wages data are nonmissing in all years, and weeks worked 
are always positive, so the sample is restricted to individuals who work in all seven 
years. 

8.3.2 Panel-data organization 

The xt commands require that panel data be organized in so-called long form, with 
each observation a distinct individual-time pair, here an individual-year pair. Data 
may instead be organized in wide form, with a single observation combining data from 
all years for a given individual or combining data on all individuals for a given year. 
Then the data need to be converted from wide form to long form by using the reshape 
command presented in section 8.11 .  

Data organization can often be clear from listing the first few observations. For 
brevity, we list the first three observations for a few variables: 
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• Organization of dataset 
list id t exp 1.1ks. occ in 1/3,  clean 

id t exp 1.1ks occ 
1 .  1 1 3 32 0 
2 .  2 4 43 0 
3 .  3 5 40 0 

The first observation is for individual l in year 1, the second observation is for individual 
1 in year 2, and so on. These data are thus in long form. From summarize, the panel 
identifier id takes on the values 1-595, and the time variable t takes on the values 1-7. 
In general, the panel identifier need just be a unique identifier and the time variable 
could take on values of, for example, 76-82. 

The panel-data xt commands require that, at a minimum, the panel identifier be 
declared. Many xt commands also require that the time identifier be declared. This is 
done by using the xtset command. Here we declare both identifiers: 

• Declare individual identifier and time identifier 
xtset id t 

panel varia ble: 
time variable:  

delta: 

id (strongly balanced) 
t, 1 to 7 
1 unit 

The panel identifier is given first, followed by the optional time identifier. The output 
indicates that data are available for all individuals in all time periods (strongly balanced) 
and the time variable increments uniformly by one. 

When a Stata dataset is saved, the current settings, if any, from xtset are also 
saved. In this particular case, the original Stata dataset psidextract . dta already 
contained this information, so the preceding xtset command was actually unnecessary. 
The xtset command without any arguments reveals the current settings, if any. 

8.3.3 Panel-data description 

Once the panel data .are xtset, the xtdescri be command provides information about 
the extent to which the panel is unbalanced. 

* Panel description of dataset 
xtdescribe 

id: 1 ,  2, . . .  ' 595 
t :  1 '  2, . . .  ' 7 

Delta(t) = 1 unit 
Span(t) 7 periods 
(id•t uniquely identifies each observation) 

Distribution of T _i : min 5/. 25/. 50/. 

Freq. Percent 
7 

Cum. 

595 100.00 100.00 

595 100.00 

7 7 7 

Pattern 

1111111  

xxxxxxx 

n = 595 
T = 7 

75/. 95/. max 
7 7 7 
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In this case, all 595 individuals have exactly 7 years of data. The data are therefore 
balanced because, additionally, the earlier summarize command showed that there are 
no missing values. Section 18.3 provides an example of xtdescribe with unbalanced 
data. 

8.3.4 Within and between variation 

Dependent variables and regressors can potentially vary over both time and individuals. 
Variation over time or a given individual is called within variation, and variation across 
individuals is called between variation. This distinction is important because estimators 
differ in their use of within and between variation. In particular, in the FE model the 
coefficient of a regressor with little within variation will be imprecisely estimated and 
will be not identified if there is no within variation at all. 

The xtsum, xttab, and xttrans commands provide information on the relative 
importance of within variation and between variation of a variable. 

We begin with xtsum. The total variation (around grand mean x = 1/ NT Li 2:t xit) 
can be decomposed in to within variation over time for each individual (around individual 
mean x, = 1/T 2:t X it) and between variation across individuals ( for x around xi). The 
corresponding decomposition for the variance is 

Within variance: s�v = Ni-1 2:::i 2:t(Xit � xi)2 = NJ_1 2:::, 2:t (xa � x, + x)2 

Between variance: 

Overall variance: 

The second expression for s� is equivalent to the first, because adding a constant does 
not change the variance, and is used at times because Xit - xi + x is centered on x, 
providing a sense of scale, whereas X it - xi is centered on ze:·o. For unbalanced data, 
replace NT in the formulas with 2:::i Ti . It can be shown that s6 � s;;... + s� . 

The xtsum command provides this variance decomposition. We do this for selected 
regressors and obtain 
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. • Panel summary statistics: Yithin and betYeen variation 

. xtsum id t lYage ed exp exp2 Yks south tdum1 
Variable 

id 

t 

lYage 

ed 

exp 

exp2 

YkS 

south 

tdum1 

overall 
betYeen 
Yithin 

overall 
betYeen 
.Yithin 

overall 
betYeen 
Yithin 

overall 
betYeen 
Yithin 

overall 
betYeen 
Yithin 

overall 
betYeen 
Yithin 

overall 
between 
Yithin 

overall 
betYeen 
Yithin 

overall 
betYeen 
within 

Mean Std. Dev. Min Max 

298 1 7 1 . 7821 
171 .906 

0 

1 
1 

298 

595 
595 
298 

4 2 . 00024 1 
4 

7 
4 
7 

0 
2 . 00024 

6 . 676346 .4615 122 4 . 60517 8 . 537 
. 3942387 5 . 3364 7 . 813596 
. 2404023 4 . 781808 8 . 621092 

12 .84538 2 . 787995 4 17 
2 .  790006 4 17 

0 12 . 84538 12 . 84538 

1 9 . 85378 10 . 96637 51 
1 0 . 79018 4 48 
2 . 00024 1 6 . 85378 22. 85378 

514.405 496 .9962 1 2601 
4 89 .0495 20 2308 
90 . 44581 231 .405 807.405 

4 6 . 81152 5 . 129098 5 52 

.2902761 

. 1428571 

3 . 284016 3 1 . 57143 5 1 . 57143 
3 .  941881 1 2 . 2401 63 .66867 

. 4539442 0 

. 4489462 0 

. 0693042 - . 5668667 1 . 147419 

. 3499691 
0 

.3499691 

0 
. 1428571 

0 
. 1428571 

Observations 

N = 
n = 

T 

N 
n = 
T = 

N 
n = 

T = 

N 
n = 
T 

N 
n = 

T 

N 
n = 
T = 

N = 
n = 
T 

N 
n = 
T 

N 
n = 
T 

4165 
595 

7 

4165 
595 

7 

4165 
595 

7 

4165 
595 

7 

4165 
595 

7 

4165 
595 

7 

4165 
595 

7 

4165 
595 

7 

4165 
595 

7 
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Time-invariant regressors have zero within variation, so the individual identifier id and 
the variable ed are· time-invariant. Individual-invariant regressors have zero between 
variation, so the time identifier t and the time dummy tduml are individual-invariant. 
For all other variables but wks, there is more variation across individuals (between vari­
ation) than over time (within variation) , so within estimation may lead to considerable 
efficiency loss. What is not clear from the output from xtsum is that while variable 
exp has nonzero within variation, it evolves deterministically because for this sample 
exp increments by one with each additional period. The min and max columns give 
the minimums and maximums of Xit for overall, Xi for between, and Xit - Xi + x for 
within. 

In the xtsum output, Stata uses lowercase n. to denote the number of individuals 
and uppercase N to denote the total number of individual-time observations. In our 
notation, these quantities are, respectively, N and 2:::,1  Ti . 
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The xttab command tabulates data in a way that provides additional details on the 
within and between variation of a variable. For example, 

• Panel tabulation for a variable 
xttab south 

Overall 
south Freq. Percent 

0 2956 70 .9�  
1209 29 . 03  

Total 4165 100.00 

Bet1.1een 
Freq. Percent 

428 71 .93  
182 30 .59  

610 102.52 
( n  � 595) 

Within 
Percent 

98 .66  
94 .90  

97 .54  

The overall summary shows that 71% of  the 4,165 individual-year observations had 
south = 0, and 29% had south = 1. The between summary indicates that of the 
595 people, 72% had south = 0 at least once and 31% had south = 1 at least once. 
The between total percentage is 102.52, because 2.52% of the sampled individuals ( 1 5  
persons) lived some of the time in the south and some not in the south and hence are 
double counted. The within summary indicates that 95% of people who ever lived in 
the south always lived in the south during the time period covered by the panel, and 
99% who lived outside the south always lived outside the south. The south variable is 
close to time-invariant. 

The xttab command is most useful when the variable takes on few values, because 
then there a.re few values to tabulate and interpret. 

The xttrans command provides transition probabilities from one period to the next. 
For example, 

. • !ransition probabilities for a variable 

. xttrans south, freq 
residence; 

southcc1 
if in the 

South area 

0 

Total 

residence; southc=i 
if in the South area 

0 1 

2 , 527 8 
99 . 68 0 . 32 

8 1 , 027 
0 .77  99 . 23 

2 , 535 1 , 035 
7 1 . 0 1  28 .99  

Total 

2 , 535 
100.00 

1 , 035 
100 .00  

3 , 570 
100 .00  

One time period is lost in calculating transitions, so 3,570 observations are used. For 
time-invariant data, the diagonal entries will be 100% and the off-diagonal entries will 
be 0%. For south, 99.2% of the observations ever in the south for one period remain 
in the south for the next period. And for those who did not live in the south for one 
period, 99.7% remained outside the south for the next period. The south variable is 
close to time-invariant. 

The xttrans command is most useful when the variable takes on few values. 

J 
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It can be useful to provide separate time-series plots for some or all individual units. 
Separate time-series plots of a variable for one or more individuals can be obtained by 

using the xtline command. The overlay option overlays the plots for each individual 
on the same graph. For example, 

. quietly xtline lwage if id<=20, overlay 

produces overlaid time-series plots of lwage for the first 20 individuals in the sample. 
We provide time-series plots for the first 20 individuals in the sample. The default is 

to provide a graph legend that identifies each individual that appears in the graph and 
takes up ml\ch of the graph if the graph uses data from many individuals. This legend 
can be suppressed by using the legend (off) option. Separate plots are obtained for 
lwage and for wks , and these are then combined by using the graph combine command. 
We have 

• Simple time-series plot for each of 20 individuals 
quietly xtline lwage if id<=20, overlay legend (off)  saving (lwage, replace) 

quietly xtline wks if id<=20, overlay legend (off) saving (wks , replace) 
graph combine lwage.gph wks.gph, iscale (1 )  

Figure 8.1 shows that the wage rate increases roughly linearly over time, aside from 
two individuals with large increases from years 1 to 2 , and that weeks worked show no 
discernible trend over time. 
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Figure 8.1 . Time-series plots of log wage against year and weeks worked against year 
for each of the first 20 observations 
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8.3.6 Overall scatterplot 

In cases where there is one key regressor, we can begin with a scatterplot of the depen­
dent variable on the key regressor, using data from all panel observations. 

The following command adds fitted quadratic regression and lowess regression curves 
to the scatterplot . 

. graph twoway (sea tter lwage exp) (qfi t lwage exp) (lowess lwage exp) 

This produces a graph that is difficult to read as the scatterplot points are very large, 
making it hard to then see the regression curves. 

The following code presents a better-looking scatterplot of lmrage on exp, along 
with the fitted regression lines. It uses the same graph options as those explained in 
section 2.6.6. We have 

. • Scatterplot , quadrati c  fit and nonparametric regression (lowess) 

. graph twoway (scatter lwage exp, msize (small) msymbol ( o ) )  
> (qfit lwagc exp, clstyle(p3) lwidth(medthick) ) 
> (lowess lwage exp, bwidth(0 .4 )  clstyle(p1)  lwidth(medthick) ) ,  
> plotregion(style(none) )  
> ti tle("Overall variation: Log wage versus experience " )  
> xtitle ( "Years of experience '' , size (medlarge) )  xscale(titlegap ( •S ) )  
> ytitle ("Log hourly wage " ,  s ize (medlarge) )  yscale (titlegap (•S) )  
> legend (pos(4) ring(O) col ( 1 ) )  lcgend (size (smal l ) )  
> legend(label(1  "Actual Data") label(2 "Quadratic fit " )  label(3 "Lowes s " ) )  

Each point on figure 8.2 represents an individual-year pair. The dash-ed smooth 
curve line is fitted by OLS of lwage on a quadratic in exp (using qf it) ,  and the solid 
line is fitted by nonparametric regTession (using lo wess) . Log wage increases until 
thirty or so years of experience and then declines. 

Overall variation: Log wage versus experience 

0 1 0  20 40 50 
Years of e�perience 

Figure 8.2. Overall scatterplot of log wage against experience using all observations 
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· The xtdata command can be used to obtain similar plots for within variation, using 
option fe; between variation, using option be; and RE variation (the default) , using 
option re .  The xtdata command replaces the data in memory with the specified trans­
form, so you should first preserve the data and then :restore the data when you are 
finished with the transformed data. 

For example, the fe option creates deviations from means, so that (Y;t - '[j; + y) is 
plotted against (xit - x; + x). For lwage plotted against exp, we obtain 

• Scatterplot for �ithin variation 
preserve 

xtdata, fe 

graph t�o�ay (scatter l�age exp) (qfit l�age exp) (lo�ess l�age exp) , 
> plotregion(style (none ) )  title ( " Within variation: Log �age. versus experience" )  
. restore 

The result is given in figure 8.3. At first glance, this figure is puzzling because only 
seven distinct values of exp appear. But the panel is balanced and exp (years of work 
experience) is increasing by exactly one each period for each individual in this sample 
of people who worked every year. So (x;t - x;) increases by one each period, as does 
(x.;t - x; + x). The latter quantity is centered on x = 19.85 (see section 8 .3 . 1) , which is 
the value in the middle year with t = 4. Clearly, it can be very usefL1l to plot a figme 
such as this. 
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Figure 8.3. Within scatterplot of log-wage deviations from individual means against 
experience deviations from individual means 
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8.3.8 Pooled O LS regression with cluster-robust standard errors 

A natural starting point is a pooled OLS regression for log wage using data for all 
individuals in all years. 

We include as regressors education, weeks worked, and a quadratic in experience. 
Education is a time-invariant regressor, taking the same value each year for a given 
individual. Weeks worked is an example of a time-varying regressor. Experience is also 
time-varying, though it is so in a deterministic way as the sample comprises people who 
work full-time in all years, so experience increases by one year as t increments by one. 

Regressing Yit on Xit yields consistent estimates of {3 if the composite error Uit in 
the pooled model of (8.2) is uncorrelated with Xit· As explained in section 8.2, the error 
Uit is likely to be correlated over time for a given individual, so we use cluster-robust 
standard errors that cluster on the individual. We have 

. * Pooled OLS with cluster-robust standard errors 

. use mus08psidextract .dta, clear 
(PSID wage data 1976-82 from Baltagi and Khanti-Akom (1990))  

. regress lwage exp exp2 wks e d ,  v c e(clu�ter id) 
Linear regression 

(Std. 

Robust 
lwage Coef . Std. Err. 

exp . 044675 . 0054385 
exp2 - . 0007156 .000 1285 
wks . 005827 . 0019284 

ed . 0760407 . 0052122 
cons 4 . 907961 . 1399887 

Err. 

t 

8 . 2 1  
-5 . 57 

3 . 02 
14 .59  
35 .06  

Number of obs � 4165 
F( 4 ,  594) 72 .58  
Prob > F 
R-squared 
Root MSE 

0 . 0000 
0 . 2836 
. 39082 

adjusted for 595 clusters in id) 

P> l t  I [95Y. Conf . Interval] 

0 . 000 .0 339941 . 055356 
0 . 000 - .0009679 - . 0004633 
0 . 003 . 0020396 . 0096144 
0 . 000 . 0658042 . 0862772 
0 . 000 4 . 633028 5 . 182894 

The output shows that R2 
= 0.28, and the estimates imply that wages increase with 

experience until a peak at 31 years [= 0.0447/(2 x 0.00072)] and then decline. Wages 
increase by 0.6% with each additional week worked. And wages increase by 7.6% with 
each additional year of education. 

For panel data, it is essential that OLS standard errors be corrected for clustering 
on the individual. In contrast, the default standard errors assume that the regression 
errors are independent and identically distributed (i .i .d.) . Using the default standard 
errors, we obtain 
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• Pooled DLS �ith incorrect default standard errors 
regress l�age exp exp2 �ks ed 

Source ss df MS 

Model 251 .491445 4 6 2 . 8728613 
Residual 635 . 4 13457 4160 . 152743619 

Total 886. 904902 4164 . 212993492 

lwago coef . Std. Err. t P> i t l  

exp . 044675 . 0023929 1 8 . 67 0 . 000 
exp2 - . 0007156 . 0000528 -13 .56  0 . 000 
�ks . 005827 .0011827 4 . 9 3  0 . 000 

ed .0760407 . 0022266 34 . 15  0 . 000 
cons 4 .  907961 . 0673297 72.89 0 . 000 

Number of obs = 4165 
F( 4, 4160) � 4 11 . 62 
Prob > F 0 . 0000 
R:..squared c 0 . 2836 
Adj R-squared c 0 . 2829 
Root MSE c • 39082 

[95Y. Conf. Interval] 

. 0399838 . 0493663 
- . 0008191 - . 0006121 

.0035084 . 0081456 

.0716754 . 080406 
4 . 775959 5 . 039963 
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These standard errors are misleadjngly small; the cluster-robust standard errors are, 
respectively, 0.0054, 0.0001, 0.0019, and 0.0052. 

It is likely that if log wage is overpredicted in one year for a given person, then it is 
likely to be overpredicted in other years. Failure to control for this error correlation leads 
to underestimation of standard errors because, intuitively, each additional observation 
for a given person actually provides less than an independent piece of new information. 

The difference between default and cluster-robust standard errors for pooled OLS 
can be very large. The difference increases with increasing T, increasing autocorrelation 
in model errors, and increasing autocorrelation of the regressor of interest. Specifically, 
the standard-error inflation factor T :::::: y'1 + PuPx(T - 1 ) ,  where Pu is the intraclass 
correlation of the error, defined below in (8.4), and Px is the intraclass correlation of the 
regressor. Here Pu � 0.80, s�own below, and for time-invariant regressor ed, Px = 1, so 
T � yfl + 0.80 X 1 x 6 = v'5.8 � 2.41 for ed. Similarly the regressor exp has Px = 1 
because for this sample experience increases by one year as t increments by one. 

Cluster-robust standard errors require that N --+  oo and that errors are independent 
over i. The assumption of independence over i can be relaxed to independence at a more 
aggregated level, provided that the number of units is still large and the units nest the 
individual. For example, the PSID is a household survey and errors for individuals from 
the same household may be correlated. If, say, houseid is available as a household 
identifier, then we would use the vce(cluster houseid) option. As a second example, 
if the regressor of interest is aggregated at the state level, such as a state policy variable, 
and there are many states, then it may be better to use the vee (cluster state) option. 

B.3.9 Time-series autocorrelations for panel data 

The Stata time-series operators can be applied to panel data when both panel and time 
identifiers are set with the xtset command. Examples include L . lwage or L i . lwage for 
lwage lagged once, L2 . lwage for lwage lagged twice,D . lwage for the difference in lwage 
(equals lwage - L . lwage) , LD . lwage for this difference lagged once, and L2D . lwage for 
this difference lagged twice. 
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Use of these operators is the best way to create lagged variables because relevant 
missing values are automatically and correctly created. For e..-'(ample, regress lwage 
L2 . wage will use (7 - 2) x 595 observations because forming L2 . wage leads to a loss of 
the· first two years of data for each of the 595 individuals. 

The corrgram command for computing autocorrelations of time-series data does not 
work for panel data. Instead, autocorrelations can be obtained by using the correlate 
command. For example, 

• First-order autocorrelation in a variable 
sort id t 
correlate lwage L . lwage 

(obs=3570) 

L .  
ll.rage lwage 

lwage 
1 . 0000 

L 1 .  0 . 9189 1 . 0000 

calculates the first-order autocorrelation coefficient for lwage to be 0.92. 
We now calculate autocorrelations at all lags (here up to six periods) . Rather than 

doing so for lwage, we do so for the residuals from the previous pooled OLS regression 
for lwage .  We have 

• Autocorrelations of residual 
quietly regress lwage exp exp2 wks ed ,  v ce( cluster id) 

predict uhat , residuals 
forvalues j = 1/6 { 
2 .  quietly corr uhat L - j " . uhat 
3 .  display "Autocorrelation at lag -j "  " /.6 . 3f r(rho) 
4 .  } 

Autocorrelation at 
Autocorrelation at 
Autocorrelation at 
Autocorrelation at 
Autocorrelation at 

lag 1 = 
lag 2 = 
lag 3 = 
lag 4 
lag 5 = 

Autocorrelation at lag 6 = 

0 . 884 
0 . 838 
0 . 81 1  
0 .  786 
0. 750 
0 . 729 

The for-values loop leads to separate computation of each autocorrelation to maximize 
the number of observations used. If instead we gave a one-line command to compute 
the autocorrelations of uhat through L6 .uhat, then only 595 observations would have 
been used. Here 6 x 595 observations are used to compute the autocorrelation at lag 
1, 5 x 595 observations are used to compute the autocorrelation at lag 2, and so on. 
The average of the autocorrelations, 0.80, provides a rough estimate of the intraclass 
correlation coefficient of the residuals. 
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Clearly, the errors are serially correlated, and cluster-robust standard errors af­
ter pooled OLS are required . The individual-effects model provides an explanation for 
this correlation. If the error U;t = O!i + cit >  then even if cit is i.i.d. (0, a;) , we have 
Cor( Uit, Ui�) =I 0 for t I= s if ai =J 0. The individual effect a.; induces correlation over 
time for a given individual. 

The preceding estimated autocorrelations are constant across years. For example, 
the correlation of uhat with L .uhat across years 1 and 2 is assumed to be the same as 
that across years 2 and 3, years 3 and 4, . . .  , years 6 and 7. This presumes that the 
errors are stationary. 

In the nonstationary case, the autocorrelations will differ across pairs of years. For 
example, we consider the auto correlations one year apart and allow these to differ across 
the year pair:;>. We have 

• First-order autocorrelation differs in different year pairs 
forvalues s = 2/7 { 
2 .  quietly corr uhat L 1 . uhat if t == · s ·  
3 .  display "Autocorrelation at lag 1 in year · s ·  = " /.6.3f r(rho) 
4 .  } 

Autocorrelation at lag 1 in year 2 = 0 . 915 
Autocorrelation at lag 1 in year 3 = 0 . 799 
Autocorrelation at lag 1 in year 4 = 0 . 855 
Autocorrelation at lag 1 in year 5 = 0 . 867 
Autocorrelation at lag 1 in year 6 = 0 . 894 
Autocorrelation at lag 1 in year 7 = 0 . 893 

The lag- 1 autocorrelations for individual-year pairs range from 0.80 to 0.92, and their 
average is 0.87. From the earlier output, the lag-1 autocorrelation equals 0.88 when it 
is constrained to be equal across all year pairs. It is common to impose equality for 
simplicity. 

8.3.10 Error correlation in the RE model 

For the individual-effects model (8 .1 ) ,  the combined error Uit = ai + cit ·  The RE model 
assumes that ai is i.i.d. with a variance of a; and that v,;t is i.i .d. with a variance of 17;. 

Then u;.t has a variance of Var( Uit )  = a� +a� and a covariance of Cov( U;t, u;8) = 17;, 
s I= t. It  follows that in  the RE model, 

(8.4) 

This constant correlation is called the intraclass correlation of the error. 

The RE model therefore permits serial correlation in the model error. This correlation 
can approach 1 if the random effect is large relative to the idiosyncratic error, so that 
� is large relative to a; . 

This serial correlation is restricted to be the same at all lags, and the errors Uit are 
then called equicorrelated or exchangeable. From section 8.3.9, the error correlations 
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were, respectively, 0.88, 0.84, 0 .81,  0. 79, 0.75, and 0.73, so a better model may be one 
that allows the error correlation to decrease with the lag length. 

8 .4  Pooled or population-averaged estimators 

Pooled estimators simply regress Yit on an intercept and xit , using both between (cross­
section) and within (time-series) variation in the data. Standard errors need to adjust 
for any error correlation and, given a model for error correlation, more-efficient FGLS 
estimation is possible. Pooled estimators, called population-averaged estimators in the 
statistics literature, are consistent if the RE model is appropriate and are inconsistent 
if the FE model is appropriate. 

8.4.1 Pooled OLS estimator 

The pooled OLS estimator can be motivated from the individual-effects model by rewrit­
ing (8.1) as the pooled model 

Yu = a + �tf3 + (a; - a + c;t) (8.5) 

Any time-specific effects are assumed to be fixed and already included as time dummies 
in the regressors Xit· The model (8.5) explicitly includes a common intercept, and the 
individual effects ai - a are now centered on zero. 

Consistency of OLS requires that the error term (a.; - a +  c:.it ) be uncorrelated with 
x;t . So pooled OLS is consistent in the RE model but is inconsistent in the FE model 
because then a; is correlated with Xit ·  

The pooled OLS estimator for our data example has already been presented in sec­
tion 8 .3.8. As emphasized there, cluster-robust standard errors are necessary in the 
common case of a short panel with independence across individuals. 

8.4.2 Pooled FGLS estimator or population-averaged estimator 

Pooled FGLS (PFGLS) estimation can lead to estimators of the parameters of the pooled 
model (8.5) that are more efficient than OLS estimation. Again we assume that any 
individual-level effects are uncorrelated with regressors, so PFGLS is consistent. 

Different assumptions about the correlation structure for the errors u.,t lead to dif­
ferent PFGLS estimators. In section 8 .10 ,  we present some estimators for long panels, 
using the xtgls and xtregar commands. 

Here we consider only short panels with errors independent across individuals. vVe 
need to model the T x T matri'< of error correlations. An assumed correlation structure, 
called a working matrix, is specified and the appropriate PFGLS estimator is obtained. 
To guard against the working matrix being a misspecifi ed model of the error correlation, 
cluster-robust standard errors are computed. Better models for the error correlation 
lead to more-efficient estimators, but the use of robust standard errors means that the 
estimators are not presumed to be fully efficient. 
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In statistics literature, the pooled approach is called a population-averaged (PA) 
approach, because any .individual effects are assumed to be random and are averaged 
out. The PFGLS estimator is then called the PA estimator. 

8.4.3 The xtreg, pa command 

The pooled estimator, or PA estimator, is obtained by using the xtreg command (see 
section 8.2.4) with the pa option. The two key additional options are corr ( ) , to place 
different restrictions on the error correlations, and vee (robust ) ,  to obtain cluster­
robust standard errors that are valid even if corr C )  does not specify the correct corre­
lation model, provided that observations are independent over i and N --+ oo. 

Let p t, = Cor(UitUi, ) , the error correlation over time for individual i, and note the 
restriction that Pt, does not vary with i . The corrO options all set Ptt = 1 but differ 
in the model for Pts for t =/= s. With T time periods, the correlation matrix is T x T, 
and there are potentially as many as T(T - 1) unique off-diagonal entries because it 
need not necessarily be the case that Pts = P•t · 

The carr( independent) option sets Pts = 0 for s =/= t. Then the PA estimator equals 
the pooled OLS estimator. 

The corr(exchangeable)  option sets Pt> = p for all s =/= t so that errors are assumed 
to be equicorrelated. This assumption is imposed by the RE model (see section 8.3 .10) , 
and as a result , xtreg, pa with this option is asymptotically equivalent to xtreg, re .  

For panel data, i t  is  often the case that the error correlation Pts declines as the 
time difference It - sl increases-the application in section 8.3.9 provided an example. 
The corr(ar k) option models this dampening by assuming an autoregressive process 
of order k, or AR(k) process, for U;t .  For example, corr(ar 1) assumes that u ,t = 

PlUi,t-1 +cit , which impfies that Pts = p�t-• 1 . The carr( stationary g) option instead 
uses a moving-average process, or MA(g) process. This sets Pt.s = P lt-, 1  if I t - sl ::; g ,  
and pt.,, = 0 i f  I t  - sl > g .  

The corr (unstructured) option places n o  restrictions on Pts, aside from equality 
of p, , ts across indiV:(duals. Then Pts = 1/N 'E,i (Uit - fit)(fi.is - u8) .  For small T, this 
may be the best model, but for larger T, the method can fail numerically because there 
are T(T - 1) unique parameters Pts to estimate. The corr(nonstationary g) option 
allows Pt• to be unrestricted if J t - s l ::; g and sets Pts = 0 if I t - s l > g so there are 
fewer correlation parameters to estimate. 

The PA estimator is also called the generalized estimating equations estimator in 
the statistics literature. The xtreg , pa command is the special case of xtgee with 
the family (gaussian) option. The more general xtgee command, presented in sec­
tion 18.4.4, has other options that permit application to a wide range of nonlinear panel 
models. 
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8.4.4 Application of the xtreg, pa command 

As an example, we specify an AR(2) error process. We have 

. • Population-averaged or pooled FGLS estimator with AR(2) error 

. xtreg lwage exp exp2 wks ed, pa corr(ar 2) vce (robust) nolog 

GEE population-averaged model 
Group and time var s :  
Link: 

· 

Family: 
Correlation: 

Scale parameter:  

id t 
identity 
Gaussian 

AR(2) 

. 1966639 

Number of obs 
Number of groups 
Obs per group : min = 

avg � 

max = 
\lald chi2(4) 
Prob > chi2 

4165 
595 

7 
7 . 0  

7 
873.28 
0 . 0000 

(Std. Err. adjusted for clustering on id) 

Semi-robust 
lwage Coef. Std. Err. z P> l z l  [95Y. Conf . Interval] 

exp . 0718915 .003999 17 .98  0 . 000 . 0640535 . 0797294 
exp2 - . 0008966 .0000933 - 9 . 6 1  0 . 000 -.  0010794 - .0007137 
wks . 0002964 . 0010553 0 . 2 8  0 . 779 - . 001772 . 0023647 

ed .0 905069 . 0060161 15 . 04 0 . 000 . 0787156 . 1022982 
cons 4 . 526381 . 1056897 42.83 0 . 000 4 . 319233 4 . 733529 

The coefficients change considerably compared with those from pooled OLS. The cluster­
robust standard errors are smaller than those from pooled OLS for all regressors except 
ed, illustrating the desired improved efficiency because of better modeling of the error 
correlations. Note that unlike the pure time-series case, controlling for autocorrelation 
does not lead to the loss of initial observations. 

The estimated correlation matrix is stored in e (R) . We have 

• Estimated error correlation matrix after xtreg, pa 
. matrix list e(R) 
symmetric e(R) [7,7] 

c1 c2 c3 c4 c5 c6 c7 
r1 1 
r2 . 89722058 1 
r3 .84308581 . 89722058 
r4 .78392846 . 84308581 . 89722058 
r5  .73064474 .78392846 . 84308581 . 89722058 1 
r6 . 6806209 .73064474 . 78392846 .84308581 . 8 9722058 1 
r7 . 63409777 . 6806209 . 73064474 .78392846 . 84308581 . 89722058 

�Y comparison, from section 8.3.9 the autocorrelations of the errors after pooled OLS 
estimation were 0.88, 0.84, 0 .81,  0.79, 0.75, and 0.73. 

In an end-of-chapter exercise, we compare estimates obtained using different error­
correlation structures. 
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Estimators of the parameters (3 of the FE model (8.1) must remove the fixed effects 
o:;. The within transform discussed in the next section does so by mean-differencing. 
The within estimator performs OLS on the mean-differenced data. Because all the 
observations of the mean-difference of a time-invariant variable are zero, we cannot 
estimate the coefficient on a time-invariant variable. 

Because the within estimator provides a consistent estimate of the FE model, it is of­
ten called the FE estimator, though the first-difference estimator given in section 8.9 also 
provides consistent estimates in the FE model. The within estimator is also consistent 
under the RE model, but alternative estimators are more efficient in the RE model. 

8.5.1 Within estimator 

The fixed effects o:i in the model (8.1) can be eliminated by subtraction of the corre­
sponding model for individual means fh = x/ (3 + €;, leading to the within model or 
mean-difference model 

· 

(8.6) 

where, for example, x; = T;- 1 2:::[� 1 Xit· The within estimator is the OLS estimator of 
this model. 

Because o:, has been eliminated, OLS leads to consistent estimates of (3 even if o:; 
is correlated with Xit, as is the case in the FE model. This result is a great advantage 
of panel data. Consistent estimation is possible even with endogenous regressors Xit , 
provided that Xit is correlated only with the time-invariant component of the error, o:, , 
and not with the time-varying component of the error, Eit· 

This desirable property of consistent parameter estimation in the FE model is tem­
pered, however, by the inability to estimate the coefficients or a time-invariant regressor. 
Also the within estimator will be relatively imprecise for time-varying regressors that 
vary little over time. 

Stata actually fits the model 

(8.7) 

where, for example, y = (1/N)'f}; is the grand mean of Yit · This parameterization has 
the advantage of providing an intercept estimate, the average of the individual effects 
o:;, while yielding the same slope estimate (3 as that from the within model. 

8.5 .2 The xtreg, fe command 

The within estimator is computed by using the xtreg command (see section 8.2.4) with 
the fe option. The default standard errors assume that after controlling for o: ,, the error 
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€it is i.i .d. The vee (robust) option relaxes this assumption and provides cluster-robust 
standard errors, provided that observations are independent over i and N --+  oo. 

8.5.3 Application of the xtreg, fe command 

For our data, we obtain 

. • Within or FE estimator with cluster-robust standard errors 

. xtreg l11age exp exp2 wks e d ,  fe v ce( cluster id) 
Number of obs Fixed-effects (within) regression 

Group variable : id Number of groups 

R-sq: within = 0 . 6566 
between = 0 . 0276 
overall = 0 . 0476 

corr(u_i, Xb) = -0 . 9107 

Dbs per group : 

F ( 3 ,594) 
Prob > F 

min = 
avg = 
max = 

4165 
595 

7 
7 . 0  

7 

1059.72 
0 . 0000 

(Std. ErT. adjusted for 595 clusters in id) 

Robust 
lwage Coef . Std. Err. t P > l t l  [95Y. Conf . Interval] 

exp . 1 137879 .0040289 28 .24 0 . 000 . 1058753 . 1217004 
exp2 - . 0004244 .0000822 -5 . 16 0 . 000 - . 0005858 - . 0002629 

wks . 0008359 .0008697 0 . 96 0 . 337 - . 0008721 . 0025439 
ed (dropped) 

cons 4 . 596396 . 0600887 76.49 0 . 000 4 . 478384 4 . 714408 

sigma_u 1 . 0362039 
sigma_e . 15220316 

rho . 97888036 (fraction of variance due to u_i) 

Compared with pooled OLS, the standard errors have roughly tripled because only within 
variation of the data is being used. The sigma_u and sigma_e entries are explained in 
section 8.8.1, and the R2 measures are explained in section 8.8.2. 

The most striking result is that the coefficient for education is not identified. This 
is because the data on education is time-invariant. In fact, given that we knew from the 
xtsum output in section 8.3.4 that ed had zero within standard deviation, we should 
not have included it as one of the regressors in the xtreg, f e command. 

This is unfortunate because how wages depend on education is of great policy in­
terest. It is certainly endogenous, because people with high ability are likely to have 
on average both high education and high wages. Alternative panel-data methods to 
control for endogeneity of the ed variable are presented in chapter 9. In other panel 
applications, endogenous regressors may be time-varying and the within estimator will 
suffice. 
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8.5.4 least-squares dummy-variables regression 

The within estimator of (3 is also called the FE estimator because it can be shown 
to equal the estimator obtained from direct OLS estimation of a 1 ,  . . .  , aN and (3 in 
the original individual-effects model (8 .1 ) .  The estimates of the fixed effects are then 
a; = Y; - x;'{3. In short panels, a; is not consistently estimated, because it essentially 
relies on only T; observations used to form '[}; and X.;, but {3 is nonetheless consistently 
estimated. 

Another name for the within estimator is the least-squares dummy-variable (LSDV) 
estimator, because it can be shown to equal the estimator obtained from OLS estimation 
of Yit on Xit and N individual-specific indicator variables dj,it, j = 1, . . .  , N, where 
dj.it = 1 for the itth observation if j = 1, and dj,it = 0 otherwise. Thus we fit the mudel 

Yit = ( 2:=:1 a;dj,it) + X�tf3 + C:it (8.8) 

This equivalence ofLSDV and within estimators does not carry over to nonlinear models. 

This parameterization prmrides an alternative way to estimate the parameters of the 
fixed-effects model, using cross-section OLS commands. The areg corninand, which fits 
the linear regression (8.8) with one set of mutually exclusive indicators, reports only 
the estimates of the parameters (3. We have 

. • LSDV model fitted using areg with cluster-robust standard errors 

. areg lwage exp exp2 wks ed, absorb(id) vce(cluster id) 

Linear regression, absorbing indicators 

(Std. 

Robust 
lwage Coef . Std. Err. 

exp . 1137879 . 0043514 
exp2 - . 0004244 . 0000888 
wks . 0008359 . 0009393 

ed (dropped) 
cons 4 .596396 . 0648993 

id absorbed 

Err.  

t 

26 . 15 
-4.78 
0 . 89 

70 . 8 2  

Number of obs 
F( 3 ,  594) 

4165 
908.44 

Prob > F 0 .0000 
R -squared 0 . 9068 
Adj R-squared � 0 . 8912 
Root MSE . 1522 

adjusted for 595 clusters in id) 

P> l t l  [95/. Conf . Interval] 

0 . 000 . 1052418 . 1223339 
0 . 000 - . 0005988 - . 00025 
0 . 374 - .. 0010089 . 0026806 

0 .000  4 .468936 4 . 723856 

(595 categories) 

The coefficient estimates are the same as those ·from xtreg , fe .  The cluster-robust 
standard errors differ because of different small-sample correction, and those from 
xtreg, fe should be used. This difference arises because inference for areg is designed 
for the case where N is fixed and T --+  oo, whereas we are considering the short-panel 
case, where T is fixed and N -> oo .  
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The model can also be fitted using regress. One way to include the dummy variables 
is to use the xi prefix. To do this,- we need to increase the default setting of matsize 
to at least N + K, where K is the number of regressors in  this model. The output 
from regress is very long because it includes coefficients for all the dummy variables. 
We instead suppress the output and use estimates table to list results for just the 
coefficients of interest. 

* LSDV model f it ted using areg lol'ith cluster-robust standard errors 
set matsize 800 

quietly x i :  regress llol'age exp exp2 lol'ks ed i . i d,  vce(cluster id) 

estimates table, keep(exp exp2 lol'ks ed _cons) b s e  b (%12.7f)  

Variable active 

exp 0 . 1 137879 
0. 0043514 

exp2 -0 . 0004244 
0 . 0000888 

lol'kS 0 .0008359 
0 .0009393 

ed -0 . 2749652 
0 .0087782 

_cons 7 . 7422877 
0 . 0774889 

legend: b/se 

The coefficient estimates and standard errors are exactly the same as those obtained 
from areg, aside from the constant. For areg (and xtreg , fe ) ,  the intercept is fitted 
so that y - X.'/3 = 0, whereas this is not the case using regress. The standard errors 
are the same as those from areg, and as already noted, those from xtreg, fe should 
be used. 

8.6 Between estimator 

The between estimator uses only between or cross-section variation in the data and is 
the OLS estimator from the regression of fj; on X:;.  Because only cross-section variation 
in the data is used, the coefficients of any individual-invariant regressors, such as time 
dummies, cannot be identified. We provide the estimator for completeness, even though 
it is seldom used because pooled estimators and the RE estimator are more efficient. 

8.6.1 Between estimator 

The between estimator is inconsistent in the FE model and is consistent in the RE model. 
To see this, average the individual-effects model (8.1) to obtain the between model 

Y; = a + X;'/3 + (a; - a + £;) 

The between estimator is the OLS estimator in this model. Consistency requires that 
the error term (a; - a + £;) be uncorrelated with x;1. This is the case if a; is a random 
effect but not if a; is a fixed effect. 
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The between estimator is obtained by specifying the be option of  the xtreg command. 
There is no explicit option to obtain heteroskedasticity-robust standard errors, but these 
can be obtained by using the vee (bootstrap) option. 

For our data, the bootstrap standard errors differ from the default by only 10%, 
because averages are used so that the complication is one of heteroskedastic errors 
rather than clustered errors. We report the default standard errors that are much more 
quickly computed. We have 

. • Between estimator with default standard errors 

. xtreg lwage exp exp2 wks e d ,  be 
Betw�en regression (regression on group means) 
Group · variable :  id 
R-sq: within = 0 . 1357 

between = 0 .  3264 
overall = 0 . 2723 

sd(u_i + avg(e_ i . ) )  = .324656 

lwage Coef.  Std.  Err. 

exp . 038153 . 0056967 
exp2 - .0006313 . 0001257 

wks . 0130903 . 0040659 
ed . 0737838 . 0048985 

_cons 4 . 683039 . 2100989 

t 

6 .  70 
-5 . 02 
3 . 22 

15 .06  
22 . 29 

Number of obs 
Number of groups 
Obs per group: min = 

avg = 

max ::;:: 

F ( 4 , 590) 
Prob > F 

P> l t l  

0 . 000 
0 . 000 
0 . 00 1  
0 . 000 
0 . 000 

[95/. Conf. 

. 0269647 
- . 0008781 

. 0051048 

. 0641632 
4 . 210407 

4165 
595 

7 
7 . 0  

7 
7 1 . 48 

0 . 0000 

Interval] 

. 0493412 
- . 0003844 

. 0210757 

. 0834044 
5 . 095672 

The estimates and standard errors are closer to those obtained from pooled OLS than 
those obtained from within estimation. 

8.7 RE estimator 

The RE estimator-is the FGLS estimator in the RE model (8.1) under the assumption 
that the random effect a:; is i.i.d. and the idiosyncratic error c.it is i.i.d. The RE esti­
mator is consistent if the RE model is appropriate and is inconsistent if the FE model is 
appropriate. 

8.7.1 RE estimator 

The RE model is the individual-effects model (8. 1 )  

y;t = x';tf3 + (a:; + c;t) (8.9) . 

with a:; � (a:, cr�) and c;t � (0, cr�). Then from (8.4), the combined error U;t = a:; + c;t 
is correlated over t for the given i with 

(8. 10) 
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The RE estimator is the FGLS estimator of {3 in (8.9) given (8.10) for the error correla­
tions. 

In several different settings, such as heteroskedastic errors and AR(l) errors, the 
FGLS estimator can be calculated as the OLS estimator in a model transformed to have 
homoskedastic uncorrelated errors. This is also possible here. Some considerable algebra 
shows that theRE estimator can be obtained by OLS estimation in the transformed model 

(8 .11)  

where 'if; is  a consistent estimate of 

The RE estimator is consistent and fully efficient if the RE model is appropriate. It 
is inconsistent if the FE model is appropriate, because then correlation between Xit and 
O:i implies correlation between the regressors and the error in (8 . 11  ) .  Also, if there are 
no fi..'<ed effects but the errors exhibit within-panel correlation, then the RE estimator is 
consistent but inefficient, and cluster-robust standard errors should be obtained. 

The RE estimator uses both between and within variation in the data and has spe­
cial cases of pooled OLS (§. = 0) and within estimation (ei = 1 ) .  The RE estimator 
approaches the within !stimator as T gets large and as cr� gets large relative to cr; , 

because in those cases ei -+ 1 .  

8. 7.2 The xtreg, re command 

Three closely related and asymptotically equivalent RE estimators can be obtained by 
using the xtreg command (see section 8.2.4) with the re,  mle, or pa option. These 
estimators use different estimates of the variance components cr; and cr� and hence 
different estimates "8; in the RE regTession; see [XT] xtreg for the formulas. 

The RE estimator uses unbiased estimates of the variance components and is obtained 
by using the re option. The marimum likelihood estimator, under the additional as­
sumption of normally distributed O:i and £it, is computed by using the mle option. The 
RE model implies the errors are equicorrelated or exchangeable (see section 8 .3 .10), so 
xtreg with the pa and corr(exchangeable) options yields asymptotically equivalent 
results. 

For panel data, the RE estimator assumption of equicorrelated errors is usually too 
strong. At the least, one should use the vee (cluster id) option to obtain cluster­
robust standard errors. And more-efficient estimates can be obtained with xtreg, pa 
with a better error structure than those obtained with the carr( exchangeable) option. 

8.7.3 Application of the xtreg, re command 

For our data, xtreg, re yields 
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. • Random-effects estimator with cluster-robust standard errors 

. xtreg lwage exp �xp2 wks ed, re vce (cluster id) theta 
Random-effects GLS regression 
Group variable : id 

R-sq: within = 0 .6340 
between = 0 . 1716 
overall = 0 . 1830 

Random effects u_i - Gaussian 
corr (u_i , X) = 0 (assumed) 
theta = .82280511 

Number of obs 
Number of groups 
Obs per group : min = 

avg = 
max = 

Wald chi2(5) 
Prob > chi2 

4165 
595 

7 
7 . 0  

7 

87967 .78  
0 . 0000 

(Std. Err. adjusted for 595 clusters in id) 

Robust 
lwage Coef. Std. Err. z P> l z l  [95/. Conf . Interval] 

exp . 0888609 . 0039992 22.22 0.000 . 0810227 . 0966992 
exp2 - . 0007726 . 0000896 -8 . 62  0 . 000 - . 0009481 - . 000597 
wks .0009658 .0009259 1 . 04 0 . 297 - . 000849 . 0027806 

ed . 1117099 . 0083954 1 3 . 3 1  0 . 000 . 0952552 . 1281647 
_cons 3 . 829366 . 1333931 28 .71  0 . 000 3 . 567921 4 . 090812 

sigma_u . 31951859 
s igma_e . 15220316 

rho . 8 1505521 (fraction of variance due to u_i) 
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Unlike the within estimator, the coefficient of the time-invariant regressor ed is now es­
timated. The standard errors are somewhat smaller than those for the within estimator 
because some between variation is also used. The entries sigma_u, sigma_e, and rho, 
and the various R2 measures, are explained in the next section. 

The re,  mle,  and pa corr( exchangeable) options of xtreg yield asymptotically 
equivalent estimators that differ in typical sample sizes. Comparison for these data is 
left as an exercise. 

8.8 Comparison of estimators 

Output from xtreg includes estimates of the standard deviation of the error components 
and R2 measures that measure within, between, and overall fi t. Prediction is possible 
using the postestimation predict command. We present these estimates before turning 
to comparison of OLS, between, RE, and within estimators. 

8.8.1 Estimates of variance components 

Output from the fe, re, and mle options of xtreg includes estimates of the standard 
deviations of the error components. The combined error in the individual-effects model 
that we label ai + tit is referred to as Ui + eit in the Stata documentation and output. 
Thus Stata output sigma_u gives the standard deviation of the individual effect ai, and 
sigma_e gives the standard deviation of the idiosyncratic error tit· 
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For the RE model estimates given in the previous section, the estimated standard 
deviation of a,; is twice that of f:it· So the individual-specific component of the error 
(the random effect) is much more important than the idiosyncratic error. 

The output labeled rho equals the intraclass correlation of the error Pu defined in 
(8.4). For the RE model, for example, the estimate of 0.815 is very high. This is 
expected because, from section 8.3.9, the average autocorrelation of the OLS residuals 
was computed to be around 0.80. 

The theta option, available for the re option in the case of balanced data, reports 
the estimate 8; = B. Because 0 = 0.823, here the RE estimates will be much closer to  
the within estimates than to the OLS estimates. More generally, in the unbalanced case 
the matrix e (theta) saves the minimum, 5th percentile, median, 95th percentile, and 
maximum of el , . . . , �-

8.8.2 Within and between R-squared 

The table header from xtreg provides three R2 measures, computed using the inter­
pretation of R2 as the squared correlation between the actual and fitted values of the 
dependent variable, where the fi.tted values ignore the contribution of ai . 

Let a and {3 be estimates obtained by one of the xtreg options (be, fe, or re) .  Let 
p2 (x, y) denote the squared correlation between x and y .  Then 

Within R2: p2 { (Yit - '[};) , (X.:t/3 - x;/3) } 
Between R2: p2 (f};, x�/3) 
Overall R2: p2 (Yit , x�t/3) 

The three R2 measures are, respectively, 0.66, 0.03, and 0.05 for the within estimator; 
0 . 14 ,  0.33, and 0.27 for the between estimator; and 0.63, 0.17, and 0.18 for the RE 
estimator. So the within estimator best explains the within variation (� = 0.66) ,  and 
the between estimator best explains the between variation (R� = 0.33). The within 
estimator has a low R� = 0.05 and a much higher R2 = 0.91 in section 8.5.4, because 
R� neglects a; . 

8.8.3 Estimator comparison 

We compare some of the panel estimators and associated standard errors, variance 
components estimates, and R2. Pooled OLS is the same as the xtreg command with 
the corr(independent) and pa options. We have 

. • Compare OLS, BE ,  FE , RE estimators, and methods to compute standard errors 

. global xlist exp exp2 wks ed 

. quietly regress lwage $xlist, vce (cluster id) 

. estimates store DLS_rob 

. quietly xtreg lwage $xlist ,  be 



8.8.4 Fixed effects versus random effects 

estimates store BE 

quietly xtreg lwage $x list, fe 
estimates store FE 
quietly xtreg lwage $x list, f e vee (robust) 

estimates store FE_rob 

quietly xtreg lwage $xlist, re 
estimates store RE 
quietly xtreg lwage $xlist, re vee (robust) 

estimates store RE_rob 
estimates table OLS_rob BE FE FE_rob RE RE_rob , 

> b se stats(N  r2 r2_o r2_b r2_w sigma_u sigma_e rho) 

Variable OLS_rob BE FE FE_rob 

exp 0 . 0447 0 . 0382 0 . 1 138 0 . 1 138 
0 . 0054 0 . 0057 0 . 0025 0 . 0040 

exp2 -0 . 0007 -0.0006 - 0 . 0004 -0.0004 
0 . 0001 0 . 0001 0 . 0001 0 . 0001 

IlkS 0 . 0058 0 . 0131 0 . 0008 0 . 0008 
0 . 0019 0 .  0041 0 . 0006 0 . 0009 

ed 0 . 0760 0 . 0738 0 . 0000 0 . 0000 
0 . 0052 0 . 0049 0 . 0000 0 . 0000 

_cons 4 . 9080 4 . 6830 4 . 5964 4 . 5964 
0 . 1400 0 . 2101 0 . 0389 0 . 0601 

N 4. 2e+03 4 .  2e+03 4 . 2e+03 4 . 2e+03 
r2 0 . 2836 0 . 3264 0 . 6566 0 . 6566 

r2_o 0 . 2723 0 . 0476 0 . 0476 
r2_b 0 . 3264 0 . 0276 0 . 0276 
r2_w 0 . 1357 0 . 6566 0 . 6566 

sigma_u 1 .  0362 1 . 0362 
sigma_e 0 . 1522 0 . 1522 

rho 0 . 9789 0 . 9789 
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b(/.7.4f) 

RE RE_rob 

0 . 0889 0 . 0889 
0 . 0028 0 . 0029 

-0.0008 -0. 0008 
0 .  0001 0 . 0001 
0 . 0010 0 . 0010 
0 . 0007 0 . 0009 
0 . 1117 0 . 1117 
0.  0061 0 . 0063 
3 . 8294 3 . 8294 
0 . 0936 0 . 1039 

4 . 2e+03 4 . 2e+03 

0 . 1830 0 . 1830 
0 . 1716 0 . 1716 
0 . 6340 0 . 6340 
0 .  3195 0 . 3195 
0 . 1522 0 . 1522 
0 . 8151 0 . 8151 

legend : b/se 

Several feature;_ .emerge. The estimated coefficients vary considerably across esti­
mators, especially for the time-varying regressors. This reflects quite different results 
accordj11g to whether within variation or between variation is used. The within estima­
tor did not provide a coefficient estimate for the time-invariant regressor ed (with the 
coefficient reported as 0.00). Cluster-robust standard errors for the FE and RE models 
exceed the default standard errors by one-third to one-half. The various R2 measures 
and variance-components estimates also vary considerably across models. 

8.8 .4  Fixed effects versus random effects 

The essential distinction in microeconometrics analysis of panel data is that between 
FE and RE models. If effects are fixed, then tl:ie pooled OLS and RE estimators are 
inconsistent, and instead the within (or FE) estimator needs to be used. The within 
estimator is otherwise less desirable, because using only within variation leads to less­
efficient estimation and inability to estimate coefficients of time-invariant regressors. 
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To understand this distinction, consider the scalar regression of Yit on Xit· Con­
sistency of the pooled OLS estimator requires that E(u..-tlx;t) = 0 in the model Yit = 
a: +  f3x;t +u;t .  If this assumption fails so that X;t is endogenous, IV estimation can yield 
consistent estimates. It can be difficult to find an instrument Z;t for X;t that satisfies 
E(U;t iZit) = o .  

Panel data provide an alternative way to obtain consistent estimates. Introduce 
the individual-effects model Yit = a:; + {3x;t + cit · Consistency in this model requires 
the weaker assumption that E(e;t ia:; , X;t) = 0. Essentially, the error has two compo­
nents: the time-invariant component a:; correlated with regressors that we can eliminate 
through differencing, and a time-varying component that, given a:;, is uncorrelated with 
regressors. 

The RE model adds an additional assumption to the individual-effects model: a:; is 
distributed independently of X;t . This is a much stronger assumption because it implies 
that E(cit la:; , Xit) = E(eit iXit), so consistency requires that E(t:;t iXit) = 0, as assumed 
by the pooled OLS model. 

For individual-effects models, the fundamental issue is whether the individual effect 
is correlated with regressors. 

8.8.5 Hausman test for fixed effects 

Under the null hypothesis that individual effects are random, these estimators should 
be similar because both are consistent. Under the alternative, these estimators diverge. 
This juxtaposition is a natural setting for a Hausman test (see section 12 .7), comparing 
FE and RE estimators. The test compares the estimable coefficients of time-varying 
regressors or can be applied to a key subset of these (often one key regressor) .  

The hausman command 

The hausman command implements the standard form of the Hausman test. We have 
already stored the within estimates as FE and the RE estimates as RE, so we can imme­
diately implement the test. 

For these data, the default version of the hausman FE RE command leads to a vari­
ance estimate {V(,6FE)-V(;3RE) }  that is negative definite, so estimated standard errors 
of Wj,FE - /3j,RE) cannot be obtained. This problem can arise because different esti­
mates of the error variance are used in forming V(,6FE) and V(,6RE) .  Similar issues 
arise for a Hausman test comparing OLS and two-stage least-squares estimates. 

It is better to use the sigmamore option, which specifies that both covariance matri­
ces are based on the (same) estimated disturbance variance from the efficient estimator. 
We obtain 
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* Hausman test assuming RE estimator is fully efficient under null hypothesis 
hausman FE RE , ;>,.igmamore 

exp 
exp2 
IlkS 

-- Coefficients --

(b) (B) (b-B) sqrt(diag(V_b-V_B) )  
FE RE Difference S ,  E . 

. 1 137879 
- . 0004244 

. 0008359 

. 0888609 
- . 0007726 

.0009658 

. 0249269 

. 0003482 
- . 0001299 

.0012778 

. 0 000285 

. 0001108 

b = consistent under H o  and Ha; obtained from xtreg 
B = inconsistent under Ha,  efficient under Ho; obtained from xtreg 

Test: Ho: difference in coeff icients not systematic 
chi2(3) = (b-B ) . [ (V_b-V_B) - (-1)J (b-B) 

Prob>chi2 = 
1513 .02 
0 . 0000 
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The output from hausman provides a nice side-by-side comparison.' For the coefficient of 
regressor exp, a test of RE against FE yields t = 0.0249/0.00128 = 19.5, a highly statis­
tically significant difference. And the overall statistic, here x2 (3), has p =  0.000. This 
leads to strong rejection of the null hypothesis that RE provides consistent estimates. 

Robust Hausman test 

A serious shortcoming of the standard Hausman test is that it requires the RE estimator 
to be efficient. This in turn requires that the Cl'i and cit are i . i .d. ,  an invalid assumption 
if cluster-robust standard errors for the RE estimator differ substantially from default 
standard errors. For our data example, and in many applications, a robust version of 
the Hausman test is needed. There is no Stata command for this. A panel bootstrap 
Hausman test can be conducted, using an adaptation of the bootstrap Hausman test 
example in section 13.4.6. 

Simpler is to test H0 : 1 = 0 in the auxiliary OLS regression 

(Yit - GrJJ = ( 1 - e) a +  (xlit - (fxli)' (31 + (xlit - Xli )'"Y + Vit 

where.x1 denotes only time-varying regressors. A Wald test of 7 = 0 can be shown to 
be asymptotically equivalent to the standard test when the RE est imator is fully efficient 
under H0 .  In the more likely case that the RE estimator is not fully efficient, Wooldridge 
(2002) proposes performing the Wald test using cluster-robust standard errors. 

To �plement this test in Stata, we need to generate the RE differences Yit - '&yi and 
xlit - exlil and the mean-differences X1it - Xli· 
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• Robust Hausman test using method of Wooldridge (2002) 
quietly xtreg lwage $xlist, re 

scalar theta = e (theta) 
global yandxforhausman lwage exp exp2 wks 
sort id 
foreach x of varlist $yandxforhausman { 
2 .  b y  i d :  egen mean· x ·  c mean ( · x · )  
3 .  generate md·x·  = · x ·  - mean · x ·  
4 .  generate red·x·  = · x ·  - theta•mean· x ·  
5 .  } 
quietly regress redlwage redexp redexp2 redwks mdexp mdexp2 mdwks 

test mdexp mdexp2 mdwks 

( 1) mdexp = 0 
( 2) mdexp2 = 0 
( 3) mdwks = 0 

F( 3, 4158) 848.39 
Prob > F = 0 . 0000 

The test strongly rejects the null hypothesis, and we conclude that the RE model is not 
appropriate. The code will become more complex in the unbalanced case, because we 
then need to compute 8; for each observation. 

A summary of many related tests for fixed versus random effects is given in Baltagi 
(2008, 72�78). 

8.8.6 Prediction 

The postestimation predict command after xtreg provides estimated residuals and 
fitted values following estimation of the individual-effects model Yit = Oti + x;tf3 + E:it· 

The estimated individual-specific error ai = fii - x.:t/3 i s  obtained by using the u 
option; the estimated idiosyncratic error fit = Yit - ai - x;t/3 is obtained by using the 
e option; and the ue option gives ai + fit. 

Fitted values of the dependent variable differ according to whether the estimated 
individual-specific error is used. The fitted value Yit = a + x;tj3, where a =  N�1 l::i &.,, 
is obtained by using the xb option. The fitted value Yit = Cti +x:t/3 is obtained by using 
the xbu option. 

As an example, we contrast OLS and RE in-sample fitted values. 

• Prediction after DLS and RE estimation 
quietly regress lwage exp exp2 wks ed, vce(cluster id) 

predict xbols, xb 
quietly xtreg lwage exp oxp2 wks ed, re 

predict xbre , xb 
predict xburo,  xbu 
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summarize lYage :-bols xbre xbure 
Variable Obs Mean Std. Dev. Min Max 

lYage 4165 6 . 676346 .4615122 4 . 60517 8 . 537 
xbols 4165 6 . 676346 . 2457572 5 . 850037 7 . 200861 

xbre 4165 6 . 676346 . 6205324 5 . 028067 8 . 22958 
xbure 4165 6 . 676346 .4082951 5 . 29993 7 .  968179 

correlate lYage xbols xbre xbure 
(obs=4165) 

lYage xbols xbro xbure 

lltage 1 .  0000 
xbols 0 . 5325 1 . 0000 

xbre 0 . 4278 0 . 8034 1 . 0000 
xbure 0 . 9375 0 . 6019 0 . 4836 1. 0000 

The RE prediction a + x;t,6 is not as highly correlated with lwage·as is the OLS predic­
tion (0.43 versus 0.53), which was expected because the OLS estimator maximizes this 
correlation. 

When instead we use ai + x:t.6 so the fi tted individual effect is included, the corre­
lation of the prediction with lwage increases greatly to 0.94. In a short panel, however, 
these predictions are not consistent because each individual prediction a" = y., - x:t.6 
is based on only T observations and T ..,.. oo. 

8 .9  First�difference estimator 

Consistent estimation of {3 in the FE model requires eliminating the a. ; .  One way to do 
so is to mean-difference, yielding the within estimator. An alternative way is to first­
difference, leading to the 

·
first-difference estimator. This alternative has the advantage 

of relying on weaker exogeneity assumptions, explained below, that become important 
in dynamic models presented in the next chapter. In the current chapter, the within 
estimator is traditionally favored as it is the more efficient estimator if the E;t are i.i.d. 

8.9.1 First-difference estimator 

The first-difference (FD) estimator is obtained by performing OLS on the first-differenced 
variables 

(8.12) 

First-differencing has eliminated a; , so OLS estimation of this model leads to consistent 
estimates of {3 in the FE model. The coefficients of time-invariant regressors are not 
identified, because then Xit - Xi,t-l = 0, as was tl;le case for the within estimator. 

The FD estimator is not provided as an option to xtreg. Instead, the estimator 
can be computed by using regress and Stata time-series operators to compute the 
first-differences. We have 
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sort id t 
* First-differences estimator with cluster-robust standard errors 
regress D . (lwage exp exp2 wks ed) , vce (cluster id) noconstant 

Linear regression Number of obs � 3570 
F( 3 ,  594) 1035 . 19 
Prob > F 
R-squared 
Root MSE 

� 0 . 0000 
� 0 . 2209 

. 18156 

(Std. Err. adjusted for 595 clusters in id) 

D . ll;age 

exp 
D l .  

exp2 
D l .  
wks 
D l .  

o d  

Robust 
Coef. Std. Err . 

. 1 170654 .0040974 

- . 0005321 . 0000808 

- . 0002683 .00 11783 

D 1 .  (dropped) 

t P> l t l  

28.57 0 . 000 

- 6 . 58 0 .000 

-0 .23 0 . 820 

[95/. CoD� . Interval] 

. 1090182 . 1251126 

- . 0006908 - . 0003734 

- . 0025824 . 0020459 

Note that the noconstant option is used. If instead an intercept is included in (8 . 12) ,  
say, o ,  this would imply that the original model had a time trend because ot-o(t-1) = 0 .  

As expected, the coefficient for education is  not identified because e d  here is  time­
invariant . The coefficient for wks actually change:; :;ign compared with the other esti­
mators, though it is highly statist ically insignificant. 

The FD estimator, like the within estimator, provides consistent estimators when the 
individual effects are fixed. For panels with T = 2 ,  the FD and within estimators are 
equivalent; otherwise, the two differ. For static models, the FE model is used because 
it is the efficient estimator if the idiosyncratic error �it is i.i .d. 

The FD estimator seemingly uses one less year of data compared with the within 
estimator, because the FD output lists 3,570 observations rather than 4,165. This, 
however, is misleading. Using the LSDV interpretation of the within estimator, the 
within estimator essentially loses 595 observations by estimating the T fixed effects 
al , · · . , aT .  

8.9.2 Strict and weak exogeneity 

From (8.6), the within estimator requires that Eit - 'E; be uncorrelated with X;t - X; .  
This is the case under the assumption of strict exogeneity or strong exogeneity that 

From (8. 12 ) ,  the FD estimator requires that C:it - f:i.,t-1 be uncorrelated with Xit - xi , t�t · 
This is the case under the assumption of weak exogeneity that 
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This is  a considerably weaker assumption because i t  permits future values of the re­
gressors to be correlated with the error, as will be the case if the regressor is a lagged 
dependent variable. 

As long as there is no feedback from the idiosyncratic shock today to a covariate 
tomorrow, this distinction is unnecessary when estimating static models. It becomes 
important for dynamic models (see section 9.4) ,  because then strict exogeneity no longer 
holds and we turn to the FD estimator. 

8.10 Long panels 

The methods up to this point have focused on short panels. Now we consider long 
panels with many time periods for relatively few individuals (N is small and T --+ oo).  
Examples are data on a few regions, firms, or  industries followed fQr many time periods. 

Then individual fixed effects, if desired, can be easily handled by including dummy 
variables for each individual as regressors. Instead, the focus is on more-efficient GLS 
estimation under richer models of the error process than those specified in the short­
panel case. Here we consider only methods for stationary errors, and we only briefly 
cover the growing area of panel data with unit roots and cointegration. 

8.10.1 long-panel dataset 

The dataset used is a U.S. state-year panel from Baltagi, Griffin, and Xiong (2000) on 
annual cigarette consumption and price for U.S. states over 30 years. The ultimate goal 
is to measure the responsiveness of per capita cigarette consumption to real cigarette 
prices. Price varies across. states, due in large part to different levels of taxation, as well 
as over time. 

The original data were for N = 46 states and T = 30, and it is not clear whether we 
should treat N -> oo, as we have done to date, or T --+ oo, or both. This situation is 
not unusual for a panel that uses aggregated regional data over time. To make explicit 
that we are considering T ->  oo,  we use data from only N = 10 states, similar to many 
countries where there may be around 10 major regions (states or provinces). 

(Continued on next page) 
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The mus08cigar . dta dataset has the following data: 

* Description of cigarette dataset 
use mus08cigar .dta, clear 

describe 
Contains data from mus08cigar.dta 

obs: 300 
vars: 6 
size: 8 , 400 ( 99 . 9r.  of memory free) 

storage display value 
variable name type format label 

state float /.9 .0g  
year float /.9 .0g  
lnp float /.9.0g 

lnpmin float /.9.0g 

lnc float /.9 .0g  

lny float /.9.0g 

Sorted by: 

13 Mar 2008 20:45 

variable label 

U . S .  state 
Year 1963 to 1992 
Log state real price of pack of 

cigarettes 
Log of min real price in 

adjoining states 
Log state cigarette sales in 

packs per capita 
Log state per capita disposable 

income 

There are 300 observations, so each state-year pair is a separate observation because 
10 x 30 = 300. The quantity demanded (lnc) will depend on price (lnp), price of a 
substitute (lnpmin), and income (lny). 

Descriptive statistics can be obtained by using summarize: 

* Summary of cigarette dataset 
summarize, separator(6)  

Variable Obs Mea.n Std. Dev. Min Max 

state 300 5 . 5  2 . 87708 10 
year 300 77 .5  8 . 669903 6 3  9 2  

lnp 300 4 .  518424 . 1 406979 4 . 176332 4 .  96916 
lnpmin 300 4 . 4308 . 1 379243 4 . 0428 4 . 831303 

lnc 300 4 .  792591 .2071792 4.212128 5 . 690022 
lny 300 8 . 731014 . 6942426 7 . 300023 1 0 . 0385 

The variables state and year have the expected ranges. The variability in per capita 
cigarette sales (lnc) is actually greater than the variability in price (lnp) , with respective 
standard deviations of 0.21 and 0.14. All variables are observed for all 300 observations, 
so the panel is indeed balanced. 

8.10.2 Pooled OLS and PFGLS 

A natural starting point is  the two-way-effects model Yit = a; + 'Yt + x!;tf3 + E:it ·  When 
the panel has few individuals relative to the number of periods, the individual effects 
a; (here state effects) can be incorporated into xu as dummy-variable regressors. Then 
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there are too many time effects "tt (here year effects) .  Rather than trying to control 
for these in ways analogous to the use of xtreg in the short-panel case, it is usually 
sufficient to take advantage of the natural ordering of time (as opposed to individuals) 
and simply include a linear or quadratic trend in time. 

We therefore focus on the pooled model 

Yit = x;tf3 + Uit, i = 1, . . . , N, t = 1, . . . , T ( 8.13) 
where the regressors Xit include an intercept, often time and possibly time-squared, and 
possibly a set of individual indicator variables. We assume that N is quite small relative 
to T. 

We consider pooled OLS and PFGLS of this model under a variety of assumptions 
about the error Uit · In the short-panel case, it was possibl� to obtain standard errors 
that control for serial correlation in the error without explicitly stating a model for 
serial correlation. Instead, we could use cluster-robust standard errors, given a small 
T and N ---. oo. Now, however, T is large relative to N, and it is necessary to specify 
a model for serial correlation in the error. Also given that N is small, it is possible to 
relax the assumption that Uit is independent over i. 

8.10.3 The xtpcse and xtgls commands 

The xtpcse and xtgls commands are more suited than xtgee for pooled OLS and GLS 
when data are from a long paneL They allow the error U;t in the model to be correlated 
over ·i , allow the use of an AR(l) model for Uit over t, and allow Uit to be heteroskedastic. 
At the greatest level of generality, 

(8.14) 

where cit are serially uncorrelated but are correlated over i with Cor(cit , ci, ) = O'ts ·  

The xtpcse command yields (long) panel-corrected standard errors for the pooled 
OLS estimator, as well as for a pooled least-squares estimator with an AR(l) model for 
Uit· The synta..'C is -

xtpcse depvar [ indepvars ] [ if ]  [ in ]  [ weight ] [ , options ] 

The correla tionO option determines the type of pooled estimator. Pooled OLS 
is obtained by using correla tion(independent) .  The pooled AR(l) estimator with 
general Pi is obtained by using correlation (psarl) . With a balanced panel, Yit � 

PiYit,t-1  is regressed on xit = Xit -PXit,t-1 
for t >  1, whereas J(1 - Pi)2Yil is regressed 

on -/(1 - P,)2xi1 for t = 1 .  The pooled estimator with AR(l) error and Pi = p is 
obtained by using correlation Car l ) .  Then p, calculated as the average of the {i;., is 
used. 

In all cases, panel-corrected standard errors that allow heteroskedasticity and corre­
lation over i are reported, unless the hetonly option is used, in which case independence 
over i is assumed, or the independent option is used, in which case cit is i .i.d. 
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The xtgls command goes further and obtains PFGLS estimates and associated stan­
dard errors assuming the model for the errors is the correct model. The estimators are 
more efficient asymptotically than those from xtpcse, if the model is correctly specified. 
The command has the usual syntax: 

xtgls depvar [ indepvars ] [ if ] [ in ]  [ weight ] [ , options ] 

The panels ( )  option specifies the error correlation across individuals, where for 
our data an individual is a state. The panels (iid) option specifies Uit to be i . i .d. ,  
in which case the pooled OLS estimator is obtained. The panels (heteroskedastic) 
option specifies Uit to be  independent with a variance of E(urt ) = a'f that can be 
different for each individual. Because there are many observations for each individual, 
a'f can be consistently estimated. The panels (correlated) option additionally allows 
correlation across individuals, with independence over time for a given individual, so 
that E(u;tUjt) = a;j . This option requires that T > N. 

The corr C )  option specifies the serial correlation of errors for each individual state. 
The corr( independent) option specifies Uit to be serially uncorrelated. The corr(arl) 
option permits AR(l) autocorrelation of the error with Uit = pui,t-1 + C:it, where C:it is 
i.i .d. The corr(psarl) option relaxes the assumption of a common AR(l) parameter to 
allow Uit = PiUi,t- 1  + C:it· The rhotype 0 option provides various methods to compute 
this AR(l) parameter (s) . The default estimator is two-step FGLS, whereas the igls 
option uses iterated FGLS. The force option enables estimation even if observations are 
unequally spaced over time. 

Additionally, we illustrate the user-written xtscc command (Hoechle 2007). This 
generalizes xtpcse by applying the method of Driscoll and Kraay (1998) to obtain 
Newey-West-type standard errors that allow autocorrelated errors of general form, 
rather than restricting errors to be AR(l) .  Error correlation across panels, often called 
spatial correlation, is assumed. The error is allowed to be serially correlated for m lags. 
The default is for the program to determine m. Alternatively, m can be specified using 
the lags (m) option. 

8.10.4 Application of the xtgls, xtpcse, and xtscc commands 

As an e.."<ample, we begin with a PFGLS estimator that uses the most flexible model 
for the error Uit, with flexible correlation across states and a distinct AR(l) process for 
the error in each state. In principle, this is the best estimator to use, but in practice 
when T is not much larger than N, there can be finite-sample bias in the estimators 
and standard errors; see Beck and Katz ( 1995) .  Then it is best, at the least, to use the 
more restrictive corr(arl) rather than corr (psarl) . 
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We obtain 

• Pooled GLS with error correlated across states and state-specific AR(1)  
xtset state year 

panel variable: 
time variable: 

delta: 

state (strongly balanced) 
year, 63 to 92 
1 unit 

xtgls lnc lnp lny lnpmin year, panels(correlated) corr(psar1) 
Cross-sectional time-series FGLS regression 

Coefficients: generalized least squares 
Panels: heteroskedastic with cross-sectional correlation 
Correlation: panel-specific AR ( 1 )  
Estimated covariances 55 Number of obs 
Estimated autocorrelations 10 Number of groups 
Estimated coefficients 5 Time periods 

Wald chi2(4) 
Prob > chi2 

lnc Coef . Std. Err. z P> l z l  [95/. Conf . 

lnp - . 3260683 . 0218214 -14.94 0 . 000 - . 3 688375 
lny . 4646236 . 0645149 7 . 20 0 . 000 .3381768 

lnpmin . 0174759 . 0274963 0 . 64 0 . 525 - . 0364159 
year - . 0397666 . 0052431 -7 .58  0 . 000 - . 0500429 
cons 5 . 157994 .2753002 1 8 . 74 0 . 000 4 . 618416 

300 
10 
30 

342 . 1 5  
0 . 0000 

Interval] 

- . 2832991 
.5910704 
. 0713677 

- . 0294902 
5 . 697573 
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All regressors have the expected effects. The estimated price elasticity of demand for 
cigarettes is -0.326, the income elasticity is 0.465, demand declines by 4% per year (the 
coefficient of year is a semielasticity because the dependent variable is in logs) , and a 
higher minimum price in adjoining states increases demand in the current state. There 
are 10 states, so there are _10 x 11/2 = 55 unique entries in the 10 x 10 contemporaneous 
error covariance matrix, and 10 autocorrelation parameters Pi are estimated. 

We now use xtpcse ,  ictgls, and user-written xtscc to obtain the following pooled 
estimators and associated standard errors: 1) pooled OLS with i.i.d. errors; 2) pooled 
OLS with standard �I:rors assuming correlation over states; 3) pooled OLS with standard 
errors assuming general serial correlation in the error (to four lags) and correlation over 
states; 4) pooled OLS that assumes an AR(1) error and then gets standard errors that 
additionally permit correlation over states; 5) PFGLS with standard errors assuming an 
AR(1) error; and 6) PFGLS assuming an AR(1) error and correlation across states. In all 
cases of AR(1) error, we specialize to Pi = p. 

• Comparison of various pooled DLS and GLS estimators 
quietly xtpcse lnc lnp lny lnpmin year, corr(ind) independent nmk 
estimates store DLS_iid 

quietly xtpcse lnc lnp lny lnpmin year, corr(ind) 

estimates store DLS_cor 
quietly xtscc lnc lnp lny lnpmin year, lag(4) 

est]mates store DLS_DK 
quietly xtpcse lnc lnp lny lnpmin year, corr(ar1) 
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estimates store AR1_cor 
quietly xtgls lnc lnp lny lnpmin year, corr (ar1)  panels(iid)  

estimates store FGLSAR1 
quietly xtgls Jnc lnp lny lnpmin year, corr(ar1) panels(correlated) 
estimates store FGLSCAR 

estimates table DLS_iid DLS_cor DLS_DK AR1_cor FGLSAR1 FGLSCAR, b(/.7.3f)  

Variable DLS_iid DLS_cor DLS_DK AR1_cor FGLSAR1 FGLSCAR 

lnp -0 . 583 -0 . 583 -0. 583 - 0 . 266 -0.264 -0 . 330 
0 . 129 0 . 169 0 . 273 0 . 049 0 . 049 0 . 026 

lny 0 . 365 0 . 365 0 . 365 0 . 398 0 . 397 0 . 407 
0. 049 0 . 080 0 . 163 0 . 125 0 . 094 0 . 080 

lnpmin - 0 . 027 - 0 . 027 - 0 . 027 0 . 069 0 . 070 0 . 036 
0 . 128 0 . 16 6  0 . 252 0 . 064 0 . 059 0 . 034 

year - 0 . 033 -0.033 -0 . 033 -0 . 038 -0.038 - 0 . 037 
0 . 004 0 . 006 0 .012  0 . 010 0 . 007 0 . 006  

_cons 6 . 930 6 . 9 30 6 . 930 5 . 115  5 . 100 5 . 393 
0 ." 353 0 . 330 0 . 515 0 . 544 0 .414  0 .361  

legend: b/se 

se 

For pooled OLS with i . i .d. errors, the nmk option normalizes the VCE by N - k 
rather than N, so that output is exactly the same as that from regress with default 
standard errors. The same results could be obtained by using xtgls with the corr C ind) 
panel ( iid) nmk options. Allowing correlation across states increases OLS standard 
errors by 30-50%. Additionally, allowing for serial correlation ( OLS..DK) leads to another 
50-100% increase in the standard errors. The fourth and fifth estimators control for 
at least an AR(l) .error and yield roughly similar coefficients and standard errors. The 
final column results are similar to those given at the start of this section, where we used 
the mor·e flexible corr(psarl) rather than corr Carl ) . 

8.10.5 Separate regressions 

The pooled regression specifies the same regression model for all individuals in all years. 
Instead, we could have a separate regression model for each individual unit: 

This model has N K parameters, so inference is easiest for a long panel with a small N. 

For example, suppose for the cigarette example we want to fi t  separate regressions 
for each state. Separate OLS regressions for each state can be obtained by using the 
statsby prefix with the by (sta te) option. We have 
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. * Run separate regressions for each state 

. statsby , by(state) clear: regress lnc lnp lny lnpmin year 
(rUIJning regress on estimation sample) 

command : regress lnc lnp lny lnpmin year 
by :  state 

Sta tsby groups 
1 -r-- 2 -----j- 3 -----j- 4 -----j- 5 
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This leads to a dataset with 10 observations on state and the five regression coefficients. 
We have 

• Report regression coefficients for each state 
format _b• %9.2f 
list, clean 

state _b_lnp _b_lny _b_lnp-n _b_year _b_cons 
1 .  1 -o . 36 1 . 10 0 . 24 -0 . 08 2 . 10 
2 .  2 0 . 12 0 . 60 -0 .45 -0 .05 5 . 14 
3 .  3 -0 .20 o .  76 0 . 12 -0 .05  2 . 72 
4 .  4 -0 .52  -0 . 14 -0 .21  -0 .00  9 . 56 
5 .  5 -0 .55  o .  71  0 . 30 -0 .07  4 .76  
6 .  6 - 0 . 1 1  0 . 21 -0 . 14  -0 .02 6 . 20 
7 . 7 -0 .43 -0.07 0 . 1i -0 .03 9 . 14 
8 .  8 -0 .26 0 . 89 O . Oi -0 .07 3 . 67 
9 .  9 -0 .03  0 . 55 -0 . 36 -0 .04  4 .6 9  

10 . 10  - 1 . 4 1  1 . 12 1 . 14 -0 .08 2 .70 

In all states except one, sales decline as price rises, and in most states, sales increase 
with income. 

One can also test for poolability, meaning to test whether the parameters are the 
same across states. In this example, there are 5 x 10 = 50 parameters in the unrestricted 
model and 5 in the restrieted pooled model, so there are 45 parameters to test. 

8.10.6 FE and RE models 

As noted earlier, i f  there are few individuals and many time periods, individual-specifi c 
FE models can be fi.tted with the LSDV approach of including a set of dummy variables, 
here for each time period (rather than for each individual as in the short-panel case). 

Alternatively, one can use the xtregar command. This model is the individual­
effects model Yit = a.; + x�tf3 + ui t ,  with AR(l) error U;t = pui,t-1 + E:i t ·  This is a better 
model of the error than the i.i .d. error model Uit = E:it assumed in xtreg, so xtregar 
potentially will lead to more-efficient parameter estimates. 

The syntax of xtregar is similar to that for xtreg. The two key options are fe and 
re. The fe option treats Cl!i as a fi;"<ed effect . Given an estimate of p, we fi.rst transform 
to eliminate the effect of the AR(l) error, as described after (8 .14) ,  and then transform 
again (mean-difference) to eliminate the individual effect. The re  option treats Cl!i as a 
random effect. 
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We compare pooled OLS estimates, RE estimates using xtreg and xtregar, and 
within estimates using xtreg, xtregar, and xtscc. Recall that xtscc calculates either 
the OLS or regular within estimator but then estimates the VCE assuming quite general 
error correlation over time and across states. We have 

* Comparison of various RE and FE estimators 
use musOScigar .dta, clear 

quietly xtscc lnc lnp lny lnpmin, lag(4) 
estimates store OLS_DK 

quietly xtreg lnc lnp lny lnpmin , f e  
estimates store FE_REG 

quietly xtreg lnc lnp lny lnpmin, re 
estimates store RE_REG 

quietly xtregar lnc lnp lny lnpmin, fe 
estimates store FE_REGAR 

quietly xtregar lnc lnp lny lnpmin , re 
estimates store RE_REGAR 

quietly xtscc lnc lnp lny lnpmin , fe lag(4) 
estimates store FE_DK 
estimates table OLS_DK FE_REG RE_REG FE_REGAR RE_REGAR FE_DK , b(/.7 . 3 f )  s e  

Variable DLS_DK FE_ REG RE_REG FE_RE-R RE_RE-R FE_DK 

lnp -0 . 6 1 1  - 1 . 136 - 1 . 110  -0.260 - 0 . 282 - 1 . 136 
0 . 428 0 . 101 0 . 102 0 .  049 0 . 052 0 . 158 

lny - 0 . 027 -0 . 046 -0 . 045 -0 . 066 -0.074 -0 . 046 
0 . 026 0. 011  0 . 01 1  0 . 064 0 . 026 0 . 020 

lnpmin - 0 . 129 0 . 421 0 . 394 -0 .010  -0 . 004 0 .421  
0 . 338 0 . 101  0 . 102 0 . 057 0. 060 0 . 168 

_cons 8 . 357 8 .462 8 . 459 6 . 537 6 .  708 8 . 462 
0 . 633 0 . 241 0 . 247 0 . 036 0 . 289 0 . 464 

legend: b/se 

There are three distinctly different sets of coefficient estimates: those using pooled OLS, 
those using xtreg to obtain FE and RE estimators, and those using xtregar to obtain 
FE and RE estimators. The final set of estimates uses the f e  option of the user-written 
xtscc command. This produces the standard within estimator but then finds standard 
errors that are robust to both spatial (across panels) and serial autocorrelation of the 
error. 

8.10. 7 Unit roots and cointegration 

Panel methods for unit roots and cointegration are based on methods developed for a 
single time series and assume that T _,. oo. We now consider their application to panel 
data, a currently active area of research. 

If N is small, say N < 10 , then seemingly unrelated equations methods can be used. 
When N is large, the panel aspect becomes more important . Complications include the 
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need to control for cross-section unobserved heterogeneity when N is large, asymptotic 
theory that can vary with exactly how N and T both go to infinity, and the possibility of 
cross-section dependence. At the same time, statistics that have nonnormal distributions 
for a single time series can be averaged over cross sections to obtain statistics with a 
normal distribution. 

Unit-root tests can have low power. Panel data may increase the power because 
of now having time series for several cross sections. The unit-root tests can also be 
of interest per se, such as testing purchasing power parity, as well as being relevant 
to consequent considerations of cointegration. A dynamic model with cross-section 
heterogeneity is 

Ytt = PiYi. ,t- 1 + ¢ili:J.Yi.t- 1 + · · · + ¢;p, 6Yi,t-p, + z;t"/, + u;t 

where lagged changes are introduced so that uu is i . i.d. Examples of Zit include indi­
vidual effects [z·it = (1 ) ] ,  individual effects and individual time trends [z;,t = (1 t)' ] ,  and 
"'i = 'Y in the case of homogeneity. A unit-root test is a test of Ho : p1 = · · · PN = 1 .  
Levin, C.-F. Lin, and C.-S. J. Chu (2002) proposed a test against the alternative of ho­
mogeneity, Ha : p1 = · · · = PN = p < 1 ,  that is based on pooled OLS estimation 
using specifi.c first-step pooled residuals, where in both steps homogeneity (p; = p and 
¢ik = ¢ k) is imposed. The user-written levinlin command (Bornhorst and Baum 
2006) performs this test. Im, Pesaran, and Shin (2003) instead test against an alter­
native of heterogeneity, H" ; p1 < 1, . . . , fiNo < 1 ,  for a fraction No/ N of the p; by 
averaging separate augmented Dickey-Fuller tests for each cross section. The user­
written ipshin command (Bornhorst and Baum 2007) implements this test. Both test 
statistics are asymptotically normal and both assume N /T --+ 0 so that the time-series 
dimension dominates the cross-section dimension . 

As in the case of a single time series, cointegration tests are used to emmre that 
statistical relationships between trending variables are not spurious. A quite general 
cointegrated panel model is 

Yit = x:tf3 i. + z;t'Yi + Uit 
X·it = Xi,t-1 + E:it 

where Zit is deterministic and can include individual effects and time trends, and Xit 
are (co)integrated regressors. Most tests of cointegration are based on the OLS residuals 
Uit, but the unit-root tests cannot be directly applied if Cov(u;t , E:it ) 'I 0, as is likely. 
Single-equation estimators have been proposed that generalize to panels fully modifi.ed 
OLS and dynamic OLS, and Johanssen's system approach has also been generalized to 
panels. The user-written xtpmg command (Blackburne and 1'-rank 2007) implements 
the estimators of Pesaran and Smith ( 1995) and Pesaran, Shin, and Smith (1999) for 
nonstationary heterogeneous panels with a large _N and T. For references, see Baltagi 
(2008) and Brei tung and Pesaran (2005) .  
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8 . 11  Panel-data management 

Stata xt  commands require panel data to be in long form, meaning that each individual­
time pair is a separate observation. Some datasets instead store panel data in wide 
form, which has the advantage of using less space. Sometimes the observational unit is 
the individual, and a single observation has all time periods for that individual. And 
sometimes the observational unit is a time period, and a single observation has all 
individuals for that time period. 

We illustrate how to move from wide form to long form and vice versa by using the 
reshape command. Our example is for panel data, but reshape can also be used in 
other contexts where data are grouped, such as clustered data grouped by village rather 
than panel data grouped by time. 

8 . 11 . 1  Wide-form data 

We consider a dataset that is originally in wide form, with each observation containing 
all years of data for an individual. The dataset is a subset of the data from the previous 
section. Each observation is a state and has all years of data for that state. We have 

* Wide form data (observation is a state) 
use mus08ciganiide. dta, clear 

list, clean 

state lnp63 lnc63 lnp64 lnc64 lnp65 lnc65 
1 .  1 4 . 5  4 . 5  4 . 6  4 . 6  4 . 5  4 . 6  
2 .  2 4 . 4  4 . 8  4 . 3  4 . 8  4 . 3  4 . 8  
3 .  3 4 . 5  4 . 6  4 . 5 4 . 6  4 . 5  4 . 6  
4 .  4 4 . 4  5 . 0  4 . 4  4 . 9  4 . 4  4 . 9  
5 .  5 4 . 5  5 . 1  4 . 5  5 . 0  4 . 5  5 . 0  
6 .  6 4 . 5  5 . 1  4 . 5  5 . 1  4 . 5  5 . 1  
7 .  7 4 . 3  5 . 5  4 . 3  5 . 5  4 . 3  5 . 5  
8 .  8 4 . 5  4 . 9  4 . 6  4 . 8  4 . 5  4 . 9  
9 .  9 4 . 5  4 . 7  4 . 5  4 . 7  4 . 6  4 . 6  

10 .  10  4 . 5  4 . 6  4 . 6  4 . 5  4 . 5  4 . 6  

The data contain a state identifier, state; three years of data on log price, lnp63-J.np65; 
and three years of data on log sales, lnc63-lnc65. The data are for 10 states. 

8 .1 1.2 Convert wide form to long form 

The data can be converted from wide form to long form by using reshape long. The 
desired dataset will have an observation as a state-year pair. The variables should be 
a state identifier, a year identifier, and the current state-year observations on lnp and 
lnc. 

The simple command reshape long actually does this automatically, because it 
interprets the suffixes 63-65 as denoting the grouping that needs to be expanded to 
long form. We use a more detailed version of the command that spells out exactly what 
we want to do and leads to exactly the same result as reshape long without arguments. 
We have 
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. * Convert from wide form to long form (observation is a state-year pair) 

. reshape long lnp·lnc, i ( state) j (year) 
(note: j � 63 64 55) 

Data ·;ide -> long 

Number of obs. 10 -> 30 
Number of variables 7 -> 4 
j variable (3 values) -> year 
xij variables: 

lnp63 lnp64 lnp65 -> lnp 
lnc63 lnc64 lnc65 -> lnc 
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The output indicates that we have expanded the dataset from 10 observations ( 10 
states) to 30 observations (30 state-year pairs) . A year-identifier variable, year, has 
been created. The wide-form data lnp63-lnp65 have been collapsed to lnp in long 
form, and lnc63-lnc65 have been collapse to lnc. 

We now list the first six observations of the new long-form data. 

• Long-form data (observation is a state) 
list in 1/6,  sepby (state) 

1 .  
2 .  
3 .  

4 .  
5. 
6 .  

state 

1 
1 
1 

2 
2 
2 

year 

6 3 
64 
65 

63 
64 
65 

lnp lnc 

4 . 5  4 . 5  
4 . 6  4 . 6  
4 . 5  4 . 6  

4 . 4  4 . 8  
4 . 3 4 . 8  
4 . 3 4 . 8  

Any year-invariant variables will also be included in  the long-form data. Here the state­
identifier variable, state, is the only such variable. 

8 .11.3 Convert long form to wide form 

Going the other way, data can be converted from long form to wide form by using 
reshape wide. The desired dataset will have an observation as a state. The constructed 
variables should be a state identifier and observations on lnp and lnc for each of the 
three years 63-65. 

The reshape wide command without arguments actually does this automatically, 
because it interprets year as the relevant time-identifier and adds suffixes 63-65 to the 
variables lnp and lnc that are varying with year. We use a more detailed version of 
the command that spells out exactly what we want to do and leads to exactly the same 
result. We have 

(Continued on next page) 
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. • Reconvert from long 

. reshape wide lnp lnc, 
(note: j = 63 64 65) 

Data 

Number of o bs. 
Number o f  variables 
j variable (3 values) 
xij variables: 

form to wide form 
i ( state) j (year) 

long 

30 
4 

year 

lnp 
lnc 

(observation is a state) 

-> wide 

-> 10 
-> 7 
-> (dropped) 

-> lnp63 lnp64 lnp65 
-> lnc63 lnc64 lnc65 

The output indicates that we have collapsed the dataset from 30 observations (30 state­
year pairs) to 10 observations ( 10 states) . The year variable has been dropped. The 
long-form data lnp has been expanded to lnp63-lnp65 in wide form, and lnc has been 
expanded to lnc63-lnc65. 

A complete listing of the wide form dataset is 

list,  clean 
state lnp63 lnc63 lnp64 lnc64 lnp65 lnc65 

1 .  1 4 . 5  4 . 5  4 . 6  4 . 6  4 . 5  4 . 6  
2 .  2 4 . 4  4 . 8  4 . 3  4 . 8  4 . 3  4 . 8  
3 .  3 4 . 5  4 . 6  4 . 5  4 . 6  4 . 5  4 . 6  
4.  4 4 . 4  5 . 0  4 . 4  4 . 9  4 . 4  4 . 9  
5 .  5 4 . 5  5 . 1  4 . 5  5 . 0  4 . 5  5 . 0  
6 .  6 4 . 5  5 . 1  4 . 5  5 . 1  4 . 5  5 . 1  
7 .  7 4 . 3  5 . 5  4 . 3  5 . 5  4 . 3  5 . 5  
8 .  8 4 . 5  4 . 9  4 . 6  4 . 8  4 . 5 4 . 9  
9 .  9 4 . 5  4 . 7  4 . 5  4 . 7  4 . 6  4 . 6  

1 0 .  10 4 . 5  4 . 6  4 . 6  4 . 5  4 . 5  4 . 6  

This is exactly the same as the original m usOBcigarwide . d ta dataset, 
tion 8 .11 .1 .  

8.1 1 .4 An alternative wide-form data 

listed in sec-

The wide form we considered had each state as the unit of observation. An alternative 
is that each year is the observation. Then the preceding commands are reversed so that 
we have i (year) j (state) rather than i ( state) j (year) .  

To demonstrate this case, we first need to create the data in  wide form with year 
as the observational unit. We do so by converting the current data, in wide form with 
state as the observational unit, to long form with 30 observations as presented above, 
and then use reshape wide to create wide-form data with year as the observational 
unit. 
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• Create alternative wide-form data (observation is a year) 
quietly reshape .long lnp lnc , i (state) j (year) 
reshape wide lnp lnc , i (year) j ( state) 

(note: j � 1 2 3 4 5 6 7 8 9 10) 

Data long -> wide 

Number of obs. 30 -> 3 
Number of variables 4 -> 21 
j variable (10 values) state -> (dropped) 
xij vari.ables: 

lnp -> lnp1 lnp2 
lnc -> lnc1 lnc2 

list year lnp1 lnp2 lnc1 lnc2, clean 
year lnp1 lnp2 lnc1 lnc2 

1 .  63 4 . 5  4 . 4  4 . 5  4 . 8  
2 .  64 4 . 6  4 . 3  4 . 6  4 . 8  
3 .  65 4 . 5  4 . 3  4 . 6  4 . 8  
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lnp10 
lnc10 

The wide form has 3 observations (one per year) and 21 variables (lnp and lnc for each 
of 10 states plus year) . 

We now have data in wide form with year as the observational unit. To use xt 
commands, we use reshape long to convert to long-form data with an observation for 
each state-year pair. We have 

. • Convert from wide form (observation is year) to long form (year-state) 

. reshape long lnp lnc , i (year) j ( state) 
(note : j � 1 2 3 4 5 6 7 8 9 10)  
Data wide -> long 

Number of obs. 3 -> 30 
Number of variables · 21 -> 4 
j variable (10 values) -> state 
xij variables : 

lnp1 lnp2 lnp10 -> lnp 
lnc1 lnc2 lnc10 -> lnc 

list in 1/6,  clean 
year state lnp lnc 

1 .  63 1 4 . 5  4 . 5  
2 .  6 3  2 4 . 4  4 . 8  
3 .  63 3 4 . 5  4 . 6  
4 .  63 4 4 . 4  5 . 0  
5 .  63 5 4 . 5  5 . 1 
6 .  63 6 4 . 5  5 . 1  

The data are now in long form, as in section 8 .11 .2 . 
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8 .12  Stata resources 

FE and RE estimators appear in many econometrics texts. Panel texts with complete 
coverage of the basic material are Baltagi (2008) and Hsiao (2003). The key Stata 
reference is [xT] Longitudinal/Panel-Data Reference Manual, especially [xT] xt and 
[XT] xtreg. Useful online help categories include xt and xtreg. For estimation with 
long panels, a useful Stata user-written command is xtscc,  as well as several others 
mentioned in section 8.10. 

8 . 13  Exercises 
1. For the data of section 8.3, use xtsum to describe the variation in occ, smsa, ind, 

ms, union, fem, and blk. Which of these variables are time-invariant? Use xttab 
and xttrans to provide interpretations of how occ changes for individuals over 
the seven years. Provide a time-series plot of exp for the first ten observations 
and provide interpretation. Provide a scatterplot of lwage against ed. Is this plot 
showing within variation, between variation, or both? 

2. For the data of section 8.3, manually obtain the three standard deviations of 
lwage given by the xtsum command. For the overall standard deviation, use 
summarize. For the between standard deviation, compute by id :  egen meanwage 
= mean (lwage) and apply summarize to (meanwage-gmndmean) for t==l, where 
grandmean is the grand mean over all observations. For the within standard devia­
tion, apply summarize to (lwage-meanwage) . Compare your standard deviations 
with those from xtsum. Does Sb � s;;.,. + s�? 

3. For the model and data of section 8.4, compare PFGLS estimators under the fol­
lowing assumptions about the error process: independent, exchangeable, AR(2), 
and MA(6). Also compare the associated standard-error estimates obtained by 
using default standard errors and by using cluster-robust standard errors. You 
will fi11d it easiest if you combine results using estimates table. What happens 
if you try to fit the model with no structure placed on the error correlations? 

4. For the model and data of section 8.5 ,  obtain the within estimator by apply­
ing regress to (8.7). Hint: For example, for variable x, type by id :  egen 
a vex = mean(x) followed by summarize x and then generate mdx = x - a vex 
+ r(mean ) .  Verify that you get the same estimated coefficients as you would with 
xtreg, f e. 

5. For the model and data of section 8.6, compare the RE estimators obtained by using 
xtreg with the re, mle, and pa options, and xtgee with the corr(exchangeable) 
option. Also compare the associated standard-error estimates obtained by using 
default standard errors and by using cluster-robust standard errors. You will find 
it easiest if you combine results using estimates table. 

6. Consider the RE model output given in section 8.7. Verify that, given the estimated 
values of e_sigma and u_sigma, application of the formulas in that section leads 
to the estimated values of rho and theta. 
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7. Make an unbalanced panel dataset by using the data of section 8.4 but then typing 
set seed 10101  and drop if runiform ( )  < 0 . 2. This will randomly drop 20% of 
the individual-year observations. Type xtdescribe. Do you obtain the e":pected 
patterns of missing data? Use xtsum to describe the variation in id, t, wage, ed, 
and south. How do the results compare with those from the full panel? Use xttab 
and xttrans to provide interpretations of how south changes for individuals over 
time. Compare the within estimator with that in section 8.5 using the balanced 
panel. 
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9.1 I ntroduction 

The essential panel methods for linear models, most notably, the important distinction 
between fixed-effects (FE) and random-effects (RE) models, were presented in chapter 8 .  

In this chapter, we present other panel methods for the linear model, those for 
instrumental-variables (rv) estimation, estimation when lagged dependent variables are 
regressors, and estimation of mixed models with slope parameters that vary across 
individuals. We also consider estimation methods for clustered data or hierarchical data, 
such as cross-section individual data from a survey conducted at a number of villages 
with clustering at the village level, including the use of methods for short panels in this 
context. Nonlinear panel models are presented in chapter 18. 

9.2 Panel IV estimation 

rv methods have been extended from cross-section data (see chapter 6 for an expla­
nation) to panel data. Estimation still needs to eliminate the o:;, if the FE model is 
appropriate, and inference needs to control for the clustering inherent in panel data. 

In this section, we detail xtivreg, which is a panel extension of the cross-section 
command ivregress.  The subsequent two sections present more specialized IV esti­
mators and commands that are applicable in situations where regressors from periods 
other than the curr�nt period are used as instruments. 

9.2.1 Panel IV 

If a pooled model is appropriate with Yit = o: + x;tf3 + Uit and instruments z;t exist 
satisfying E( uit lz;t) = 0, then consistent estimation is possible by two-stage least­
squares (2SLS) regression of Yit on Xit with instruments Zit. The ivregress command 
can be used, with subsequent statistical inference based on cluster-robust standard 
errors. 

More often, we use the individual-effects model 

Yit = x!,t/3 + o:.; + E:it (9 .1)  

which has two error components, o: ;  and E: i t ·  The PE and first-difference (FD) estimators 
provide coiJsistent estimates of the coefficients of the time-varying regressors tmder a 
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limited form of endogeneity of the regressors-X;t may be correlated with the fixed 
effects a; but not with cit · 

We now consider a richer type of endogeneity, with Xit correlated with cit· We need 
to assume the existence of instruments Zit that are correlated with X;t and uncorrelated 
with c;t. The panel IV procedure is to suitably transform the individual-effects model 
to control for a; and then apply IV to the transformed modeL 

9.2.2 The xtivreg command 

The xti vreg command implements 2SLS regression with options corresponding to those 
for the xtreg co=and. The syntax is similar to that for the cross-section ivregress 
command: 

xti vreg depvar [ varlisti ] ( varlist2=varlisLiv ) [ if ] [ in ]  [ , options ] 

The four main options are fe ,  fd, re, and be. The f e  option performs within 2SLS 
regTession of Yit � 'f.i; on an intercept and Xit - x;. with the instruments Zit - z; . The 
fd option, not available in xtreg, performs FD 2SLS regression of Yit � Yi,t- 1  on an 
intercept and Xit � Xi ,t- 1 with the instruments Zit - Zi,t- 1 ·  The re option performs RE 
2SLS regression of Yit� �f/, m an  intercept and x,t �'&;xi with the instruments z;t �e;zi , 
and the additional options ec2sls and nos a provide variations o f  this estimator .  The 
be option performs between 2SLS regression of 'ih on X.; with instruments z, . Other 
options include first to report first-stage regTession results and regress to ignore the 
instruments and instead estimate the parameters of the transformed model by ordinary 
least squares (OLS) .  

The xti vreg command has no vce(robust) option to produce cluster-robust stan­
dard errors . Cluster-robust standard errors can be computed by using the option 
vce (bootstrap ) .  Alternatively, the user-written xtivreg2 co=and (Schaffer 2007) 
can be used. This panel front-end to the cross-section IV user-written i vreg2 command 
includes cluster-robust standard errors. 

As usual, exogenous regressors are instrumented by themselves. For endogenous re­
gressors, we can proceed as in the cross-section case, obtaining an addjtional variable(s) 
that does not directly determine Yit but is correlated with the variable(s) being instru­
mented. In the simplest case, the instrument is an external instrument, a variable that 
does not appear directly as a regressor in the model. This is the same IV identification 
strategy as used with cross-section data. 

9 .2.3 Application of the xtivreg command 

Consider the chapter 8 example of regression of lwage on exp, exp2, wks, and ed. We 
assume the experience variables exp and exp2 are exogenous and that ed is correlated 
with the time-invariant component of the error but is uncorrelated with the time-varying 
component of the error. Given just these assumptions, we need to control for fixed 
effects. From section 8.6, the within estimator yields consistent estimates of coefficients 
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of exp, exp2, and wks , whereas the coefficient of ed is not identified because it is a 
time-invariant regressor. 

Now suppose that the regressor wks is correlated with the time-varying component of 
the error. Then the within estimator becomes inconsister�.t, and we need to instrument 
for wks. We suppose that ms (marital status) is a suitable instrument. This requires 
an assumption that marital status does not directly determine the wage rate but is 
correlated with weeks worked. iecause the effects here are fixed, the fe ·  or fd options 
of xti vreg need to be used. 

Formally, we have assumed that the instruments-here exp, exp2, and ms-satisfy 
the strong exogeneity assumption that 

so that instruments and errors are uncorrelated in all periods. One consequence of this 
strong assumption is that panel IV estimators are consistent even if the t:.it are serially 
correlated, so cluster-robust standard errors could be used. The xtivreg command 
does not provide a direct option for cluster-robust standard errors, so we report the 
default standard errors. 

We use xtivreg with the fe option to eliminate the fixed effects. We drop the 
unidentified time-invariant regressor ed-the same results are obtained if it is included. 
We obtain 

. * Panel IV examp le:  FE Yith Yks instrumented by external instrument ms 

. use mus08psidextract.dta,  clear 
(PSID Yage data 1976-82 from Baltagi and Khanti-Akom (1990) )  
. xtivreg lYage exp exp2 (Yks = ms) , fe 
Fixed-effects (Yithin) IV regression 
Group variab le: id 
R-sq: Yithin = 

betYeen = 0 . 0172 
overall = 0 . 0284 

corr(u_i ,  Xb) = - 0 . 8499 

lYage Coef . 

YkS - . 1 149742 
exp . 1408101 

exp2 - .  0011207 
_cons 9 . 83932 

sigma_u 1 . 0 980369 
sigma_e . 5 1 515503 

rho . 81959748 

Std. Err. 

.2316926 

. 0547014 

. 0014052 
1 0 . 4 8955 

(fraction of 

Number of obs 
Number of groups 
Obs per group : min = 

Wald chi2(3) 
Prob > chi2 

z P> l z l  

-0 .50  0 . 620 
2 . 57 0 .  010 

-0.80 0 . 425 
0 . 94 0 . 348 

variance due to 

avg = 
max = 

[95/. Colli. 

- . 5690832 
. 0335974 

- . 0 038748 
-10 . 71983 

u_i) 

F test that all u_i=O: F(594 , 3567) = 4 . 6 2  Prob > F 

Instrumented : Yks 
Instruments :  oxp exp2 ms 

4165 
595 

7 
7 . 0  

7 
700142.43 

0 . 0000 

Interval) 

.3391349 

. 2480228 

. 0016334 
30. 39847 

"' 0 . 0000 
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The estimates imply that, surprisingly, wages decrease by 11.5% for each additional 
week worked, though the coefficient is statistically insignificant. Wages increase with 
experience until a· peak at 64 years [= 0.1408/(2 x 0.0011)]. 

Comparing the IV results with those given in  section 8.5 .3 using xtreg, fe,  the 
coefficient of the endogenous variable wks has changed sign and is many times larger in 
absolute value, whereas the coefficients of the exogenous experience regressors are less 
affected. For these data, the IV standard errors are more than ten times larger. Because 
the instrument ms is not very correlated with wks, IV regression leads to a substantial 
loss in estimator efficiency. 

9.2.4 Panel IV extensions 

We used the external instrument ms as the instrument for wks. 

An alternative is to use wks from a period other than the current period as the 
instrument. This has the attraction of being reasonably highly correlated with the 
variable being instrumented, but it is not necessarily a valid instrument. In the simplest 
panel model Yit = x:tf3 + E:it ,  if the errors E:it are independent, then any variable in any 
period that is not in Xit is a valid instrument. Once we introduce an individual effect 
as in (9. 1 )  and transform the model, more care is needed. 

. 

The next two sections present, respectively, the Hausman-Taylor estimator and the 
Arellano-Bond estimator that use as instruments regressors from periods other than 
the current period. 

9 .3  Hausman-Taylor estimator 

We consider the FE model. The FE and FD estimators provide consistent estimators 
but not for the coefficients of time-invariant regressors because these are then not iden­
tified. The Hausman-Taylor estimator is an IV estimator that additionally enables 
the coefficients of time-invariant regTessors to be estimated. It does so by making the 
stronger assumption that some specified regressors are uncorrelated with the fixed ef­
fect. Then values of t�ese regressors in periods other than the current period can be 
used as instruments. 

9 .3 .1  Hausman-Taylor estimator 

The key step is to distinguish between regressors uncorrelated with the fixed effect and 
those potentially correlated with the fixed effect. The method additionally distinguishes 
between time-varying and time-invariant regTessors. 

The individual-effects model is then written as 

(9.2) 
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where regressors with subscript 1 are specified to be uncorrelated with a; and regres­
sors with subscript 2 are specified to be correlated with a., , w denotes time-invariant 
regressors, and x now denotes time-varying regressors. All regressors are assumed to be 
uncorrelated with E:;t,  whereas xtivreg explicitly deals with such correlation. 

The Bausman-Taylor method is based on the random-effects transformation that 
leads to the model 

Yit = x.�it/31 + x.;.,t/32 + wio1 + w-;tr2 + a; + E";t 

where , for example, Xw = Xlit-e:Xli,  and the formula for e; is given in [XT] xthtaylor. 

The RE transformation is used because, unlike the within transform, here Wt; ;t 0 
and w2; ;t 0 so ·y1 and 72 can be estimated. But 0:, = a; ( l - e,) ;t 0, so the fixed effect 
has not been eliminated, and a.i is correlated with x2;t and with w2; . This correlation 
is dealt with by IV estimation. For x2;t , the instrument used is x2'it = X2it - X2i , which 
can be shown to be uncorrelated with a., . For W2i ,  the instrument is Xli ,  so the method 
requires that the number of time-varying exogenous regressors be at least as large as the 
number of time-invariant endogenous regressors. The method uses xlit as an instrument 
for xl it and wli as an instrument for Wti· Essentially, x1 is used as an instrument twice: 
as Xtit and as Xti· By using the average of Xli in forming instruments, we are using 
data from other periods to form instruments. 

9.3.2 The xthtaylor command 

The xthtaylor command performs IV estimation of the parameters of (9 .2)  using the 
instruments xlit , x2it, wli, and Xli· The syntax of the command is 

xthtaylor depvar indepvars [ if ]  [ in ]  [ weight ] ,  endog( varlist )  [ options ] 

Here all the regressors are given in indepvars, and the subset of these that are potentially 
correlated with a; are given in endog( varlist) . The xth taylor command does not 
provide an option �o compute cluster-robust standard errors. 

The options include amacurdy, which uses a wider range of instruments. Specifically, 
the Hausman�Taylor method requires that Xti be uncorrelated with a;. If each xw,  
t = 1 ,  . . .  , T ,  is uncorrelated with a; ,  then more instruments are available and we  can 
use as instruments X.w , X2it> wl·i > and X1·il , . . . , xliT ·  

9.3.3 Application of the xthtaylor command 

The dataset used in chapter 8 and in this chapter, attributed to Baltagi and Khanti­
Akom (1990) and Cornwell and Rupert (1988) , was originally applied to the Bausman­
Taylor estimator. We reproduce that application-here. It uses a wider set of regressors 
than we have used to this point. 

The goal is to obtain a consistent esti!T\ate of the coefficient ed because there is great 
interest in the impact of education on wages. Education is clearly endogenous. It is 
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assumed that education is only correlated with the individual-specifi c component of the 
error a:i. In principal, within estimation gives a consistent estimator, but in practice, no 
estimator is obtained because ed is time-invariant so its coefficient cannot be estimated. 

The Hausman-Taylor estimator is used instead, assuming that only a subset of the 
regressors are correlated with O:i. Identification requires that there be at least one 
time-varying regressor that is uncorrelated with the fixed effect. Cornwell and Rup­
pert assumed that, for the time-varying regressors, exp, exp2, wks, ms, and union were 
endogenous, whereas occ, south, smsa, and ind were exogenous. And for the time­
invariant regressors, ed is endogenous and fem and blk are exogenous. The xthtaylor 
command requires only distinction between endogenous and exogenous regressors, be­
cause it can determine which regressors are time-varying and which are not. 

We obtain 

. • Hau�man-Taylor example of Baltagi and Khanti-Akom (1990) 
, use mus08psidextract .dta, clear 
(PSID Yage data 1976-82 from Baltagi and Khanti-Akom (1990))  
. xthtaylor lYage occ south smsa ind exp exp2 Yks ms union fem blk ed,  
> endog(exp exp2 Yks ms union ed) 

Hausman-Tayler estimation 
Group variable: id 

Random effects u_i - i . i . d .  

lYage 

TV exogenous 
occ 

south 
smsa 

ind 
TV endogenous 

exp 
exp2 
Yks 

ms 
union 

Tiexogenous 
fem 
blk 

Tiendogenous 
ed 

_cons 

sigma_u 
sigma_e 

rho 

Goof . 

- . 0207047 
. 0074398 

- . 0418334 
.01 36039 

. 1 131328 
- . 0004189 

. 0008374 
- . 0298508 

.0327714 

- . 1309236 
- . 2857479 

. 137944 

2 . 912726 

.94180304 

. 15180273 

. 97467788 

Std. Err. 

. 0137809 
. 031955 

. 0189581 

.0152374 

. 002471 
.0000546 
. 0005997 

. 01898 
.0149084 

. 126659 
. 1557019 

. 0212485 

.2836522 

(fraction of 

Number of obs 
Number of groups 
Obs per group : min = 

avg = 
max 

Wald chi2(12) 
Prob > chi2 

z P> l z l  [95/. Conf. 

- 1 . 5 0  0 . 133 - .  0477149 
0 . 23 0 . 816 - . 0551908 

-2 .21  0 . 027 - . 0789906 
0 . 8 9  0 . 372 - . 0162608 

45 .79  0 . 000 . 1082898 
-7 . 67 0 .000 - . 0005259 

1 . 4 0  0 . 163 - . 0003381 
- 1 . 57 0 . 116  - . 0670508 

2 .20  0 . 028 . 0035514 

- 1 . 0 3  0 .  301 - . 3791707 
-1 .84  0 .066  - . 5909179 

6 . 49 0 . 000 . 0962977 

1 0 . 27 0 . 000 2 . 356778 

variance due to u_i) 

Note: TV refers to time varying ; TI refers to time invariant . 

4165 
595 

7 
7 
7 

6891.87 
0.  DODO 

Interval] 

. 0063055 

. 0700705 
- . 0046761 

. 0434686 

. 1 179758 
- .  0003119 

.0020129 

.0073493 

. 0619914 

. 1 173234 

.0194221 

. 1795902 

3 . 468674 

l 
I I 
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Compared with the RE estimates given in section 8.7, the coefficient of ed has increased 
from 0 .112 to 0.138, and the standard error has increased from 0.0084 to 0.0212. 

For the regular IV estimator to be consistent, i t  is necessary to argue that any in­
struments are uncorrelated with the error term. Simila:rly, for the Hausman-Taylor 
estimator to be consistent, it is necessary to argue that all regressors are uncorrelated 
with the idiosyncratic error l3:it and that a specified subset of the regressors is uncor­
related with the fixed effect O:i. The ability to do so persuasively will vary with the 
application. . 

9.4 Arellano-Bond estimator 

With panel data, the dependent variable is observed over time, opening up the possibility 
of estimating parameters of dynamic models that specify the dependent variable for an 
individual to depend in part on its values in previous periods .

· 
As in the nonpanel 

case, however, care is needed because OLS with a lagged dependent variable and serially 
correlated error leads to inconsistent parameter estimates. 

We consider estimation of fixed�effects models for short panels when one or more 
lags of the dependent variable are included as regressors. Then the fixed effect needs 
to be eliminated by first-differencing rather than mean-differencing for reasons given 
at the end of section 9.4.1. Consistent estimators can be obtained by IV estimation of 
the parameters in the fi.rst-difference model, using appropriate lags of regressors as the 
instruments. This estimator, called the Arellano-Bond estimator, can be performed, 
with some considerable manipulation, by using the IV commands i vregress or xti vreg. 
But it is much easier to use the specialized commands xtabond, xtdpdsys, and xtdpd. 
These commands also enable more-efficient estimation and provide appropriate model 
specification tests. 

9.4.1 Dynamic model 

The general model · considered is an autoregressive model of  order p in  Yit [an AR(p) 
model] with Yi,t- 1 , . . .  , Yi,t-p as regressors, as well as the regressors Xit· The model is 

Yit = "llYi,t-1 + · · · + 1pYi,t-p + x;t/3 + o:i + cit, t = p + 1, . . . , T (9.3) 

where O:i is a fixed effect. The regressors Xit are initially assumed to be uncorrelated 
with cit, an assumption that is relaxed in section 9.4.8. The goal is to consistently 
estimate {1,  . . .  , rp and j3 when O:i is a fixed effect. The estimators are also consistent 
if O:i is a random effect. 

The dynamic model (9.3) provides several quite different reasons for correlation in y 
over time: 1) directly through y in preceding periods, called true state dependence; 2) 
directly through observables x, called observed heterogeneity; and 3) indirectly through 
the time-invariant individual effect o:.i , called unobserved heterogeneity. 
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These reasons have substantively different policy implications. For illustration, con­
sider a pure AR(1) time-series model for earnings Yit = '"llYi,t-1 + a:i + c; t with cit � 0 
for t > 1. Suppose in period 1 there is a large positive shock, Ei 1 , leading to a large 
value for Yn, moving a low-paid individual to a high-paid job. Then, if 11 � 1 ,  earnings 
will remain high in future years (because Yi , t+1 � Yit + a:i) . If instead 11 � 0, earnings 
will return to a:., in future years (because Yi. ,t+l � a:i) . 

It is important to note that the within estimator is inconsistent once lagged regTessors 
are introduced. This i:; because the within model will have the first regressor Yi. t- 1 - Y; 
that is correlated with the error cit - 'E;, because Yi,t-1 is correlated with ci , t-1 and 
hence with z:, . Furthermore, IV estimation using lags is not possible because any lag 
y;,s will also be correlated with E.; and hence with Sit - z:, . By contrast, although the 
FD estimator is also inconsistent, IV estimators of the FD model that use appropriate 
lag-s of Y,.t as instnunents do lead to consistent parameter estimates. 

9.4.2 IV estimation in the FD model 

The FD model is 

6.yu = /lt:,.Yi ,t-1 + · · · + /p6.Y; ,t-p + 6.x;.tf3 + 6.c;t , t = p + 1 ,  . . .  , T (9 .4) 

'We make the crucial assumption that E;t are serially uncorrelated, a departure from 
most analy"i" tu Lhi" point that has permitted c·it to be correlated over time for a given 
individual. This assumption is testable, is likely to hold if p is sufficiently large, and 
can be relaxed by using xtdpd, presented in section 9.4.8. 

In contrast to a static model, OLS on the first-differenced data produces inconsistent 
parameter estimate" because the regressor 6.y; , t- 1  is correlated with the error 6.ci t . 
even if Sit are serially uncorrelated. For serially uncorrelated Ei t ,  the FD model error 
6.c.; t = sit - Ei,t-1 is correlated with 6.y.i , t-l = Yi,t-1 - Yi,t-2 because Yi. t-1  depends on 
Ei , t-1 .  At the same time, 6.c; t is uncorrelated with 6.yi , t-k for k � 2, opening up the 
possibility of IV estimation using lagged variables as instruments. 

Anderson and Hsiao (1981) proposed IV estimation using Y •. t-2 , which is uncorre­
lated with 6.c;t, as an instrument for 6.Yi. , t-1 .  The other lagged dependent variables 
can be instruments for themselves. The regressors Xit can be used as instruments for 
themselves if they are strictly exogenous; otherwise, they can also be instn..1mented as 
detailed below. 

More-efficient IV estimators can be obtained by using additional lags of the depen­
dent variable as an instrument; see Holtz-Eakin, Newey, and Rosen ( 1988). The esti­
mator is then called the Arellano-Bond estimator after Arellano and Bond ( 1991) ,  who 
detailed implementation of the estimator and proposed tests of the crucial assumption 
that Eit are serially uncorrelated. Because the instrument set is unbalanced and can be 
quite complicated, Stata provides the distinct command xtabond. 

l 



9.4.3 Tbe xtabond command 

9.4.3 The xtabond command 

The xtabond corrunand has the syntax 

xtabond depvar [ indepvars ] [ if ]  ( in ]  [ , options ] 

28b' 

The number of lags in the dependent variable, p in ( 9.4), is defined by using the lags ( # )  
option with the default p = 1 .  The regressors are declared in different ways depending 
on the type of regressor. 

First, strictly exogenous regressors are uncorrelated with E:it, require no special treat­
ment, are used as instruments for themselves, and are entered as indepvars. 

Second, predetermined regressors or weakly exogenous regressors are correlated with 
past errors but are uncorrelated with future errors: E(xitC:,,s) "I 0 for s < t, and 
E(xitE:is) = 0 for s � t. These regressors can be instrumented in the same way that 
Yi,t-l is instrumented using subsequent lags of Yi,t - 1 · Specifically, Xit is instrumented 
by Xi,t- 1 ,  Xi,t-2 1 • • • •  These regressors are entered by using the pre (varlist) option. 

Third , a regressor may be contemporaneously endogenous: E(xitE:is) "I 0 for s :::; t ,  
and E(xitE:·is) = 0 for s > t .  Now E(xitE:.,t) "I 0 ,  so Xi,t-1 is no longer a valid instrument 
in the FD model. The instruments for Xit are now Xi,t-2, X i,t-3 ,  . . . .  These regressors 
are entered by using the endogenous ( varlist) option. 

Finally, additional instruments can be included by using the inst ( varlist )  option. 

Potentially, many instruments are available, especially if T is large. If too many 
instruments are used, then asymptotic theory provides a poor finite-sample approxi­
mation to the distribution of the estimator. The maxldep( #) option sets the maxi­
mum number of lags of the dependent variable that can be used as instruments. The 
maxlags ( #) option sets the maximum number of lags of the predetermined and en­
dogenous variables that can be used as instruments. Alternatively, the lagstruct Clags , 
end lags) suboption can be applied individually to each variable in pre ( varlist) and 
endogenous ( varlist ): 

Two different IV estimators can be obtained; see section 6.2 .  The 2SLS estimator, also 
called the one-step estimator, is the default. Because the model is overidentified, more­
efficient estimation is possible using optimal generalized method of moments (GMM), 
also called the two-step estimator because first-step estimation is needed to obtain the 
optimal weighting matrix used at the second step. The optimal GMM estimator is 
obtained by using the twostep option. 

The vee (robust) option provides a heteroskedastic-consistent estimate of the 
variance-covariance matrL"< of the estimator (veE). If the C:it are serially correlated, 
the estimator is no longer consistent, so there is no cluster-robust VCE for this case. 

Postestimation commands for xtabond include estat abond, to test the critical 
assumption of no error correlation, and estat sargan, to perform an overidentifying 
restrictions test. See section 9.4.6. 
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9.4.4 Arellano-Bond estimator: Pure time series 

For concreteness, consider an AR(2) model for lnwage with no other regressors and 
seven years of data. Then we have sufficient data to obtain IV estimates in the model 

(9.5) 

At t = 4, there are two available instruments, Yil and Yi'2 ,  because these are uncorrelated 
with 6s;4. At t = 5, there are now three instruments, y,,h Yi2 , and Y;s, that are 
uncorrelated with 6s;s. Continuing in this manner at t = 6, there are four instruments, 
Yil,  . . .  , Yi4i and at t = 7, there are five instruments, y;1, . . .  , Y;s. In all, there are 
2+3+ 4+5  = 14 available instruments for the two lagged dependent variable regressors. 
Additionally, the intercept is an instrument for itself. Estimation can be by 2SLS or by 
the more efficient optimal GMM, which is possible because the model is overidentified. 
Because the instrument set is unbalanced, it is much easier to use xtabond than it is to 
manually set up the instruments and use ivregress .  

We apply the estimator to an AR(2) model for the wages data, initially without 
additional regressors. 

. * 2SLS or one-step GMM for a pure time-series AR(2) panel model 

. use musOSpsidextract . dta,  clear 
(PSID 1.1age data 1976-82 from Baltagi and Khanti-Akom (1990))  
. xtabond l1.1age, lags(2)  vce (robust) 

Arellano-Bond dynamic panel-data estimation Number of obs 
Group variab le:  id Number of groups 
Time variable: t 

Dbs per group : min = 

2380 
595 

4 
avg = 4 

Number of instruments = 15 

One-step results 

Robust 
l1.1age Coe f .  Std. Err. 

l1.1age 
L 1 .  . 5707517 . 0333941 
L2.  .2675649 .0242641 

cons 1 . 203588 . 164496 

Instruments for differenced equation 
GMM-type : L(2/ . ) . 1Yage 

Instruments for level equation 
Standard: cons 

z 

Wald chi2(2) 
Prob > chi2 

P> l z l  

1 7 . 09 0 .  000 
1 1 . 03 0 .000 
7 . 32 0 . 000 

max = 4 
1253 .03 
0 . 0000 

[95/. Con f .  Interval} 

. 5053005 

.2200082 

.8811814 

. 6362029 

.3151216 
1 .  525994 

There are 4 x 595 = 2380 observations because the first three years of data are lost 
in order to construct 6yi,t-2 · The results are reported for the original levels model, 
with the dependent variable Yit and the regressors the lagged dependent variables Yi,t- l  
and Yi,t-2, even though mechanically the FD model is  fitted. There are 15 instruments, 
as already explained, with output L(2/ . ) , meaning that Yi, t-2,  Yi,t-3, . . .  , Yi,1 are the 

J 
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instruments used for period t .  Wages depend greatly on past wages, with the lag weights 
summing to 0.57 + 0.27 = 0.84. 

The results given are for the 2SLS or one-step estimator. The standard errors reported 
are robust standard errors that permit the underlying error €:i.t to be heteroskedastic but 
do not allow for any serial correlation in eit >  because then the estimator is inconsistent. 

More-efficient estimation is possible using optimal or two-step GMM, because the 
model is overidentified. Standard errors reported using the standard textbook formulas 
for the two-step GMM estimator are downward biased in finite samples. A better esti­
mate of the standard errors, proposed by Windmeijer (2005), can be obtained by using 
the vee (robust) option. As for the one-step estimator, these standard errors permit 
heteroskedasticity in C:i t · 

Two-step GMM estimation for our data yields 

. * Optimal or tyo-step GMM for a pure time-series AR(2) panel model, 

. xtabond lYage , lags(2) tYostep vce(robust) 
Arellano-Bond dynamic panel-data estimation Number of obs 
Group variable:  id Number of groups 
Time variabl e :  t 

Obs per group : min = 

2380 
595 

4 
avg = 4 

Number of instruments = 15 

TYo-step results 

WC-Robust 
lYage Coef . Std. Err. 

lYage 
L 1 .  . 6095931 . 0330542 
L2 .  . 2708335 . 0279226 

_cons . 9182262 . 1339978 

Instruments for differenced equation 
GMM-typ�:  L(2/ . ) . 1Yage 

Instruments for level equation 
Standard: _cons 

Wald chi2(2) 
Prob > chi2 

z P> l z l  

18 .44 0 .  000 
9 . 70 0 .000  
6 . 85 0 . 000 

max = 4 

[95/. Conf. 

.544808 
.2161061 
. 6555952 

1974.40 
0. DODO 

Interval] 

.6743782 

. 3255608 
1 . 180857 

Here the one-step and two-step estimators have similar estimated coefficients, and the 
standard errors are also similar, so there is little efficiency gain in two-step estimation. 

For a large T, the Arellano-Bond method generates many instruments, leading to 
potential poor performance of asymptotic results. The number of instruments can be 
restricted by using the maxldep ( )  option. For example, we may use only the first 
available lag, so that just Y;,t-2 is the instrument in period t. 
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. • Reduce the number of instruments for a pure time-series AR(2) panel model 

. xtabond lYag e,  lags(2) vce (robust) maxldep (1 )  

Arellano-Bond dynamic panel-data estimation Number of  obs 2380 
595 Group variable: id Number of groups 

Time variable : t 

Number of instruments 5 

One-step results 

Robust 
lYage Coef . Std. Err. 

lYage 
L l .  .4863642 . 1919353 
L2.  .3647456 . 1661008 

_cons 1 . 127609 .2429357 

Instruments for differenced equation 
GMM-type: L(2/2) . 1Yage 

Instruments for level equation 
Standard: _cons 

z 

2 . 53 
2 . 20 
4 . 64 

Obs per group: min = 4 

Wald chi2(2) 
Prob > cb.i2 

P> l z l  

0 .  01 1 
0 .  028 
0 .  000 

avg = 4 
max = 4 

1372.33 
0 . 0000 

[95/. Conf. Interval} 

. 1 10178 

. 039194 
. 6514633 

. 8625505 

. 6902973 
1 . 603754 

Here there are five instruments: Yi2 when t = 4, Yi3 when t = 5, Yi4 when t = 6, YiS 
when t = 7, and the intercept is an instrument for itself. 

In this example, there is considerable loss of efficiency because the standard errors are 
now about six times larger. This inefficiency disappears if we instead use the maxldep (2) 
option, yielding eight instruments rather than the original 15. 

9.4.5 Arellano-Bond estimator: Additional regressors 

We now introduce regressors that are not lagged dependent variables. 

We fit a model for lwage similar to the model specified in section 9.3. The time­
invariant regressors fem, blk, and ed are dropped because they are eliminated after 
first-differencing. The regressors occ,  south, smsa, and ind are treated as strictly 
exogenous. The regressor wks appears both contemporaneously and with one lag, and 
it is treated as predetermined. The regressors ms and union are treated a s  endogenous. 
The first two lag-s of the dependent variable lwage are also regressors. 

The model omits one very important regressor, years of work experience (exp) . For 
these data, it is difficult to disentangle the separate effects of previous periods' wages 
and work experience. When both are included, the estimates become very imprecise. 
Because here we wish to emphasize the role of lagged wages, we exclude work experience 
from the model. 

We fit the model using optimal or two-step GMM and report robust standard errors. 
The strictly exogenous variables appear as regular regressors. The predetermined and 
endogenous variables are instead given as options, with restrictions placed on the number 
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of available instruments that are actually used. The dependent variable appears with 
two lags, and the maxldep(3) option is specified so that at most three lags are used 
as instruments. For example, when t = 7, the instruments are y;5,  y;4 ,  and y;3. The 
pre(wks , lag ( 1 , 2 ) )  option is specified so that wks and L 1 .  wks are regressors and only 
two addjtio_nal lags are to be used as instruments, The endogenous (ms , lag (0 ,  2 ) )  
option is used to indicate that ms appears only as a contemporaneous regressor and 
that at most two additional lag-s are used as instruments. The artests (3) option does 
not affect the estimation but will affect the postestimation command estat abond, as 
explained in the neA.-t section. We have 

. * Optimal or tyo-step GMM for a dynamic panel model 

. xtabond lYage occ south smsa ind, lags(2) maxldep(3) pre(Yks , l ag ( 1 , 2 ) )  
> endogenous (ms ,lag ( 0 , 2 ) )  endogenous (union,lag ( 0 , 2 ) )  tYostep vce (robust) 
> artests(3) 

Arellano-Bond dynamic panel-data estimation Number of obs 
Group variable :  id Number of groups 
Time variable: t 

Dbs per group : min :o 

avg = 
max = 

Number of instruments = 40 Wald chi2(10) 
Prob > chi2 

TYo-step results 

WC-Robust 
lYage Coef.  Std. Err. z P> l z l  [95/. Conf . 

lYage 
L l .  . 6 1 1753 . 0373491 1 6 . 38 0 . 000 . 5385501 
L2. . 2409058 . 0319939 7 .53  0 . 000 . 1781989 
YkS 

- . 0159751 . 0082523 - 1 . 9 4  0 . 053 - . 0321493 
L l .  . 00-39944 . 0027425 1 . 4 6  0 . 145 - . 0013807 

ms . 1859324 . 144458 1 . 29 0 . 198 - . 0972 
union - . 1531329 . 1677842 -0 . 91  0 . 36 1  - . 4819839 

occ - .0357509 . 0347705 - 1 . 0 3  0 . 304 - . 1038999 
south - . 0250368 . 2150806 - 0 . 1 2  0 . 907 - . 446587 

smsa - . 0848223 . 0525243 - 1 . 61 0 . 106 - . 187768 
ind . 0227008 . 0424207 0 . 5 4  0 . 593 - . 0604422 

cons 1 . 639999 .4981019 3 . 29 0 .001  . 6637377 

Instruments for differenced equation 
GMM-type : L(2/4 ) . 1Yage L ( 1/2) . L .Yks L (2/3) .ms L(2/3) .union 
Standard: D . occ D . south D . smsa D . ind 

Instruments for level equation 
Standard: _cons 

2380 
595 

4 
4 
4 

1287.77 
0 . 0000 

Interval] 

. 6849559 

. 3036127 

. 000199 
. 0093695 
. 4690649 
. 1757181 

. 032398 
.3965134 
. 0181235 
. 1058437 
2 . 616261 

With the inclusion of additional regressors, the coefficients of the lagged dependent 
variables have changed little and the standard errors are about 10-15% higher. The 
additional regressors are aJl statistically insignificant at 5%. By contrast, some are 
statistically significant using the within estimator for a static model that does not 
include the lagged dependent variables. 
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The output explains the instruments used. For example, L(2/ 4)  . lwage means that 
lwagei,t-2 ,  lwage;, t-3, and lwagei,t-4 are used as instruments, provided they are avail­
able. In the initial period t = 4, only the first two of these are available, whereas in 
t = 5, 6, 7, all three are available for a total of 2 + 3 + 3 + 3 = 1 1  instruments. By 
similar analysis, L(i/2) . L .  wks, L(2/3) .ms ,  and L(2/3) . union each provide 8 instru­
ments, and there are :five standard instruments. In all, there are 1 1  + 8 + 8 + 8 + 5 = 40 
instruments, as stated at the top of the output. 

9.4.6 Specification tests 

For consistent estimation, the xtabond estimators require that the error Eit be serially 
uncorrelated. This assumption is testable. 

Specifically, if eit are serially uncorrelated, then D.e;t are correlated with D.e;,t-1 , 
because Cov(D.e.it , D.e;, t-1) = Cov(e;t - E:i,t- l , E:i , t-1 - E:i,t-2) = -Cov(ei,t - l , ei ,t -1 ) =f. 0. 
But D.t:;t will not be correlated with D.e;,t-k for k � 2. A test of whether D.e;t are 
correlated with D.e; t-k for k > 2 can be calculated based on the correlation of the 
fitted residuals 6.�: This is pe-;formed by using the estat abond command. 

The default is to test to lag 2, but here we also test the third lag. This can be done in 
two ways. One way is to use estat abond with the artests (3) option, which leads to 
recalculation of the estimator defined in the preceding xtabond command. Alternatively, 
we can include the artests (3) option in xtabond, in which case we simply use estat 
abond and no recalculation is necessary. 

In our case, the artests (3) option was included in the preceding xtabond command. 
We obtain 

. • Test Yhether error is serially correlated 

. est at a bond 

Arellano-Bond test for zero autocorrelation in first-differenced errors 

I order z Prob > z 

1 -4. 5244 0 . 0000 
2 - 1 . 6041 0 . 1087 
3 .35729 0 . 7209 

HO: no autocorrelation 

The null hypothesis that Cov(D.�;;t, 6.E; ,t-k) = 0 for k = 1, 2, 3 is rejected at a level 
of 0.05 if p < 0.05. As explained above, if "it are seriaJly uncorrelated, we expect to 
reject at order 1 but not at higher orders. This is indeed the case. We reject at order 1 
because p = 0.000. At order 2, D.�;it and D.�;;,t-2 are serially uncorrelated because 
p = 0.109 > 0.05. Similarly, at order 3, there is no evidence of serial correlation because 
p = 0. 721 > 0.05. There is no serial correlation in the original error �;;t, as desired. 

A second specification test is a test of overidentifying restrictions; see section 6.3.7. 
Here 40 instruments were used to estimate 11 parameters, so there are 29 overidentifying 
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restrictions. The esta t sargan command implements the test. This command is not 
implemented after xtabond if the vee (robust) option is used, because the test is then 
invalid since it requires that the errors E:;t be independent and identically distributed 
(i.i.d . ) .  We therefore need to first run xtabond without this option. We have 

. • Test of overidentifying restrictions (first estimate Yith no vce (robust ) )  

. quietly xtabond lYage occ south smsa ind, lags (2) maxldep(3) pro(Yks , lag( 1 , 2 ) )  
> endogenous(ms,lag(0 , 2 ) )  endogenous(union,lag(0 , 2 ) )  tYostep artests(3)  

. esta t sargan 
Sargan test of overiden tifying restrictions 

HO: overidentifying restrictions are valid 

chi2(29) = 3 9 . 87571 
Prob > chi2 = 0 . 0860 

The nul! hypothesis that the population moment conditions are correct is not rejected 
because p = 0.086 > 0.0.5. 

9.4. 7 The xtdpdsys command 

The Arellano-Bond estimator uses an IV estimator based on the assumption that 
E(y.,� 6�::a) = 0 for .s :'S' t - 2 in (9 .3) ,  so that the lags Yi,t-2, Yi,t-3, . . .  can be used as in­
struments in the first-differenced (9 .4) .  Several papers suggest using additional moment 
conditions to obtain an estimator with improved precision and better finite-sample prop­
erties. In particular, Arellano and Bover ( 1995) and Blundell and Bond (1998) consider 
using the additional condition E(6.Yi,t- 1E:it) = 0 so that we also incorporate the levels 
(9.3) and use as an instrument 6.Yi,t-l ·  Similar additional moment conditions can be 
added for endogenous and predetermined variables, whose fi.rst-differences can be used 
as instruments. 

This estimator is performed by using the xtdpdsys command, introduced in Stata 10. 
It is also performed by using the user-written xtabond2 command. The syntax is exactly 
the same as that for xtabond. 

(Continued on next page) 
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We refit the model of section 9.4.5 using xtdpdsys rather than xtabond. 

. * Arellano/Baver or Blundoll/Bond for a dynamic panel model 

. xtdpdsys lYage occ south smsa ind, lags (2) maxldep (3) pre(Yks ,lag ( 1 , 2 ) )  
> endogenous (ms ,lag ( 0 , 2 ) )  endogenous (union ,lag ( 0 , 2 ) )  tYostep vce (robust) 
> artests(3) 

System dynamic panel-data estimation 
Group variabl e :  id 
Time variab 1 e: t 

Number of instruments � 60 

TYo-step results 

WC-Robust 
lYage Coef . Std. Err. 

lYage 
L L  . 6017533 . 0291502 
L2.  . 2880537 . 0285319 
Yks 

- . 0014979 . 0056143 
L1 . . 0006786 . 0015694 

ms . 0395337 . 0558543 
union - . 0422409 .0719919 

occ - . 0508803 . 0331149 
south - . 1062817 . 083753 

smsa - . 0483567 . 0479016 
ind . 0144749 . 031448 

cons . 9584113 . 3632287 

Instruments for differenced equation 

Number of obs 
Number of groups 

Obs per group : min = 
avg = 
max = 

Wald chi2(10) 
Prob > chi2 

z P> l z l  [95/. Conf. 

20 . 64 0 . 000 . 5446199 
10 . 10 0 . 000 . 2321322 

-0 .27 0 . 790 - . 0 125017 
0 . 43 0 .  665 - . 0023973 
0. 7 1  0 . 479 - . 0699386 

-0 . 59 0 . 557 - . 1833423 
-1 . 54  0 . 124 - . 1157843 
- 1 . 27 0 . 204 - . 2704346 
-1 . 01 0 . 313 - . 1422422 
0 . 46 0 .  645 -. 0471621 
2 . 6 4  0 .  008 .2464961 

GMM-type: L(2/4) . lYage L(1/2)  . L . Yks L(2/3) .ms L(2/3)  .union 
Standard: D . occ D . s outh D . smsa D . ind 

Instruments for level equation 
GMM-type : LD. lYage LD.Yks LD.ms LD .union 
Standard: cons 

2975 
595 

5 
5 
5 

2270 .88 
0 . 0000 

In
.
terval) 

. 6588866 

. 3439752 

. 009506 
. 0037545 
. 1490061 
. 0988606 
. 0140237 
. 0 578713 
. 0455288 
.0761118 
1 . 670327 

There are now 60 instruments rather than 40 instruments because the lagged first­
differences in lwage ,  wks, ms, and union are available for each of the five periods t = 
3, . . .  , 7. There is some change in estimated coefficients. More noticeable is a reduction 
in standard errors of 10-60%, reflecting greater precision because of the additional 
moment conditions. 

The procedure assumes the errors € it are serially uncorrelated. This assumption can 
be tested by using the postestimation estat abond command, and from output not 
given, this test confi.rms that the errors are serially uncorrelated here. If the xtdpdsys 
command is run with the default standard errors, the esta t sargan command can be 
used to test the overidentifying conditions. 

l '.1 
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g.4.8 The xtdpd command 

The preceding estimators and commands require that the model errors cit be serially 
uncorrelated. If this assumption is rejected (it is testable by using the estat a bond com­
mand), then one possibility is to add more lags of the dependent variable as regressors 
in the hope that this will eliminate any serial correlation in the error. 

An alternative is to use the xtdpd command, an acronym for dynamic panel data, 
that allows c;t to follow a moving-average (MA) process of low order. This command 
also allows predetermined variables to have a more complicated structure. 

For xtdpd, a very different syntax is used to enter all the variables and instruments 
in the model; see [xT] xtdpd. Essentially, one specifies a variable list with all model 
regressors (lagged dependent, exogenous, predetermined, and endogenous) , followed by 
options that specify instruments. For exogenous regressors, the div O option is used, 
and for other types of regressors, the dgmmi v 0 option is used with the explicit statement 
of the lags of each regressor to be used as instruments. Instruments for the levels 
equation, used in the xtdpdsys command, can also be specified with the lgmmi v O  
option. 

As an example, we provide without explanation an xtdpd command that exactly 
reproduces the xtdpdsys command of the previous section. We have 

• Use of xtdpd to exactly reproduce the previous xtdpdsys command 
xtdpd L(0/2) . 1Yage L(0/1 ) . Yks occ south smsa ind ms union, 

> div(occ south smsa ind) dgmmiv(lYage, lagrang e(2 4) ) 
> dgmmiv (ms union, lagrange(2 3 ) )  dgmmiv (L .Yks ,  lagrange ( l  2 ) )  
> lgmmiv(lYage Yks m s  union) tYostep vce (robust) artests(3) 

Dynamic panel-data estimation Number of obs 2975 
Group variable: id Number of groups 595 
Time variable :  t 

Number of instruments � 60 

TYo-step results 

We-Robust 
lYage Coef . Std. E=. 

lYage 
L l .  . 6017533 . 0291502 
L2. .2880537 . 0285319 
YkS 

- . 0014979 . 0056143 
L l .  . 0006786 . 0015694 
occ  - . 0508803 . 0331149 

south - . 1 062817 . 083753 
smsa - .0483567 . 0479016 

ind . 0 144749 . 031448 
ms . 0395337 . 0558543 

union - . 0422409 . 0719919 
_cons .9584113 .3632287 

Dbs per group: min "" 
avg = 

5 
5 

max � 5 
Wald chi2 (10) 
Prob > chi2 

z P> l z l  [95;( Conf. 

20 .64 0 .000 . 5446199 
10. 10 0 . 000 . 2321322 

-0 .27 0 . 790 - .0125017 
0 . 43 0 . 665 - . 0023973 

- 1 . 54 0 . 124 - . 1 157843 
- 1 . 27 0 . 204 - . 2704346 
- 1 . 0 1  0 . 3 1 3  - . 1422422 
0 . 4 6  0 . 645 -.  0471621 
0 .  71 0 . 479 - . 0699386 

- 0 . 5 9 :  0 . 557 - . 1833423 
2 . 64 0 . 008 . 2464961 

2270 .88 
0 .  DODO 

Interval) 

. 6588866 

.3439752 

. 009506 
. 0037545 
. 0140237 
. 0578713 
.0455288 
.0761118 
. 1490061 
. 0988606 
1. 670327 
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Instruments for differenced equation 
GMM-type : L(2/4) . 1Yage L(2/3) .ms  L(2/3) .union L(1/2) . L . Yks 
Standard: D . occ  D . south D . smsa D . ind 

Instruments for level equation 
GMM-type : LD. lYage LD.Yks LD.ms LD.union 
Standard: _cons 

Now suppose that the error cit in (9.3) is MA(l) , so that cit = rJit + O'IJi,t-1 , where 'IJit 

is i . i .d. Then y;,t-2 is no longer a valid instrument, but Yi,t-3 and further lags are. Also, 
for the level equation, 6yi,t-l is no longer a valid instrument but 6yi,t-2 is valid. We 
need to change the dgmmi v() and lgmmi v() options for lwage. The command becomes 

. * Previous command if model error is MA ( 1 )  

. xtdpd L(0/2) . 1Yage L(0/1) . Yks o c c  south smsa ind ms union, 
> div(occ south smsa ind) dgmmiv(lYage , lagrang e(3 4) ) 
> dgmmiv(ms union, lagrange (2 3 ) )  dgmmiv(L.Yks,  lagrange(1  2 ) )  
> lgmmiv(L. lYage Yks m s  union) tYostep vce (robust) artests(3) 

(output omitted) 

The output is the same as the results from xtdpdsys. 

9 .5 Mixed linear models 

In the RE model, i t  is assumed that the individual-specific intercept is uncorrelated 
with the regre::;::;ors. Richer models can additionally permit slope parameters to vary 
over individuals or time. We present two models, the mixed linear model and the less 
fie.."<ible random-coefficients model. 

These models are more elaborate RE models. They are not often used in microe­
conometrics panel-data models because attention is more focused on FE models. Even 
if an RE model is appropriate, then it is simpler and possibly more efficient to use the 
xtreg, pa command with an appropriate working matrix for the time-series correlation 
of the errors. The mixed linear model is more useful in clustered settings other than 
panel data; see section 9.6. 

9 .5 . 1  Mixed linear model 

The mixed linear model specifies a model for the conditional variance and covariances 
of Yit that can depend on observable variables. Maximum likelihood (ML) or feasible 
generalized least-squares (FGLS) estimation that exploits this model will lead to more­
efficient estimation of the parameters of the model for the conditional mean, assuming 
that the model for the conditional variances and covariances is correctly specified. 

The conditional mean of Yit is specified to be x:tf3, where the regressors X;t now 
include an intercept. The observed value Yit equals this conditional mean plus an error 
term Z�tUi + cit, where Zit are observable variables, and u; and C:;t are i . i.d. normally 
distributed random variables with a mean of zero. We have 

(9.6) 
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where u; "' N(D, �u) and ci t � N(O, 0';). The variances and covariances in �u are 
called RE parameters. 

The mixed linear models literature refers to the conditional mean parameters {3 as 
fixed effects, to be contrasted to the error terms Ui that are called random effects. 
We minimize use of this terminology because this is a very different use of the term 
"fixed effects" . Indeed, if the fixed effects defined in section 8.2.2 are present, then the 
estimators of this section are inconsistent. 

Specific choices of Zit lead to some standard models. Pooled OLS corresponds to 
Zit = 0. The RE model of section 8.7 corresponds to Zit = 1 ,  because only the intercept 
is random. A model oten called the random-coefficients model sets Zit = Xit so that, for 
the regressor x.it , both the intercept and slope coefficients are random. The hierarchical 
linear models framework (see section 9.6.4) leads to further choices of Zit · 

Estimation is by ML or by an asymptotically equivalent variation of ML called re­
stricted maximum likelihood (REML), which produces variance estimates that are un­
biased in balanced samples. Normality of the errors is assumed. It is not necessary 
for consistency of {3, because consistency requires essentially that E(Yit lx<t , Zit) = x:t!3· 
However, correctness of the reported standard errors does require i.i .d. errors satisfying 
u; � [0, :Eu] and Eit "' [0, 0'�] -

9.5.2 The xtmixed command 

The xtmixed command fits a multilevel mixed-effects model. The dependent variable 
and regressors in (9.6) are defined, followed by two vertical bars I I and a defi.nition of 
the portion of the model for the random effects u i· 

For example, the command xtmixed y x I I  i d :  z ,  mle is used if we want to regress 
Yit on an intercept and Xit; the variable id identifies individual i, the random effects 
vary with an intercept and variable Zit> and estimation is by ML. 

The general syntax of the col!lilland is 

xtmixed depvar [ fe_equation ] [ I I re_equation . . .  J ( I I re_equation . . . ] 
( , options J 

The dependent variable Yit is given in depvar. The regressors are defined in fe_equation, 
which has the syntax 

indepvars [ if ] [ in ] [ , fe_options J 

where indepvars defines the regressors X it> and the fe_option noconstan t is added if no 
intercept is to be included. The RE model is given in re_equation, which has the syntax 

levelvar : [ varlist ] ( , re_options J 



300 Cbapter 9 Linear panel-data models: Extensions 

where levelvar is the individual unit identifier, varlist gives the variable Zit , and the 
noconstant re_option is added if there is to be no random intercept. The re_option 
covariance ( vartype) places structure on :Eu, where vartype includes independent (the 
default) with :Eu diagonal, and unstructured with no structure placed on :Eu· 

Estimation is by ML if the mle option is used. Estimation is by asymptotically 
equivalent REML (the default) if the reml option is used. For multilevel models, the 
additional levels are specified by a series of re_equations, each separated by I I . This is 
pursued in section 9.6.4. There is no option for alternative estimates of the VCE. 

9.5.3 Random-intercept model 

The random-intercept model restricts u; 
tion 8.7. 

1 and is identical to the RE model of sec-

The model can be fitted by using the xtmixed command, with the RE portion of the 
model defined simply as i d : .  This id identifies the individual unit, and the default is 
to include a random intercept for the individual unit. We use the mle option to obtain 

. use mus08psidextract . dt a, clear 
(PSID Yage data 1976-82 from Baltagi and Khanti-Akom (1990))  

. xtmixed lYage exp exp2 Yks ed  I I  id: , mle 
Performing EM optimization: 
Performing gradient-based optimization: 
Iteration 0 :  log likelihood = 293. 69563 
Iteration 1 :  log likelihood = 293. 69563 
Computing standard error s :  

Mixed-effects ML regression 
Group variabl e :  id 

Log likelihood 

lYago 

exp 
exp2 

YkS 
ed 

cons 

293. 69563 

Coef . 

. 1079955 
- . 0005202 

. 0008365 

. 1378559 
2 . 9 89858 

Std. Err. z 

. 0024527 44.03 
.0000543 -9 .59  
. 0006042 1 .  38 
.0125814 1 0 . 9 6  

. 17118 17 .47  

Number of obs 
Number of groups 

Obs per group : min = 

4165 
595 

7 
avg = 7 . 0  
max = 7 

Wald chi2(4) 6160 .60 
Prob > chi2 0 . 0000 

P> l z l  [95/. Conf . Interval] 

0 . 000 . 1031883 . 1 !28027 
0 . 000 - . 0006266 - . 0004139 
0 . 166 - . 0003477 . 0020208 
0 . 000 . 1 131968 . 1625149 
0 . 000 2 . 654352 3 . 325365 

Random-effects Parameters Estimate Std. Err. [95/. Conf . Interval] 

id: Identity 
sd{_cons) .8509015 . 0278622 . 798008 . 9073008 

sd(Residual) . 1536109 .0018574 . 1500132 . 1572949 

LR test vs .  linear regression: chi bar2(01) = 457 6 . 1 3  Prob >= chibar2 = 0 . 0000 
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The estimated coefficients are identical to estimates (not given) from command xtreg, 
mle. The standard errors are also the same, aside from a slight difference for those for 
the coefficients of the regressors Xit · Coefficient estimates change very little (less than 
0 . 1%)  if the reml option of xtmixed is used instead. The RE error u; has an estimated 
standard deviation that is 5-6 times that for the idiosyncratic error. 

9.5.4 Cluster-robust standard errors 

A bigger issue is that the reported standard errors require that the errors u, and E:;t in 
(9.6) be i .i .d., yet we have already seen from section 8.8.3 that cluster-robust standard 
errors were 30-40% higher for the RE model (fitted using xtreg's re option) .  

One approach is  to  use a cluster bootstrap. Because there is no vee 0 option for 
xtmixed, we instead need to use the bootstrap prefix (explained fully in chapter 13) .  
To do so requires first eliminating the time identifier, since otherwise Stata fails to 
implement the bootstrap because of "repeated time values within panel" . We have 

• Cluster robust standard errors after xtmixed using bootstrap 
xtset id 

panel variabl e :  id (balanced) 
bootstrap ,  reps(400) seed(10101) cluster(id) nodots :  

> xtmixed lwage exp exp2 wks ed I I id: , mle 

Mixed-effects ML regression 
Group variable: id 

Log likelihood = 293.69563 

Observed 
lwage Coef . 

exp . 1079955 
exp2 - . 00()5202 
"'ks . 0008365 

ed . 1 378559 
cons 2. 989858 

Random-effects Parameters 

id: Identity 
sd(_cons) 

sd(Residual) 

Number of o bs 
Number of groups 

4165 
595 

Obs per group : min � 7 

Wald chi2( 4) 
Prob > chi2 

avg c 7 . 0  
max = 7 

2092.79 
0 . 0000 

(Replications based on 595 clusters in id) 

Bootstrap Normal-based 
Std. Err.  z P> l z l  [95',� Conf. Interval] 

.0041447 26 .06  0 . 000 . 0998721 . 1 161189 

. 0000831 - 6 . 2 6  0 . 000 - . 0006831 - . 0003573 

. 0008458 0 . 99 0 . 323 - . 0008212 .0024943 

. 0099856 13 .81  0 . 000 . 1 182844 . 1574273 

. 1 510383 1 9 . 80 0 . 000 2 . 693829 3 . 285888 

Observed Bootstrap Normal-based 
Estimate Std. Err . · [95/. Conf. Interval] 

. 8509015 . 0259641 .8015045 . 9033428 

. 1536109 . 00824 . 1382808 . 1706406 

LR test v s .  linear regression: chibar 2(01) 4576 . 13 Prob >= chibar2 = 0 . 0000 
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The cluster bootstrap leads to an increase in standard errors for the slope coefficients 
of time-varying regressors of 20-40%, whereas the standard error of the time-invariant 
regressor ed has decreased. 

Although the regression parameters j3 in (9.6) are consistently estimated if the id­
iosyncratic errors E:;t are serially correlated, the estimates of the variance parameters ::8,, 
and CTv. (reported here as sd (_cons) and sd(Residual ) )  are inconsistently estimated. 
This provides motivation for using a random-slopes model. 

9.5.5 Random-slopes model 

An alternative approach is to  use a richer model for the RE portion of the model. If · 
this model is well specified so that the errors Ui and E:;t in (9.6) are i . i .d. , then this 
will lead to more-efficient estimation of {3, correct standard errors for /3, and consistent 
estimation of L:v. and crv.. 

For our application, we let the random effects depend on exp and wks, and we let 
::8u be unstructured. We obtain 

. • Random-slopes model estimated using xtmixed 

. xtmixed lYage exp exp2 Yks ed I I id: exp Yks, covar(unstructured) mle 

Performing EM optimization: 

Performing gradient-based optimization: 
Iteration 0 :  log likelihood = 397 . 6 1 127 (not concave) 
Iteration 1 :  log likelihood = 427 . 01222 (not concave) 
Iteration 2: log

. 
likelihood = 470 . 1 1948 

Iteration 3 :  log likelihood = 5 0 1 . 39532 
Iteration 4 :  log likelihood = 508 .9 l733 
Iteration 5: log likelihood = 509.00178 
Iteration 6 :  log likelihood = 509 .00191 
Iteration 7:  log  likelihood = 509 . 00191 
Computing standard errors: 
Mixed-effects ML regression 
Group variable : id 

Log likelihood = 509.00191 

lYage Coef . Std. Err. z 

exp . 0527159 .0032966 15 . 99  
exp2 . 0009476 .0000713 1 3 . 2 8  

TJkS . 0006887 . 0008267 · 0 . 8 3  
ed . 0868604 . 0098652 8 . 80 

cons 4 . 317674 . 1 420957 30.39 

Number of obs 
Number of groups 

Dbs per group : min = 

4165 
595 

7 
avg = 7 . 0  
max = 7 

Wald chi2(4) 2097.06 
Prob > chi2 0 . 0000 

P> l z l  [95/. Conf . Interval] 

0 . 000 . 0462546 .0591772 
0 .000 . 0008078 .0010874 
0 . 405 - . 0009316 . 0023091 
0 .  000 .0 67525 . 1061958 
0 . 000 4 . 039171 4 . 596176 
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Random-effects Parameters Estimate Std. Err. [95/. Conf. Interval] 

id: Unstructured 
sd(exp) . 043679 . 0022801 ' .0394311 . 0483846 
sd(wks) . 0081818 . 0008403 . 00669 . 0100061 

sd{_cons) . 6 042978 .0511419 . 5119335 .7133266 
corr(exp, wks) - . 2976598 . 1 000255 - . 4792843 - .  0915876 

corr(exp,_cons) . 0036853 .0859701 - . 163339 . 1705043 
corr(wks ,  _cons) - . 4890482 . 0835946 - . 6352413 - . 3090206 

s<_i(Residual) . 1319489 . 0017964 . 1284745 . 1 355172 

LR test v s .  linear regression: chi2(6) : 5006 .75 Prob > chi2 = 0 . 0000 
Note: LR test is conservative anq provided only for reference. 

From the first set of output, there is considerable change in the. regressor coefficients 
compared with those from the random-intercept model. The reported standard errors 
are now similar to those from the cluster bootstrap of the random-intercept model. 

From the second set of output, all but one of the RE parameters ( corr(exp , _cons) ) 
is statistically significantly different from 0 at 5%. The joint test strongly rejects the null 
hypothesis that they are all zero. The x2 (6) distribution is used to compute p-values, 
because there are six restrictions. However, these are not six independent restrictions 
because, for example, if a variance is zero then all corresponding covariances must be 
zero. The joint-test statistic has a nonstandard and complicated distribution. Using the 
x2 (6) distribution is conservative because it can be shown to overstate the true p-value. 

9_5.6 Random-coefficients model 

The model that econometricians call the random-coefficients model lets Z;t = X;t in 
(9.6). This can be fitted in the same way as the preceding random-slopes model, with 
the RE portion of the model changed to I I id: exp exp2 wks ed. 

A similar model can be fi tted by using the xtrc command. This has exactly the 
same setup as (9.6) with z;1 = x;1 and L:u unstructured. The one difference is that 
the idiosyncratic error E:it is permitted to be heteroskedastic over i, so that E;t i.i.d. 
(o ,crn. By contrast, the mixed linear model imposes homoskedasticity with cr� = � .  
Estimation is by FGLS rather than ML. 

In practice, these models can encounter numerical problems, especially if there are 
many regressors and no structure is placed on L:,.. Both xtmixed and xtrc failed 
numerically for our data, so we apply xtrc to a reduced model, with just exp and wks 
as regressors. To run xtrc, we must set matsize to exceed the nuniber of groups, here 
the number of individuals. We obtain 
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• Random-coefficients model estimated using xtrc 
quietly set matsize 600 

xtrc lwage exp wks, i(id) 

Random-coefficients regression 
Group variabl e :  id 

lwago Coef. Std. Err. 

exp .0926579 . 0022586 
"'ks . 0006559 . 0027445 

cons 4 . 915057 . 1 444991 

z 

41 . 02  
0 .  24 

34 .01  

Test of parameter constancy: chi2(1782) = 

Number of obs 
Number of groups 

4165 
595 

Obs per group : min = 7 
avg = 7 . 0  
max = 7 

Wald chi2(2) 1692.37 
Prob > chi2 0 .  0000 

P> l z l  [95/. Conf. Interval) 

0 . 000 . 0882312 . 0970847 
0 . 811  - . 0047232 . 0060349 
0 . 000 4 .  631844 5 . 19827 

5 . 2e+05 Prob > chi2 = 0 . 0000 

These estimates differ considerably from estimates (not given) obtained by using the 
xtmixed command with the regressors wks and exp. 

The matrix L:, is not output but is stored in e (Sigma) . We have 

. matrix list e (Sigma) 
symmetric e(Sigma) [3 ,3)  

exp wks _cons 
exp . 00263517 
wks - . 00031391 . 00355505 

_cons - . 01246813 - . 17387686 9 . 9705349 

The xtmixed command· is the more commonly used command. It is much more 
flexible, because Zit need not equal Xit, restrictions can be placed on L:, and it gives 
estimates of the precision of the variance components. It does impose homoskedasticity 
of tit, but this may not be too restrictive because the combined error ZitUi+C:it is clearly 
heteroskedastic and, depending on the application, the variability in tit may be much 
smaller than that of Zit u,. 

9.5 .  7 Two-way random-effects model 

The xtmixed command is intended for multilevel models where the levels are nested. 
The two-way random-effects model (see section 8.2.2) has the error ai + (t + �'Sit, where 
all three errors are i .i .d. Then the covariance structure is nonnested, because i is not 
nested in t and t is not nested in i .  

Rabe-Hesketh and Skrondal (2008, 476) explain how to  nonetheless use xtmixed to 
estimate the parameters of the two-way random-effects model, using a result of  Goldstein 
(1987) that shows how to rewrite covariance models with nonnested structure as nested 
models. Two levels of random effects are specified as I I _al l : R .  t I I id : . We explain 
each level in tum. At the first level, the RE equation describes the covariance structure 
due to It· The obvious t :  cannot be used because it does not nest id. 
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Instead, we use _all : because this defines each observation ( i , t )  to be a separate 
group (thereby nesting id). We then add R .  t because this ensures the desired correlation 
pattern due to 'Yt by defining a factor structure in t with independent factors with 
identical variance (see [XT] xtmixed). At the second level, the RE equation defines the 
covariance structure for a; by simply using id : . For data where N < T computation 
is faster if the roles of i and t are reversed, the random effects are specified as I I _al l :  
R . id I I  t : .  

Application of the command yields 

. • Two-way random-effects model estimated using xtmixed 

. xtmixed lwage exp exp2 wk� ed I I _all: R. t I I id :  , mle 
Performing EM optimization: 

Perfo�ing gradient-based optimization: 
Iteration 0 :  log likelihood = 8 9 1 . 09366 
Iteration 1 :  log likelihood = 891 . 09366 

Computing standard error s :  
Mixed-effects ML regression 

Group Variable 

all 
id 

Log likelihood 

lwage 

exp 
exp2 
wks 

cd 
_cons 

No. of 
Groups 

595 

891 . 09366 

Coef. 

. 0497249 
- . 0004425 

. 0009207 

. 0736737 
5 . 324364 

Random-effects Parameters 

all: Identity 
sd(R.t)  

id:  Identity 
sd{_cons) 

sd(Resid ual) 

Number of obs 

Observations per Group 
Minimum Average Maximum 

4165 
7 

4165 .0  
7 . 0  

4165 
7 

Wald chi2(4) 
Prob > chi2 

Std. Err. z P> l z l  [95/. Conf . 

. 0025537 1 1 . 6 4  0 . 000 . 0247198 

.0000501 -8.83 0 . 000 - . 0005407 

. 0005924 1 . 5 5  0 . 120 - . 0002404 

. 0049275 14 .95  0 .  000 .064016 

. 1036266 5 1 . 38 0 .  000 5 . 121259 

Estimate Std. Err. [95/. Conf . 

. 170487 .0457031 . 1008106 

. 3216482 . 0096375 .303303 

. 1515621 . 0017955 . 1480836 

LR test v s .  linear regression: chi2 {2) = 5770.93 Prob > chi2 

Note: LR test is conservative and provided only for reference. 

4165 

329.99 
0 . 0000 

Interval] 

.0347301 
- . 0003443 

. 0020818 

. 0833314 
5 . 527468 

Interval] 

.288321 

.3411031 

. 1551224 

= 0 . 0000 

The random time effects are statistically significant because sd(R. t) is significantly 
different from zero at a level of 0.05. 
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9.6 Clustered data 

Short-panel data can be viewed as a special case of clustered data, where there is 
within-individual clustering so that errors are correlated over time for a given individual. 
Therefore, the xt commands that we have applied to data from short panels can also be 
applied to clustered data. In particular, xtreg and especially xtmixed are often used. 

9.6 . 1  Clustered dataset 

We consider data on use of medical services by individuals, where individuals are clus­
tered within household and, additionally, households are clustered in villages or com­
munes. The data, from Vietnam, are the same as those used in Cameron and Trivedi 
(2005, 852). 

The dependent variable is the number of direct pharmacy visits (pharvis) . The 
independent variables are the logarithm of household medical expenditures (lnhhexp) 
and the number of illnesses (illness). The data cover 12 months. We have 

• Read in Vietnam clustered data and summarize 
use mus09vietnam_ex 2 . dta,  clear 

summarize pharvis lnhhexp illness commune 
Variable Obs Mean Std. Dev. Min Max 

pharvis 
lnhhexp 
illness 
commune 

27765 
27765 
27765 
27765 

. 5117594 
2. 60261 

. 6219701 
101 . 5266 

1 .  313427 0 30 
. 6244145 . 0467014 5 . 405502 
. 8995068 0 9 
56 . 28334 194 

The commune variable identifies the 194 separate villages. For these data, the lnhhexp 
variable takes on a different value for each household and can serve as a household 
identifier. 

The pharvis variable is a count that is best modeled by using count regression 
commands such as poisson and xtpoisson. For illustrative purposes, we use the linear 
regression model here. 

9.6.2 Cl ustered data using nonpanel commands 

One complication of clustering is that the error is correlated within cluster. If that is 
the only complication, then valid inference simply uses standard cross-section estimators 
along with cluster-robust standard errors. 

Here we contrast no correction for clustering, clustering on household, and clustering 
on village. We have 
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* DLS estimation with cl�ster-rob�st standard errors 
q�ietly regress pharvis lnhhexp illness 
estimates store DLS_iid 

q�ietly regress pharvis lnhhoxp illness, vce (rob�st) 
estimates store DLS_het 

q�ietly regress pharvis lnhhexp illness, vce (cl�ster lnhhexp) 
estimates store DLS_hh 
q�ietly regress pharvis lnhhexp illness, vce (cl�ster comm�ne) 
estimates store DLS_vill 
estimates table DLS_iid DLS_het DLS_hh DLS_vil l ,  b(/.10.4f)  so stats(r2 N) 

Variable DLS_iid DLS_het DLS_hh DLS_vill 

lnhhexp 0 .  0248 0 . 0248 0 . 0248 0 . 0248 
0 .  0115 0 . 0109 0. 0140 0. 0211 

illness 0. 6242 0 . 6242 0 . 6242 0 . 6242 
0. 0080 0 . 0141 0 . 0183 0 . 0342 

_cons 0 .  0591 0 . 0591 0 . 0591 D. 0591 
0 . 0316 0 . 0292 0 . 0367 0 . 0556 

r2 0 . 1818 0 . 1818 0 . 1818 0 . 1818 
N 27765 . 0000 27765 .DODD 27765 . 0000 27765.0000 

legend: b/se 
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The effect of correction for heteroskedasticity is unlmown a priori. Here there is little 
effect on the standard errors for the intercept and lnbhexp, though there is an increase 
for illness. 

More importantly, controlling for clustering is expected to increase reported standard 
errors, especially for regressors highly correlated within the cluster. Here standard 
errors increase by arounCl. 30% as we move to clustering on household and by another 
approximately 50% as we move to clustering on village. In total, clustering on village 
leads to a doubling of standard errors compared with assuming no heteroskedasticity. 

In practice ,  con_trolling for clustering can have a bigger effect; see section 3.3.5. Here 
there are on average 140 people per village, but the within-village correlation of the 
regressors and of the model errors is fairly low. 

9.6.3 C lustered data using panel commands 

The Stata xt commands enable additional analysis, specifically, more detailed data 
summary, more-efficient estimation than OLS, and estimation with cluster-specific fixed 
effects. 

In our example, person i is in household or village j, and a cluster-effects model is 

Yii = x;j/3 + CY.j + f:;j 

It is very important to note an important conceptual change from the panel-data case. 
For panels, there were multiple observations per individual, so clustering is on the 
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individual (i ) .  Here, instead, there are multiple observations per household or per 
village, so clustering is on the household or village (j). 

It follows that when we use the xtset command, the "individual identifier" is really 
the cluster identifier, so the individual identifier is the household or commune. For 
clustering on the household, the r.linimum command is xtset hh. We can also declare 
the analog of time to be a cluster member, here an individual within a household or 
commune. In doing so, we should keep in mind that, unlike time, there is no natural 
ordering of individuals in a village. 

We consider clustering on the household. vVe first convert the household identifier 
lnhhexp, unique for each household, to the hh variable, which takes on integer values 1 ,  
2, . . . by using egen's groupO function. We then randomly assign the integers 1 ,  2, . . .  
to each person in a household by using the by hh:  generate person � _n command. 

* Generate integer-valued household and person identifiers and xtset 
quietly egen hh � group (lnbhexp) 

sort hh 
by hh: generate person � _n 
xtset hh person 

panel v�riable:  
time variable:  

delta: 

hh (unbalanced) 
person, 1 to 19 
1 unit 

Now that the data are set up, we can use xt commands to investigate the data. For 
example, 

xtdescribe 

bh: 1 ,  2, . . .  , 5740 n = 5740 
person: 1 ,  2, . . .  , 19 T = 19 

Delta(person) = 1 unit 
Span(person) 19 periods 
(bh*person uniquely identifies each observation) 

Distribution of T i :  min 5/. 
2 

25/. 
4 

50/. 
5 

Freq. Percent Gum .  Pattern 

1376 23 .97  23 .97  1111  . . . . . . . . . . . . . . . 
1285. 22.39 46 .36  1 1 1 1 1 .  . . . . . . . . . . . . .  
853 14 .86  61 .22  111111 .  . . . . . . . . . . . .  
706 12 .30  73 .52  111 .  . . . . . . . . . . . . . . .  
471 8 . 2 1  8 1 . 7 2  1 1 1 1 1 1 1 .  . . . . . . . . . . .  
441 7 . 68 89 .41  11 .  . . . . . . . . . . . . . . . .  
249 4 . 34 93 .75 1111 1 1 1 1 .  . . . . . . . . . .  
126 2 .20  95 . 94 1 . . . . . . . . . . . . . . . . . .  
125 2 . 18 98.  12 1 11111111 .  . . . . . . . . .  
108 1. 88 100.00 (other patterns) 

5740 100 .00  xxxxxxxxxxxxxxxxxxx 

75/. 
6 

95/. 
8 

max 
1 9  

There are 5 ,740 households with 1-19 members, the median household has five members, 
and the most common household size is four members. 
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We can estimate the within-cluster correlation of a variable by obtaining the corre­
lation for members of a: household. The best way to do so is to fit an intercept-only RE 
model, because from section 8. 7.1 the output includes rho, the estimate of the intra­
class correlation parameter. Another way to do so is to use the time-series component 
of xt commands, treat each person in the household like a time period, and fi nd the 
correlation for adjoining household members by lagging once. We have 

* Within-cluster correlation of pharvis 
quietly xtreg pharvis, mle 
display "Intra-class correlation for household: " e(rho) 

Intra-class correlation for household: .22283723 
. quietly correlate pharvis L 1 . pharvis 
. display "Correlation for adjoining household: " r(rho) 
Correlation for adj oining household:  . 18813634 

The usual xtreg commands can be applied. In particular, the RE model assumption 
of equicorrelated errors within cluster is quite reasonable here because there is no natural 
ordering of household members. We compare in order OLS, FE, and RE estimates with 
clustering on household followed by OLS, FE, and RE estimates with clustering on village. 
We expect RE and within estimators to be more efficient than the OLS estimators. vVe · 

have 

• DLS, RE and FE estimation Yith clustering on household and on village 
quietly regress pharvis lnhhexp illness, v ce( cluster hh) 
estimates store DLS_hh 

quietly xtreg pharvis lnhhexp illness, re 

estimates store RE_hh 
quietly xtreg pharvis lnhhexp illness, fe 

estimates store FE_hh 
quietly xtset commune 
quietly regress pharvis lnbhexp illness, vce (cluster commune) 

estimates store OLS_vill 
quietly xtrcg pharvis lnhhexp illness, re 
estimates store RE_vill 
quietly xtreg pharvis lnhhexp illness, fe 
estimates store FE_vill 

estimates table OLS_hh RE_hh FE_hh DLS_vill RE_vill 

Variable DLS_hh RE_hh FE_hh DLS_v-1 

lnhhexp 0 . 0248 0 .  0184 0 . 0000 0 . 0248 
0 .  0140 0 . 0168 0 . 0000 0 . 0211 

illness 0 . 6242 0 . 6171 0 . 6097 0 . 6242 
0 . 0183 0 . 0083 0 . 0096 0 . 0342 

cons 0 . 0591 0 . 0855 0 � 1325 0 . 0591 
0 . 0367 0 . 0448 0 . 0087 o .  o·556 

FE_vill, 

RE_vill 

-0 . 0449 
0 . 0149 
0 . 6155 
0 . 0081 
0. 2431 
0 . 0441 

b(/.7.4f)  s e  

FE_vill 

- 0 . 0657 
0 . 0158 
0 . 6141 
0 . 0082 
0 . 3008 
0 . 0426 

legend: b/se 
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The coefficient of illness is relatively invariant across models and is fitted much more 
precisely by the RE and within estimators. The coefficient of lnbhexp fluctuates con­
siderably, including sign reversal, and is more efficiently estimated by RE and FE when 
clustering is on the village. Because lnbhexp is invariant within household, there is no 
within estimate for its coefficient when clustering is at the household level, but there is 
when clustering is at the village level. 

9.6.4 Hierarchical linear models 

Hierarchical models or  mixed models are designed for clustered data such as these, 
especially when there is clustering at more than one level. 

A simple example is to suppose that person i is in household j, which is in village 
k, and that the model is a variance-components model with 

Yijk = x!;jk/3 + Uj + Vk + Cijk 

where Uj , Vk , and cijk are i .i .d. errors. 

The model can be fitted using the xtmixed command, detailed in section 9.5. The 
fi rst level is commune and the second is hh because households are nested in villages. 
The difficult option was added to ensure convergence of the iterative process. We 
obtain 

• Hierarchical linear model Yith household and village variance components 
xtmixed pharvis lnhhexp illness I I commune: I I hh: , mle difficult 

Performing EM optimization: 

Performing gradient-based optimization: 

Iteration 0 :  log likelihood = -43224 . 836 
Iteration 1 :  log likelihood = -43224 .635 
Iteration 2 :  log likelihood = -43224 .635 

Computing standard errors: 
Mixed-effects ML regression Number of obs 27765 

Group Variable 

commune 
hh 

No. of 
Groups 

194 
5741 

Observations per Group 
Minimum Average Maximum 

143 . 1  
4 . 8  

206 
19 

Log likelihood = -43224 . 635 
Wald chi2 (2) 
Prob > chi2 

5570 . 2 5  
0 . 0000 

pharvis 

lnbhexp 
illness 

cons 

Coef. Std. Err. 

- . 0408946 . 0 184302 
. 6141189 . 0082837 
.2357166 . 0523176 

z P > l z l  

-2 . 22 0 . 026 
74 . 14  0 . 000 
4 . 51 0 . 000 

[95/. Con f.  Interval] 

- . 0770171 - . 0047721 
. 5978831 . 6303547 
. 1331761 . 3382572 
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Random-effects Parameters Estimate Std. Err. [95/. Conf. Interval] 

commune : Identity 
sd(_cons) .257527 . 01 62584 .2275538 .29 14482 

hh :  Identity 
sd(_cons) . 4532975 . 0103451 .4334683 .4740338 

sd(Resid ual) 1 .  071804 . 0051435 1 .  06177 1 . 081933 

LR test vs .  linear regression: chi2 (2) = 1910 .44 Prob > chi2 � 0 . 0000 
Note: LR test is conservative and provided only for reference. 

The estimates are similar to the previously obtained RE estimates using the xtreg, re 
command,

· 
given in the RE_vill column in the table in section 9.6.3. Both variance 

components are statistically significant. The xtmixed commmid allows the variance 
components to additionally depend on regressors, as demonstrated in section 9.5. 

9. 7 Stata resources 

The key Stata reference is [xT] Longitudinal/Panel-Data Reference Manual, especially 
[XT] xtivreg, [XT] xthtaylor, [XT] xtabond, and [xT] xtmixed. 

Many of the topics in this chapter appear in more specialized books on panel data, 
notably, Arellano (2003), Baltagi (2008), Hsiao (2003), and Lee (2002). Cameron and 
Trivedi (2005) present most of the methods in this chapter, including hierarchical models 
that are generally not presented in econometrics texts. 

9.8 Exercises 
1 .  For the model and data of section 9.2 , obtain the panel IV estimator in the FE 

model by applying the ivregress command to the mean-differenced model with a 
mean-differenced instrument. Hint: For example, for variable x, type by id :  egen 
a vex = mean (x) followed by summarize x and then generate mdx = x - a vex 
+ r (mean) . Verify that you get the same estimated coefficients as you would with 
xtivreg, fe .  

2 .  For the model and data o f  section 9.4, use the xtdpdsys command given i n  sec­
tion 9.4.6, and then perform specification tests using the estat abond and estat 
sargan commands. Use xtdpd at the end of section 9.4.8, and compare the results 
with those from xtdpdsys. Is this what you expect, given the results from the 
preceding specification tests? 

3. Consider the model and data of section 9:4, except consider the case of just one 
lagged dependent variable. Throughout, estimate the parameters of the models 
with the noconstant option. Consider estimation of the dynamic model Yit = 
O'i +''!Yit-1 +S"it ,  when T = 7, where e;t are serially uncorrelated. Explain why OLS 
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estimation of the transformed model 6.yit = ''Yl!:::,.Yit- 1 + 6.E:it , t = 2, . . .  , 7, leads 
to inconsistent estimation of 71 .  Propose an IV estimator of the preceding model 
where there is just one instrument. Implement this just-identified IV estimator 
using the data on lwage and the ivregress command. Obtain cluster-robust 
standard errors. Compare with OLS estimates of the differenced model. 

4. Continue with the model of the previous question. Consider the Arella�o-Bond 
estimator. For each time period, state what instruments are used by the estat 
a bond command. Perform the Arellano-Bond estimator using the data on lwage. 
Obtain the one-step estimator with robust stanc\a.:rd erroi·s. Obtain the two-step 
estim

.
ator with robust standard errors. Compare the estimates and their standard 

errors. Is there an efficiency gain compared with your answer in the previous 
question? Use the estat abond command to test whether the errors E:it are seri­
ally uncorrelated. Use the estat sargan command to test whether the model is 
correctly specified. 

5. For the model and data of section 9 .. 5, verify that xtmixed with the role option 
gives the same results as xtreg , mle. Also compare the results with those from 
using xtmixed with the reml option. Fit the two-way RE model assuming ran­
dom individual and time effects, and compare results with those from when the 
time effects are allowed to be fixed (in which case time dummies are included as 
regTessors). 
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10 .1  I ntroduction 

We now turn to nonlinear regTession methods. In this chapter, we consider single­
equation models fitted using cross-section data with all regressors exogenous. 

Compared with linear regression, there are two complications. There is no explicit 
solution for the estimator, so computation of the estimator requi.res iterative numerical 
methods. And, unlike the linear model, the marginal effect (ME) of a change in a regres­
sor is no longer simply the associated slope parameter. For standard nonlinear models, 
the first complication is easily handled. Simply changing the command from regress 
y x to poisson y x, for example, leads to nonlinear estimation and regression output 
that looks essentially the same as the output from regress. The second complication 
can often be dealt with by obtaining MEs by using the mfx command, although other 
methods may be better. 

In this chapter, we provide an overview of Stata's nonlinear estimation commands 
and subsequent prediction and computation of MEs. The discussion is applicable for 
analysis after any Stata estimation command, including the commands listed in ta­
ble 10.1 .  

Table 10.1 .  Available estimation commands for various analyses 

Data type 
Linear 

Nonlinear LS 
Binary 

Multinomial 

Estimation command 
regress, cnreg, areg, treatreg, ivregress, qreg, boxcox, frontier, 

mvreg, sureg, reg3, xtreg, xtgls, xtrc, xtpcse, xtregar, 
xtmixed, xtivreg, xthtaylor, xtabond, xtfrontier 

nl 

logit, logistic, probit, cloglog, glogi� slogit, hetpro� 
scobi t, ivprobi t, heckprob, xtlogi t, xtprobi t, xtcloglog 

mlogi t, clogi t, asclogi t, nlogi t, ologi t, rologi t, asroprobi t, 
mprobit, asmprobit, oprobit , biprobit 

Censored normal tobit, intreg, cnsreg, truncreg, ivtobit, xttobit, xttintreg 

Selection normal trea treg, heckman 

Durations stcox, streg 

Counts poisson, nbreg, gnbreg, zip, .zinb, ztp, ztnb, xtpoisson, xtnbreg 

313 
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Chapter 1 1  then presents methods to fit a nonlinear model when no Stata com­
mand is available for that model. The discussion of model-specific issues-particularly 
specification tests that are an integral part of the modeling cycle of estimation, spec­
ification testing, and reestimation-is deferred to chapter 12 and the model-specific 
chapters 14-18. 

10 .2  Nonlinear example: Doctor visits 

As a nonlinear estimation example, we consider Poisson regression to model count data 
on the number of doctor visits. There is no need to fi rst read chapter 16 on count data 
because we provide any necessary backgTound here. 

Although the outcome is discrete, the only difference this makes is in the choice 
of log density. The poisson command is actually not restricted to counts and can be 
applied to any variable y � 0. All the points made with the count-data example could 
equally well be made with, for example, duration data on completed spells modeled by 
the exponential distribution and other models. 

10.2.1 Data description 

We model the number of office-based physician visits (docvis) by persons in the United 
States aged 25-64 years, using data from the 2002 Medical Expenditure Panel Survey 
(MEPS). The sample is the same as that used by Deb, Munkin, and Trivedi (2006). It 
excludes those receiving public insurance (Medicare and Medicaid) and is restricted to 
those working in the private sector but who are not self-employed. 

The regressors used here are restricted to health insurance status (private), health 
status (chronic), and socioeconomic characteristics (female and income) to keep Stata 
output short. We have 

• Read in dataset , select one year of data,  and describe key variables 
0 use mus10dataodta, clear 

o keep if year02==1 
(25712 observations deleted) 
0 describe docvis private chronic female income 

storage display value 
voriable name type format label variable label 

doc vis int I.SoOg number of doctor visits 
private byte I.SoOg = 1 if private insurance 
chronic byte /.6 o 0g  = 1 if a chronic condition 
female byte /.S oOg  = 1 if female 
income float /.9o0g Income in $ I 1000 
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We then summarize the data: 

• Summary of key variables 
summarize docvis private chronic female income 

Variable Obs Mean Std. Dev. Min Max 

doc vis 4412 3 . 957389 7 . 947601 0 134 
private 4412 .7853581 . 4 106202 0 1 
chronic 4412 .3263826 .4689423 0 
female 4412 .4718948 . 4992661 0 
income 4412 34. 34018 29. 03987 -49.999 280.777 

The dependent variable is a nonnegative integer count, here ranging from 0 to 134. 
Thirty-three percent of the sample have a chronic condition, and 47% are female. We 
use the whole sample, including the three people who have negative income (obt<:�ined 
by using the tabulate income command).  

The relative frequencies of docvis, obtained by using the tabulate docvis com­
mand, are 36%, 16%, 10%, 7%, and 5% for , respectively, 0, 1, 2, 3, and 4 visits. 
Twenty-six percent of the sample have 5 or more visits. 

10.2.2 Poisson model description 

The Poisson regression model specifies the count y to have a conditional mean of the 
exponential form 

E(ylx) = exp (x',8) ( 1Cl. 1) 

This ensures that the conditional mean is positive, which should be the case for any ran­
dom variable that is restricted to be nonnegative. However, the key ME 8E(ylx)j8xj = 
f]i exp(x' !3) now depends on both the parameter estimate f]i and the particular value 
of x at which the ME is evaluated; see section 10.6. 

The starting point for count analysis is  the Poisson distribution, with the probability 
mass function f(yjx) = e�IJ.p.Y jy! .  Substituting in J.L; = exp(<!3) from (10 .1 )  gives the 
conditional density for the ith observation. This in turn gives the log-likelihood fLmc­
tion Q(/3) = L:;;:1 { - exp (x;!3) + y;x�/3 - ln y; ! } ,  which is maximized by the maximum 
likelihood estimator (MLE). The Poisson MLE solves the associated first-order conditions 
that can be shown to be -.;;;:-- N I 

L..,i=l {y; - exp(X;/3) }x; = 0 (10 .2) 

Equation (10.2) has no explicit solution for ;3. Instead, {3 is obtained numerically by 
using methods explained in chapter 1 1 .  

What if the Poisson distribution is the wrong distribution for modeling doctor visits? 
In general, the MLE is inconsistent if the density is misspecified. However, the Poisson 
MLE requires only the much weaker condition tli at the conditional mean function given 
in (10 .1 )  is correctly specified, because then the lefG-hand side of (10.2) has an expected 
value of zero. Under this weaker condition, robust standard errors rather than default 
maximum likelihood (ML) standard errors should be used; see section 10.4.5. 
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10 .3  Nonlinear regression methods 

We consider three classes of  estimators: ML, nonlinear least squares (NLS) ,  and gener­
alized linear models (GLM). All three are examples of m estimators that maximize (or 
minimize) an objective function of the form 

N 

Q(e) = L qi(Yi , x; , e) (10.3) 
i,l 

where y denotes the dependent variable, x denotes regressors (assumed exogenous) , (} 
denotes a parameter vector, and q (·) is a specified scalar function that varies with the 
model and estimator. In the Poisson case, j3 = (}; more generally, j3 is a component of 
e. 

10.3 .1 MLE 

MLEs maximize the log-likelihood function. For N independent observations, the MLE 
8 maximizes 

N 

Q(e) = L ln f(y; lxi , e ) 
i=l 

where f(yix, (}) is  the conditional density, for continuous y , or the conditional probability 
mass function, for discrete y. 

If the density f(y[x, 8) is cm:rectly specified, then the MLE is the best estimator 
to use. It is consistent for (}, it is asymptotically normally distributed, and it is fully 
efficient, meaning that no other estimator of (} has a smaller asymptotic variance­
covariance matrix of the estimator (VCE). 

Of course, the true density is unknown. If f(yix, 8) is incorrectly specified, then 
in general the MLE is inconsistent. It may then be better to use other methods that, 
while not as efficient as the MLE, are consistent under weaker assumptions than those 
necessary for the MLE to be consistent. 

The MLE remains consistent even if the density is misspecified, however, provided 
that 1) the specified density is in the linear exponential family (LEF) and 2) the func­
tional form for the conditional mean E(yix) is correctly specified. The default estimate 
of the VCE of the MLE is then no longer correct, so we base the inference on a robust 
estimate of the VCE. Examples of the LEF are Poisson and negative binomial (with a 
known dispersion parameter) for count data, Bernoulli for binary data (including logit 
and probit ) ,  one-parameter gamma for duration data (including exponential), normal 
(with a known variance parameter) for continuous data, and the inverse Gaussian. 

The term quasi-MLE, or pseudo-MLE, is used when estimation is by ML, but subse­
quent inference is done without assuming that the density is correctly specified. 
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The ml command enables ML estimation for user-defined likelihood functions; see 
sections 1 1 . 4-1 1 .6. For commonly used models, this is not necessary, however, because 
specific Stata commands have been developed for specific models. 

10.3.2 The poisson command 

For Poisson, the ML estimator is obtained by using the poisson command. The syntax 
of the command is 

poisson depvar [ indepvars ] [ if ]  [ in ]  [ weight ] [ , options ] 

This syntax is the same as that for regress. The only relevant option for our an?lysis 
here is the vee ( )  option for the type of estimate of the VCE. 

The poisson command with the vee (robust) option yields the following results 
for the doctor-visits data. As already noted, to restrict Stata output, we use far fewer 
regressors than should be used to model doctor visits. 

. * Poisson regression (command poisson) 

. poisson docvis private chronic female income , v ce (robust) 
Iteration 0 :  log pseudolikelihood = -18504 .413 
Iteration 1 :  log pseudolikelihood = -18503.549 
Iteration 2 :  log pseudolikelihood = -18503. 549 
Poisson regression 

Log pseudolikelihood = -18503.549 

Robust 
docvis Coef. Std. Err. z 

private .7986652 . 1  090014 7 .33  
chronic 1 . 091865 . 0559951 19 .50  

female .4925481 . 0585365 8 . 4 1  
income . 003557 . 0010825 3 . 2 9  

cons - . 2297262 . 1 108732 -2 . 07 

Number of obs 
Wald chi2(4) 
P rob > chi2 
Pseudo R2 

P > l z l  [95/. Conf . 

0 . 000 . 5850263 
0 . 000 .9821167 
0 . 000 .3778187 
0 . 001  . 0014354 
0 . 038 - . 4470338 

4412 
594.72 
0. 0000 
0 . 1930 

Interval) 

1 . 012304 
1 . 201614 
. 6072774 
.0056787 

- .  0124186 

The output begins with an iteration log, because the estimator is obtained numerically 
by using an iterative procedure presented in sections 11 .2  and 1 1 . 3 .  In this case, only two 
iterations are needed. Each iteration increases the log-likelihood function, as desired, 
and iterations cease when there was little change in the log-likelihood function. The 
term pseudolikelihood is used rather than log likelihood because use of vee (robust) 
means that we no longer are maintaining that the data are exactly Poisson distributed. 
The remaining output from poisson is remarkably similar to that for regress. 

The four regressors are jointly statistically" significant at 5%, because the Wald 
ehi2(4) test statistic has p = 0.00 < 0.05. The pseudo-R2 is discussed in section 10.7 .1 .  
There is  no ANOVA table, because this table is  appropriate only for linear least squares 
with spherical errors. 
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The remaining output indicates that all regressors are individually statistically sig­
nificant at a level of 0 .05, because all p-values are less than 0.05. For each regressor, 
the output presents in turn: 

Coefficients 
Standard errors 

z statistics 

p-values 

s �  {3, 
Zj = fjj I Sjjj 
Pi = Pr{ lzj I > Oiz1 "" N(O, 1 ) } 

95% confidence intervals fjj ± 1 .96 x s131 

The z statistics and p-values are computed by using the standard normal distribution, 
rather than the t distribution with N - k degrees of freedom. The p-values are for a 
two·sided test of whether {3j = 0. For a one-sided test of H0 : {3j � 0 against {3j > 0, the 
p-value is half of that reported in the table, provided that Zj > 0. For a one-sided test 
of Ho : {3j � 0 against {3j < 0, the p-value is half of that reported in the table, provided 
that Zj < 0 .  

A nonlinear model raises a r.ew issue of interpretation of the slope coefficients {3j . 
For example, what does the value 0.0036 for the coefficient of income mean? Given the 
exponential functional form for the conditional mean in ( 10 . 1 ) ,  it means that a $1 ,000 
increase in income (a one-unit increase in income) leads to a 0.0036 proportionate 
increase, or a 0.36% increase, in doctor visits. We address this important issue in detail 
in section 10.6. 

Note that test statistics following nonlinear estimation commands such as poisson 
are based on the standard normal distribution and chi-squared distributions, whereas 
those following linear estimation commands such as regress, i vregress, and xtreg use 
the t and F distributions. This makes little difference for larger samples, say, N > 100. 

10.3.3 Postestimation commands 

The ereturn list command details the estimation results that are stored in e 0 ;  see 
section 1 .6 .2 . These include regression coefficients in e (b) and the estimated VCE in 
e (V ) .  

Standard postestimation commands available after most estimators are predict, 
predictnl, and mfx for prediction and MEs (this chapter) ; test, testnl, lincom, and 
nlcom for Wald tests and confidence intervals; linktest for a model-specification test 
(chapter 12) ;  and estimates for storing results (chapter 3) .  

· 

The estat vee command displays the estimate o f  the VCE, and the correlation 
option displays the correlations for this matrix. The estat summarize command sum­
marizes the current estimation sample. The esta t ic command obtains information 
criteria (section 10.7.2) .  More command-specific commands, usually beginning with 
esta t, are available for model-specification testing. 
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To find the specific postestimation commands available after a command, e .g . ,  
poisson, see [R] poisson postestimation or type help poisson postestimation. 

10.3.4 NLS 

NLS estimators minjmize the sum o f  squared residuals, so for independent observations, 
the NLS estimator j3 minimizes 

N 

Q(/3) = L {y; - m(x;, {3 )}2 

·i=l 

where m(x,j3) is the specifi.ed functional form for E(yix) , the conditional mean of y 
given x. 

If the conditional mean function is correctly specified, then the NLS estimator is con­
sistent and asymptotically normally distributed. If the data-generating process (DGP) 
is y; = m(x;, {3) + u;, where u; "' N(O, a2 ) , then NLS is fully efficient. If Ui "" [0, a2] ,  
then the NLS default estimate o f  the VCE is correct; otherwise, a robust estimate should 
be used. 

10.3.5 The nl command 

The nl command implements NLS regression. The simplest form of the command di­
rectly defines the conditional mean rather than calling a program or function. The 
syntax is 

nl C depvar..,<sexp>) [ if ] [ in ] [ weight ] [ , options ] 

where <sexp> is a substitutable expression. The only relevant option for our analysis 
here is the vee 0 option for the type of estimate of the VCE. 

The challenge is in defining the expression for the conditional mean exp(x' {3); see 
[R] nl. An explicit definition for our example is the command 

. nl (docvis = exp({private}•private + {chronic}•chronic + {female}•female + 
> {income}•income + {intercept} ) )  
(obs � 4412) 
Iteration 0 :  residual S S  = 251743 . 9  
Iteration 1 :  residual S S  = 242727 . 6  
Iteration 2 :  residual S S = 241818 . 1  
Iteration 3 :  residual S S = 241815.4 
Iteration 4:  residual SS = 241815.4 
Iteration 5: residual ss = 241815.4 
Iteration 6:  residu,al S S = 241815 . 4  
Iteration 7 :  residual S S = 241815 . 4  
Iteration 8 :  residual S S = 241815 . 4  
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Source ss df MS 
Number of obs = 4412 

Model 105898. 644 5 21179. 7289 R-squared 0 . 3046 
Residual 241815.356 4407 54. 870741 Adj R-sq uared = 0 . 3038 

Root MSE 7 . 407479 
Total 347714 4412 78 . 8109701 Res . dev. = 30185.68 

doc vis Coef . Std. Err. t P> l t l  [95/. Conf . Interval) 

/private . 7105104 . 1 170408 6 . 07 0 . 000 . 4810517 . 9399691 
/chronic 1 . 057318 . 0610386 17.32 0 . 000 . 9376517 1 . 176984 

/female .4320224 . 0523199 8 . 26 0 . 000 . 3294491 . 5345957 
/income . 002558 . 0006941 3 . 69 0 . 000 . 0011972 . 0039189 

/intercept - . 0405628 . 1272218 -0 .32 0 .750 - . 2899814 . 2088558 

Here the parameter names are given in the braces, {}. 
The nl coefficient estimates are similar to those from poisson (within 15% for all 

regressors except income) ,  and the nl robust standard errors are 15% higher for female 
and income and are similar for the remaining regressors. 

The model diagnostic statistics given include R2 computed as the model (or ex­
plained) sum of squares divided by the total sum of squares, the root mean squared 
error (MSE) that is the estimate s of the standard deviation O" of the model error, and 
the re::�iclual deviance that i:; a goodnet>s-of-fit mea::�ure used mo::�tly in the GLM literature. 

We instead use a shorter eqc:ivalent expression for the conditional mean function. 
Also the vee (robust) option is used to allow for heteroskedastic errors, and the no log 
option is used to suppress the iteration log. 'vVe have 

• Nonlinear least-squares regression (command nl) 
generate one = 1 
nl (docvis = exp({xb: private chronic female income one}) ) ,  vce (robust) nolog 

(obs = 4412) 
Nonlinear regression Number of obs = 4412 

R-squared 0 . 3046 
Adj R-squared = 0 . 3038 
Root MSE 7 . 407479 
Res. dev. 30185 .68  

Robust 
doc vis Coef . Std. Err. t P> l t l  [95/. Conf . Interval] 

/xb_private . 7105104 . 1086194 6 .  54 0 . 000 . 4975618 . 923459 
/xb_chronic 1 .  057318 . 0558352 18 .94  0 . 000 . 947853 1 . 166783 

/xb_female .4320224 . 0694662 6 . 22 0 . 000 . 2958337 .5682111 
/xb_income . 002558 .0012544 2 . 04 0 . 041 . 0000988 . 0050173 

/xb_one - . 0405628 . 1 126216 -0 .36  0 .  719 - . 2613576 . 180232 

The output is the same except for the standard errors, which are now robust to het­
eroskedasticity. 
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The GLM framework is the standard nonlinear model framework in many areas of  applied 
statistics, most notably, biostatistics. For completeness, we present it here, but we do 
not emphasize its use because it is little used in econometrics. 

GLM estimators are a subset of ML estimators that are based on a density in the LEF, 
introduced in section 10 .3 . 1 .  They are essentially generalizations of NLS, optimal for 
a nonlinear regression model with homoskedastic additive errors, but also appropriate 
for other types of data where not only is there intrinsic heteroskeda.sticity but there is 
a natural starting point for modeling the intrinsic heteroskedasticity. For example, for 
the Poisson the variance equals the mean, and for a binary variable the variance equals 
the mean times unity minus the mean. 

The GLM estimator 8 maximizes the LEF log likelihood 

N 
Q(B) = I)a{m(x; , ,6) }  + b(y.; ) + c{m(x; , ,6) }y.;] 

·1-= l 

where m(x, ,6) = E(y ix ) is the conditional mean of y, different specified forms of the 
functions a( · )  and c(·) correspond to different members of the LEF, and b( . )  is a nor­
malizing constant. For the Poisson, a(J.l) = -J.l and c(J.!) = lnp. 

Given definitions of a(�t) and c(,u), the mean and variance are necessarily E(y ) = 
,u = -a1(J.l)fc'(J.l) and Var(y) = 1/c'(,u) . For the Poisson, a1(J.l) = -1 and c'(J.t) = 1/,u, 
so E(y) = 1 / ( 1/  ,u) = J.l and Var(y) = 1 /c'(J.!) = 1/ ( 1/  J.l) = ,u. This is the variance-mean 
equality property of the Poisson. 

GLM estimators have the important property that they are consistent provided only 
that the conditional mear1 function is correctly specified. This result arises because the 
fi.rst-order conditions oQ(B)/88 = 0 can be written as N- 1 L ;  c'(,u;)(Yi -,u;) (o,uJ8,6) = 
0, where /-l i  = m(x;, , ,6). It follows that estimator consistency requires only that E(y1 -
J.l ; )  = 0, or that E(y dx. )  = m( x.; , .6) .  However, unless the variance is correctly specified 
[i.e. , Var(y) = 1/c'·(J.t)], we should obtain a robust estimate of the VCE. 

10.3.7 The glm command 

The GLM estimator can be computed by using the glm command, which has the synta:x 

glm depvar [ indepvars ] [ if ] [ in ]  [ weight ] [ , options ] 

Important options are family() to define the. particular member of the LEF to be 
considered, and link() where the link function is the inverse of the conditional mean 
function. The family() options are gaussian (n:ormal ) ,  igaussian (inverse Gaussian) ,  
binomial (Bernoulli and binomial) ,  poisson (Poisson), nbinomial (negative binomial ) ,  
and gamma (gamma). 
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The Poisson estimator can be obtained by using the options family(poisson) and 
link (log) .  The link function is the natural logarithm because this is the inverse of the 
exponential function for the conditional mean. We again use the vee (robust) option. 
We expect the same results as those from poisson with the vee (robust) option. We 
obtain 

• Generalized linear models regression for poisson (command glm) 
glm docvis private chronic female income , family(poisson) link(log) 

> vce (robust) nolog 

Generalized linear models 
Optimization ML 

Deviance 
Pearson 

2813 1 . 1 1439 
57126. 23793 

Variance function: V(u) = u 
Link function : g(u) = ln(u) 

No. of obs 
Residual di 
Scale parameter 
(1/ df) Deviance 
(1/df) Pearson 
[Poisson] 
[Log] 

4412 
4407 

1 
6 . 38328 

12.96261 

AIC 
Log pseudolikelihood = -18503. 54883 BIC 

= 8 . 390095 
= -8852 .797 

Robust 
doc vis Coef . Std. Err. z P> l z l  [95/. Conf . Interval] 

private .7986653 . 1090014 7 .33  0 . 000 .5850264 1 . 012304 
chronic 1 .  091865 . 0559951 19 .50  0 . 000 . 9821167 1. 201614 

female .4925481 . 0585365 8 . 4 1  0 . 000 .3778187 . 6072774 
income . 003557 .0010825 3 . 29 0 .  001 . 0014354 . 0056787 
_cons - . 2297263 . 1 108733 -2 . 07 0 .  038 - . 4470339 - . 0124187 

The results are exactly the same as those given in section 10.3.2 for the Poisson quasi­
MLE, aside from additional diagnostic statistics (deviance, Pearson) that are used in 
the GLM literature. Robust standard errors are used because they do not impose the 
Poisson density restriction of variance-mean equality. 

A standard statistics reference is McCullagh and Nelder (1989), Hardin and Hilbe 
(2007) present Stata for GLM, and an econometrics reference that covers GLM in some 
detail is Cameron and Trivedi (1998). 

10.3.8 Other estimators 

The preceding part of this chapter covers most of the estimators used in microecono­
metrics analysis using cross-section data. We now consider some nonlinear estimators 
that are not covered. 

One approach is to specify a linear function for E{h(y) lx} , so E{h(y) ix} = x'(3, 
where h( -) is a nonlinear function. An example is the Box-Cox transformation in 
section 3.5. A disadvantage of this alternative approach is the transformation bias that 
arises if we then wish to predict y or E(yix) . 

Generalized method of  moments (GMM) estimators minimize an objective function 
that is a quadratic form in sums. This is more complicated than the single sum for m 
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estimators given in (10 .3) .  There are no built-in Stata commands for these estimators, 
except in the linear case where explicit formulas for estimators can be obtained and 
i vregress gmm can be used. The optimization ml command is not well-suited to this 
task. An example with computation done using Mata is �iven in section ll .S .  

Nonparametric and semiparametric estimators do not completely specify the func­
tional forms of key model components such as E(ylx). Several methods for nonpara­
metric regression of y on a scalar x, including the lowess command, are presented in 
section 2.6 .6 . · 

10.4 Different estimates of the VCE 

Given an estimator, there are several different standard methods for computation of 
standard erTors and subsequent test statistics and confidence intervals.The most com­
monly used methods yield default , robust, and cluster-robust standard errors. This 
section extends the results in section 3.3 for the OLS estimator to nonlinear estimators. 

10.4.1 General framework 

We consider inference for the estimator 8 of a q x 1 parameter vector 8 that solves the 
q equations 

(10.4) 

where g;(-) is a q x 1 vector. For m estimators defined in section 10.3, differentiation of 
objective function (10.3) leads to first-order conditions with g;(fJ) = oq;(y; ,x; , fJ)/88. 
It is assumed that 

a condition that for standard estimators is necessary and sufficient for consistency of 
e. This setup covers most models and estimators, with the notable exception of the 
overidentified two-�tage least-squares and GMM estimators presented in chapter 6. 

Under appropriate assumptions, i t  can be shown that 

8 � N{e,  Var(e) } 

where Var(e) denotes the (asymptotic) VCE. Furthermore , 

where H;(fJ) = og;/88'. This general expression for Var(e) is said to be  of "sandwich 
form" because it can be written as A - 1BA'- 1 ,  .with B sandwiched between A -1 and 
A'- 1 .  OLS is a special case with gi(/3) = x�u; = x�(Yi - x�/3) and H;(,6) = x;x�. 

We wish to obtain the estimated asymptotic 
·
variance matrix V(e), and the associ­

ated standard errors, which are the square roots of the diagonal entries of V(e). This 
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obviously entails replacing 8 with e. The first and third matrices in (10 .5) can be 

estimated using A = �i �(lh But estimation of E { �i I::j g;( fJ)gj(  8) '} requires 
additional distributional assumptions, such as independence over i�and E.ossibly a func­
tional form for E {g,(fJ)g;(8)'} . [Note that the obvious 2::; I::j g;(fJ)gj(fJ)' = 0 because 

from (10.4) 2::; g;(e) = o.] 

10.4.2 The vee() option 

Different assumptions lead to different estimates of the VCE. They are obtained by 
using the vee (vcetype) option for the estimation command being used. The specific 
vcetype(s) available varies with the estimation command. Their formulas are detailed 
in subsequent sections. 

For the poisson command, many vcetypes are supported. 

The vee (oim) and vee (opg) options use the DGP assumptions to evaluate the ex­
pectations in (10.5) ;  see section 10.4.4. The vee (oim) option is the default. 

The vce (robust) and vee( cluster clustvar) options use sandwich estimators that 
do not use the DGP assumptions to explicitly evaluate the expectations in (10.5). The 
vee (robust) option assumes independence over i. The vee (cluster clustvar) option 
permits a limited form of correlation over i, within clusters where the clusters are 
independent and there are many clusters; see section 10.4.6. For commands that already 
control for clustering, such as xtreg, the vce (robust) option rather than vee(cluster 
clustvar) provides a cluster-robust estimate of the VCE. 

The vce(bootstrap) and vce( j ackknife) options use resampling schemes that 
make limited assumptions on the DGP similar to those for the vee (robust) or 
vce(cluster clustvar) options; see section 10.4.8. 

The various vee ( )  options need to be used with considerable caution. Estimates of 
the VCE other than the default estimate are used when some part of the DGP is felt to 
be misspecified. But then the estimator itself may be inconsistent. 

10.4.3 Application of the vee() option 

For count data, the natural starting point is the MLE, assuming a Poisson distribution. 
It can be shown that the default ML standard errors are based on the Poisson distri­
bution restriction of variance-mean inequality. But in practice, count data are often 
"overdispersed" with Var(ylx) > exp(x' (3), in which case the default ML standard errors 
can be shown to be biased downward. At the same time, the Poisson MLE can be shown 
to be consistent provided only that E(y ix) = exp(x' (3) is the correct specification of the 
conditional mean. 
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These considerations make the Poisson MLE a prime candidate for using vee (robust) 
rather than the default. The vce (cluster clustvar) option assumes independence 
over clusters, however clusters are defined, rather than independence over i. The 
vee (bootstrap) estimate is asymptotically equivalent to the vee (robust) estimate. 

For the Poisson MLE, it can be shown that the default, robust, and cluster�robust 
estimates of the VCE are given by, respectively, 

where gc = Li:iEc (Yi - e=<i3):x:;., and c = 1 ,  . . . , C denotes the cl�ters. 

Implementation is straightforward, except that in this example there is no natural 
reason for clustering. For illustrative purposes, we cluster on age, in which case we are 
assuming correlation across individuals of the same age, and independence of individuals 
of different age. For the bootstrap, we first set the seed, for replicability, and set the 
number of replications at 400, considerably higher than the Stata default. We obtain 

* Different VCE estimates after Poisson regression 
quietly poisson docvis private chronic female income 
est]mates store VCE_oim 
quietly poisson docvis private chronic female income , vce (opg) 
estimates store VCE_opg 

quietly poisson docvis private chronic female income , vce(robust) 
estimates store VCE_rob 

quietly poisson docvis private chronic female income , vce(cluster age) 
estimates store VCE_clu 
set seed 10101 

quietly poisson docvis private chronic female income , vce(boot,reps(400)) 
estimates store VCE_boot 

estimates table VCE_oim VCE_opg VCE_rob VCE_clu VCE_boot, b(/.8.4f)  se 

Variable VCE_oim VCE_opg VCE_rob VCE_clu VCE_boot 

private 0 .  7987 0. 7987 0 . 7987 0. 7987 0 . 7987 
0 . 0277 0 . 0072 0 . 1090 0 . 1496 0 . 1100 

chronic 1 . 0919 1 . 0919 1 . 0919 1 . 0919 1 . 0919 
0. 0158 0 . 0046 0 . 0560 0 . 0603 0 . 0555 

female 0 . 4925 0 . 4925 0 . 49:25 0 . 4925 0 . 4925 
0 . 0160 0 . 0046 0 . 0585 0 . 0686 0 . 0588 

income . 0 . 0036 0 . 0036 0 . 0036 0 . 0036 0 . 0036 
0 . 0002 0 . 0001 o . o o 1i. 0 . 0012 0 . 0011 

cons - 0 . 2297 - 0 . 2297 -0 . 2297 - 0 . 2297 -0. 2297 
0 . 0287 0 . 0075 0 . 1109 0 . 1454 0 . 1120 

legend: b/ se 
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The first two ML-based standard errors, explained in section 10.4.4, are very different . 
This indicates a problem with the assumption of a Poisson density. The third column 
robust standard errors are roughly four times the first column default standard errors. 
This very large difference often happens when fitting Poisson models. For other esti­
mators, the difference is usually not as great. In particular, for OLS, robust standard 
errors are often within 20% (higher or lower) of the default. The fourth column cluster­
robust standard errors are 8-37% higher than the robust standard errors. In other 
applications, the difference can be much larger. The fifth column bootstrap standard 
errors are within 1%  of the third column robust standard errors, confirming that they 
are essentially equivalent. 

In this example, it would be misleading to use the default standard errors. We 
should at least use the robust standard errors. This requires relaxing the assumption 
of a Poisson distribution so that the model should not be used to predict conditional 
probabilities. But, at least for the Poisson MLE, (3 is a consistent estimate provided 
that the conditional mean is indeed the specified exp(x' {3). 

10.4.4 Default estimate of the VCE 

I f  no option is used, then we obtain "default" standard errors. These make the strongest 
assumptions, essentially that all relevant parts of the DGP are specified and are specified 
correctly. This permits considerable simplification, not given here, that leads to the 
sandwiched form A - 1 BA'- 1 simplifying to a multiple of A -l . 

For the MLE (with data independent over i) , i t  i s  assumed that the density is  correctly 
specifi.ed. Then the information matri.""< equality leads to simplification so that 

The default vee (oim) option, where oim is an acronym for the observed information 
matrix, gives this estimate of the VCE for Stata ML commands. Although it goes under 
the name vce(ols ) ,  this estimator is also the default for regress, yielding Vdef({3) = 
s2 (l:i xi:<r 1 with s2 = l:i Uf f(N - K). 

The vee Cop g) option gives an alternative estimate, called the outer-product of the 
gradient estimate: 

ifopg (B) = {I:i gi (O)gi (a) '} - l  

This is  asymptotically equivalent t o  the default estimate if the density i s  correctly 
specified. 

10.4.5 Robust estimate of the VCE 

The vee (robust) option to Stata cross-section estimation commands calculates the 
sandwich estimate under the assumption of independence. Then E{l:i I:j gi(8)gj (8 ) ' }  
= E{l:i gi(8)gi (8 ) ' } ,  leading to the VCE robust estimate 
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where ii; = H.,(B) and gi = g; (B) . In some special cases,'such as NLS, Hi is replaced by 
the expected Hessian E(Hi) evaluated at B. The factor N /(N - q) in the middle term 
is an ad hoc degrees of freedom analogous to that for the linear regression model with 
independent and identically distributed normal errors. This estimator is a generalization 
of similar results of Huber (1965) for the MLE and the heteroskedasticity-consistent 
estimate of White ( 1980) for the OLS estimator. It is often called heteroskedasticity­
robust rather than robust. 

The vee (robust) option should be used with caution. It is robust in the &ense 
that, unlike default standard errors, no assumption is made about the functional form 
for E{gi(e)g.(e)'} .  But if E{g;(O)g;(e)'} is misspecified, warranting use ·of robust 
standard errors, then it may also be the case that E{g; (e)} 1- 0. Then we have the 
much more serious problem of 0 being inconsistent for e. For example, the tobit MLE 
and the MLE for any other parametric model with selection or truncation becomes 
inconsistent as soon as any distributional assumptions are rela.xed. The only advantage 
then of using the robust estimate of the VCE is that it does give a consistent estimate 
of the VCE. However, it is the VCE of an inconsistent estimator. 

There are, however, some commonly used estimators that maintain consistency un­
der relatively weak asstunptions. ML and GLM estimators based on the LEF (see sec­
tion 10.3 .1) require only that the conditional mean function be correctly specified. IV 
estimators are consistent provided only that a valid instrument is used so that the model 
error ui and instrument vector z; satisfy E{u;lz;} = 0. 

The preceding discussion applies to cross-section estimation commands. For panel 
data or clustered data, xt commands such as xtreg with the vee (robust) option 
produce a cluster-robust estimate of the VCE . 

.. . 
10.4.6 Cluster-robust estimate of the VCE 

A common alternative to independent observations i s  that observations fall into clusters, 
where observations in different clusters are independent, but observations within the 
same cluster are no longer independent. For example, individuals may be grouped 
into villages, with correlation within villages but not across villages. Such regional 
groupings are especially important to control for if the regressor of interest, such as a 
policy variable, is invariant within the region. Then, for cross-section estimators, the 
robust estimate of the VCE is incorrect and can be substantially downward biased. 

Instead, we use a cluster-robust estimate of the VCE. The fi.rst-order conditions can 
be summed within cluster and reexpressed as 
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where c denotes the cth cluster, there are C clusters, and gc( 8) = L:i:iEc gi( 8) . The key 
assumption is that E{g,( 8)gj(  8)'} = 0 if i and j are in different clusters. Only minor 
adaptation of the previous algebra is needed, and we obtain 

where Hc(e) = 8gc(8)/88'. This estimator was proposed by Liang and Zeger (1986), 
and the scaling C/(C - 1) is a more recent ad hoc degrees of freedom correction. The 
estimator assumes that the number of clusters C -+ oo. When each cluster has only one 
observation, Vc�us(e) = (N - k/N - l)Vrob(e) , the cluster-robust and robust standard 
errors then differ only by a .small degrees-of-freedom correction. 

This estimator is obtained by using the vce(cluster clustvar) option, where clust­
var is the name of the variable that defines the cluster, such as a village identifier. 
For panel data, or clustered data, xt commands such as xtreg already explicitly allow 
for clustering in estimation, and the cluster-robust estimate of the VCE is obtained by 
using the vce (robust) option rather than the vee (cluster clustvar) option. 

The same caveat as in the robust case applies. It is still necessary that E{gc( 8)} = 0 
to ensure estimator consistency. Essentially, the joint distribution of the gi (8) within 
cluster can be misspecifi.ed, because of assuming independence when there is in fact 
dependence, but the marginal distribution of gi( 8) must be correctly specified in the 
sense that E{g,(8)} = 0 for each component of the cluster. 

10.4_7 Heteroskedasticity- and autocorrelation-consistent estimate of 
the VCE 

Heteroskedasticity- and autocorrelation-consistent (HAC) estimates of the VCE, such 
as the Newey-West ( 1987) estimator, are a generalization of the robust estimate to 
time-series data. This permits some correlation of adjacent observations, up to, say, m 
periods apart. 

HAC estimates are implemented in Stata for some linear time-series estimators, such 
as newey and ivregress. For nonlinear estimators, HAC estimates are available for glm 
by specifying the vee (hac kernel) option, in which case you must tsset your data. 

In microeconometrics analysis, panel data have a time-series component. For short 
panels covering few time periods, there is no need to use HAC estimates. For long panels 
spanning many time periods, there is more reason to use HAC estimates of the VCE. An 
example using the user-written xtscc command is given in section 8.10.6. 

10.4.8 Bootstrap standard errors 

Stata estimation commands with the vce (bootstrap) option provide standard errors 
using the bootstrap, specifically, a paired bootstrap. The default bootstrap assumes 
independent observations and is equivalent to computing robust standard errors, pro-
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vided that the number of bootstraps is large. Similarly, a cluster bootstrap that assumes 
independence across clusters but not within clusters is equivalent to computing cluster­
robust standard errors. 

A related option is vce ( j ackknife) . This can be computationally demanding be­
cause it involves recomputing the estimator N times, where N is the sample size. 

These methods are detailed in chapter 13. In that chapter, we also consider a 
different use of the bootstrap to implement a more refined asymptotic theory that can 
lead to t statistics with better size properties, and confidence intervals with better 
coverage, in finite samples. 

10.4.9 Statistical inference 

Given a method to estimate the veE, we can compute standard errors, t statistics, 
confidence intervals, and Wald hypothesis tests. These are automatically provided by 
estimation commands such as poisson. Some tests-notably, likelihood-ratio tests­
are no longer appropriate once DGP assumptions are relaxed to allow, for example, a 
robust estimate of the VCE. 

More complicated statistical inference can be performed by using the test, testnl, 
lincom, and nlcom commands, which are detailed in chapter 12. 

10.5 P rediction 

In this section, we consider prediction. Most often, the prediction is one of the condi­
tional mean E(y [x) . This can be much more precisely predicted than can the actual 
value of y given x. 

10.5 . 1  The predict and predictni commands 

A new variable that contains the prediction for each observation can be obtained by 
using the postestimation predict command. After single-equation commands, this 
command has the syntax 

predict [ type J newvar [ if J [ in J [ , options J 

The prediction is stored as the variable newvar and is of the data type type, the default 
being single precision. The type of prediction desired is defined with options, and 
several different types of prediction are usually available. The possibilities vary with 
the preceding estimation command. 

After poisson, the key option for the predict. command is the default n option. This 
computes exp(x�,6) , the predicted expected number of events. The xb option calculates 
the linear prediction x;,6, and stdp calculates { x:v(,6)x.J1 12 ,  the standard error of 
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:<�. The score option calculates the derivative of the log likelihood with respect to 
the linear prediction. For the Poisson MLE, this is Yi - exp (x£,6) and can be viewed as 
a Poisson residual. 

The predictnl command enables the user to provide a formula for the prediction. 
The synta.'< is 

predictnl [ type ] newvar=pnLexp [ if ]  [ in ]  [ , options J 
where pnLexp is an expression that is illustrated in the next section. The options 
provide quantities not provided by predict that enable Wald statistical inference on 
the predictions. In particular, the s e (newvar2) option creates a new variable containing 
standard errors for the prediction newvar for each observation. These standard errors 
are computed using the delta method detailed in section 12.3.8. Other options include 
variance ( ) , waldO ,  p O ,  and c i ( ) .  

The predict and predictnl commands act on the currently defined sample, with 
the if and in qualifi.ers used if desired to predict for a subsample. It is possible to 
inadvertently predict using a sample different from the estimation sample. The if 
e (sample) qualifier ensures that the estimation sample is used in prediction. At other 
times, it is desired to deliberately use estimates from one sample to predict using a 
different sample. This can be done by estimating with one sample, reading a new 
sample into memory, and then predicting using this new sample. 

10.5 .2 Application of predict and predictnl 

The predicted mean number of doctor visits for each individual in the sample can be 
computed by using the predict command with the default option. We use the if 
e (sample) qualifier to ensure that prediction is for the same sample as the estimation 
sample. This precaution is not necessary here but is good practice to avoid inadvertent 
error. We also obtain the same prediction by using predictnl with the se () option to 
obtain the standard error of the prediction. We obtain 

• Predicted mean number of doctor visits using predict and predictnl 
quietly poisson docvis private chronic female income , vce(robust) 

predict muhat if e (sample ) , n 
predictnl muhat2 = exp(_b [privatel •private + _b[chronic]• chronic 

> + _b[female]•female + _b [income] • income + _b[_cons] ) ,  s e (semuhat2) 

summarize docvis muhat muhat2 semuhat2 
Variable Dbs Mea.n Std. Dev. Min Max 

doc vis 4412 3 . 957389 7 . 947601 0 134 
muhat 4412 3 . 957389 2 . 985057 . 7947512 1 5 . 48004 

muhat2 4412 3. 957389 2 . 985057 . 7947512 15 . 48004 
semuhat2 4412 .2431483 . 1980062 .0881166 3 . 944615 
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Here the average of the predictions of E(yix) is 3 .957, equal to the average of the y 
values. This special property holds only for some estimators-OLS, just-identified linear 
IV, Poisson, logit, and exponential (with exponential conditional mean)-provided that 
these models include an intercept. The standard deviation of the predictions is 2.985, 
less than that of y. The predicted values range from 0.8 to 15.5 compared with a sample 
range of 0-134. 

The model quite precisely estimates E(yix) ,  because from the last row the standard 
error of exp (x�fJ) as an estimate of exp(x�,t3) is relatively small. This is not surprising 
because asymptotically i3 .!_, (3, so exp(x�fJ) .!!.., exp(x�,t3). Much more difficult is using 
exp(x�fJ) to predict y;lx; rather than E(y; ix;) ,  because there is always intrinsic ran­
domness in y.;. In our example, Yi without any regression has a standard deviation of 
7.95. Even if Poisson regression explains the data well enough to reduce the standard 
deviation of y.; lx.; to, say, 4, then any prediction of Y; lx.; will have a standard error of 
prediction of at least 4 .  

More generally, with microeconometric data and a large sample, we can predict the 
conditional mean E(y;lx;) well but not y.,lx;. For example, we may predict well the 
mean earnings of a white female with 12 years of schooling but will predict relatively 
poorly the earnings of a randomly chosen white female with 1 2  years of schooling. 

When the goal of prediction is to obtain a sample average predicted value, the sample 
average prediction should be a weighted average. To obtain a weighted average, specify 
weights with summarize or with mean; see section 3. 7. This is especially important if 
one wants to make statements about the population and sampling is not simple random 
sampling. 

10.5.3 Out-of-sample; prediction 

Out-of-sample prediction is possible. For example, we may want to make predictions 
for the 2001 sample using parameter estimates from the 2002 sample. 

The current estimates are those from the 2002 sample, so we just need to read the 
2001 sample into memory and use predict. We have 

• Out-of-sample prediction for year01 data using year02 estimates 
use mus 10data . dta, clear 
quietly poisson docvis private chronic female income if year02==1 , vce (robust) 
keep if year01 c =  1 

(23940 observations deleted) 

predict muhatyear01 ,  n 
summarize docvis muhatyear01 

Variable 

docvis 
muhatyear01 

Obs 

6184 
6184 

Mea.n . Std. Dev. Min Max 

3 .  896345 7 .  87 3603 0 152 
4 .  086984 2. 9 63843 . 794 7512 15. 02366 

Note that the average of the predictions of E(yJ x), 4.09, no longer equals the average 
of the y values. 
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10.5.4 Prediction a t  a specified value of one of the regressors 

Suppose we want to calculate the sample average number of doctor visits if all individuals 
had private insurance, whereas all other regressors are unchanged. 

This can be done by setting private = 1 and using predict. To return to the 
original data after doing so, we use the commands preserve to preserve the current 
dataset and restore to return to the preserved dataset. vVe have 

• Prediction at a particular value of one of the regressors 
use mus10data.d ta, clear 

keep if year02 = =  1 
(25712 observations deleted) 

quietly poisson docvis private chronic female income , vce (robust) 

. preserve 
. replace private = 1 
(947 real changes made) 

predict muhatpeq1, n 
summarize muhatpeq1 

Variable Obs Mean Std. Dev. Min Max 

muhatpeq1 
restore 

4412 4 . 371656 2 . 9 27381 1 . 766392 15. 48004 

The conditional mean is predicted to be 4.37 visits when all ha.ve private insurance, 
compared with 3.96 in the sample where only 78% had private insurance. 

10.5.5 Prediction at a specified value of al l the regressors 

We may also want to estimate the conditional mean at a given value of all the regressors. 
For example, consider the number of doctor visits for a privately insured woman with 
no chronic conditions and an income of $10,000. 

To do so, we can use the lincom and nlcom commands. These commands compute 
point estimates for linear combinations and associated standard errors, z statistics, p­
values, and confidence intervals. They are primarily intended to produce confidence 
intervals for parameter combinations such as {33 - !34 and are presented in detail in 
chapter 12.  They can also be used for prediction, because a prediction is a linear 
combination of the parameters. 

We need to predict the expected number of doctor visits when private 1 ,  
chronic = 0 ,  female = 1 ,  and income = 10. The nlcom command has the form 

. nlcom exp(_b[_cons] +_b [private}•1+_b[cbronic} •O+_b [female] • 1+_b[income] •10) 

_nl_ 1:  exp(_b[_cons]+_b[private] • 1+_b[chronic] •O+_b[female] •1+ 
> _b[income] •10) 

docvis 

nl 1 

Coef . Std. Err. 

2 . 995338 . 1837054 

z P> l z l  

16 .31  0 .000  

[95% Conf. Interval] 

2 . 635282 3 . 355394 
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A simpler command for our example uses lincom with the eform option to display the 
exponential. Coefficients are then more simply referred to as private, for example, 
rather than _b [private] . We have 

. * Predict at a specified value of all the regressors 

. lincom _cons + private*1 + chronic*O + female*1 + i.ncome* 10 , eform 

( 1) [docvis]private + [docvis]female + 10 [docvislincome + [docvis] _cons = 0 

doc vis 

( 1 )  

exp(b) S t d .  Err. 

2 . 995338 . 1837054 

z P> l z l  

17 .89  0 . 000 

[95/. Conf . Interval] 

2 . 656081 3 . 377929 

The predicted conditional mean number of doctor visits is 3.00. The standard error of 
the prediction is 0.18 and a 95% confidence interval is [2.66, 3.38]. The standard error 
is computed with the delta method, and the bounds of the confi!ience interval depend 
on the standard error; see section 12.3.8. The test against a value of 0 is not relevant 
here but is relevant when lincom is used to test linear combinations of parameters. 

The relatively tight confidence interval is for exp(x',6) as an estimate of E(yjx) = 
exp(x'/3). If instead we want to predict the actual values ofy given x, then the confidence 
interval will be much, much wider, because we also need to add in variation in y around 
its conditional mean. There is considerable more noise in the prediction of the actual 
value than in estimating the conditional mean. 

10.5.6 Prediction of other quantities 

We have focused on prediction of the conditional mean. Options of the predict com­
mand provide predictioiJ. of other quantities of interest, where these quantities vary 
with the estimation command. Usually, one or more residuals are available. Following 
poisson, the predict option score computes the residual Yi - exp(x:/3 ) .  An example 
of more command-specific predictions are those following the survival data command 
streg to produce not only mean survival time but also median survival time, the hazard, 
and the relative hazard. 

For a discrete dependent variable, it can be of interest to obtain the predicted prob­
ability of each of the discrete values, i .e . ,  Pr(y; = 0), Pr(yi = 1 ) ,  Pr(y; = 2) ,  . . . . For 
binary logit and probit, the default option of predict gives Pr(y., = 1 ) .  For the use 
of predict in multinomial models, see chapter 15 .  For count models, predict does 
not have an option to compute predicted probabilities, but the user-written prcounts 
command does; see chapter 17. 

10.6 Marginal effects 

An ME, or partial effect, most often measures tl:le effect on the conditional mean of y 
of a change in one of the regressors, say, Xj . In the linear regression model, the ME 
equals the relevant slope coefficient, greatly simplifying analysis. For nonlinear models, 
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this is no longer the case, leading to remarkably many different methods for calculating 
MEs. Also other MEs may be desired, such as elasticities and effects on conditional 
probabilities rather than the conditional mean. 

10.6.1 Calculus and finite-difference methods 

Calculus methods can be applied for a continuous regressor, and the ME of the jth 
regressor is then 

CiE(yix = x* ) ME · = -.....:.:::..'------'-1 OXj 
For the Poisson model with E(yix) = exp(x',!3), we obtain MEj = exp(x*' (3)f3J . This 
ME is not simply the relevant parameter !31, and it varies with the point of evaluation 
x* . 

Calculus methods are not always appropriate. I n  particular, for an indicator variable ,  
say, d, the relevant ME is the change in the conditional mean when d changes from 0 to 
1. Let x = (z d), where z denotes all regressors other than the jth, which is an indicator 
variable d. Then the finite-difference method yields the ME 

MEj = E(y lz = z• , d = 1) - E(ylz = z* , d = 0)  

For the linear regression model, calculus and finite-difference methods give the same 
result. For nonlinear models, this is no longer the case. Interpretation of coefficients in 
nonlinear models is clearly not as straightforward as in linear models. 

Even for continuous regressors, we may want to consider discrete changes, such as 
the impact of age increasing from 40 to 60. Letting x = (z w) , the finite-difference 
method uses 

MEj = E(ylz = z*, w = 60) - E(ylz = z'" ,  w = 40) 

A common change to consider is an increase of one standard deviation from the sample 
mean value of the regressor of interest. 

Finally, as for linear models, interactions in regressors lead <;,o additional complica­
tions. 

10.6.2 M Es estimates AME, MEM, and MER 

For nonlinear models, the M E  varies with the point o f  evaluation. Three common choices 
of evaluation are 1) at sample values and then average, 2) at the sample mean of 
the regressors, and 3) at representative values of the regressors. We use the following 
acronyms, where the first two follow �artus (2005): 

AME Average marginal effect 
MEM Marginal effect at mean 
MER Marginal effect at a representative value 

Average of ME at each x = Xi 
ME at x = X  
ME at X = x• 
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AME can be computed by using the user-written margeff command following some 
estimation commands .. MEM and MER can be computed by using the postestimation 
mfx command. 

10.6.3 Elasticities and semielasticities 

The impact of changes in a regressor on the dependent variable can also be measured 
by using elasticities and semielasticities. 

For simplicity, we consider a scalar regressor x, and the effect of a change in x on 
E(y!x) , which we write more simply as y. Then the ME using finite-difference or calculus 
methods, respectively, is given by 

/::,.y oy ME = - = -
/::,.x ox 

This measures the Change in y associated with a one-unit change in x. 

An elasticity instead measures the proportionate change in y associated with a given 
proportionate change in x. More formally, the elasticity s is given by 

/::,.yjy /::,.y X Oy X X e = --- = - X - = - X - = ME X -
/::,.xjx /::,.x y ox y y 

(10.6) 

For example, if y = 1 + 2x, then oyjox = 2 and the elasticity at X =  3 equals 2 X 3/7 = 
6/7 = 0.86. This can be interpreted as follows: a 1% increase in x is associated with a 
0.86% increase in y. 

Elasticities can be more useful than MEs, because they are scale-free measures. For 
example, suppose we estimate that a $1 ,000 increase in annual income is associated 
with 0 . 1  more doctor vishs per year. ·whether this is a large or small effect depends on 
whether these changes in income and doctor visits are large or small. Given knowledge 
that the sample means of income and doctor visits are, respectively, $34,000 and 4, the 
elasticity s = 0.1 x 34/4 = 0.85. This is a large effect. For example, a 10% increase in 
income is associated with an 8.5% increase in doctor visits. 

A semielasticity is a hybrid of an ME and an elasticity that measures the propor­
tionate change in y associated with a one-unit change in x. The semielasticity is given 
by 

t:,.yfy �::,.y 1 oy 1 1 
-- = - X - = - X - = ME X -

/::,.x /::,.x y ox y y 
(10. 7) 

For the preceding example, the semielasticity is 0.1/4 = 0.025, so a $1,000 increase in 
income (a one-unit change given that income is measured in thousands of dollars) .is 
associated with a 0.025 proportionate increase, or a 2 .. 5% increase, in doctor visits. 

Less used is the unit change in y associated with a proportionate change in x, given 
by 

t:,.y /::,.y oy 
-- = - X X = - X X = ME X X 
!::,.x/x /::,.x ox 

(10.8) 
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These four quantities can be computed by using various options of the mfx command, 
given in section 1 0.6.5. An illustration is given in section 10.6.9 .  

10.6.4 Simple interpretations of coefficients in single-index models 

In nonlinear models, coefficients are more difficult to interpret because now /3j I= 
CiE(yix)jCixj. Nonetheless, some direct interpretation is possible if the conditional 
me;,m is of the single-index form 

E(ylx) = m(x'(3) 

This single-index form implies that the ME is 

MEj = m' (x' (3) X (3J (10 .9) 

where m'(x' (3) denotes the derivative of  m(x' (3) with respect to x! (3. 

Two important properties follow. First, if m(x'(3) is monotonically increasing, so 
m'(x'(3) > 0 always, then the sign of jJJ gives the sign of the ME (and if m(x'(3) is 
monotonically decreasing the sign of jJi is the negative of that of the ME). Second, for 
any function m( · )  and at any value of x, we have 

Therefore, if one coefficient is twice as big as another, then so too is the ME. These 
two properties apply to most commonly used nonlinear regression models, aside from 
multinomial models. 

For example, from section 10.3.2 , the regressor private has a coefficient of 0.80 and 
the regTessor chronic has a coefficient of 1 .09. It follows that having a chronic condition 
is associated with a bigger change in doctor visits than having private insurance, because 
1.09 > 0.80. The effects for both regressors are positive because the coefficients are 
positive, and the conditional mean exp(x' (3) is a monotonically increasing function. 

Addi tiona! interpretation of coefficients can be possible for specifi c single-index mod­
els. In particular, for the exponential conditional mean exp(x' (3) , the MEj = E(ylx) x/3 i· 
So ,Bi = ME i/ E(ylx), and from (10.  7) the regression coefficients can be interpreted as 
semielasticities. From section 10.3.2 ,  the regressor income has a coefficient of 0.0036. 
It follows that a $1,000 increase in income (a one-unit increase in the rescaled regres­
sor income) is associated with a 0.0036 proportionate increase, or a 0.36% increase, in 
doctor visits. 

Using instead the fi.nite-difference method, a one-unit change in Xj implies x' (3 
changes to x'(3 + (3) !  so MEj = exp(x'(3 + ,Bi ) - exp(x'(3) = (ei3' - 1) exp(x'(3). This is 
a proportionate increase of (ei31 - 1 ) ,  or a percentage change of 100 x (ei3' - 1) .  
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The postestimation mfx command computes MES and their standard errors. The syntax 
is 

mfx [ compute )  [ if J [ in )  [ , options ] 

Usually, the syntax is simply mfx [ ,  options J .  The command can compute several 
different types of MEs, for several different quantities, for all regressors or a subset of 
regressors. The default is to evaluate at the sample mean x = x, giving the MEM. The 
at ( )  option permits evaluation at specified values of x other than x, giving the MER 
presented in section 10.6.7. 

MEs are computed using the finite-difference method for binary 0/1 regressors and 
calculus methods for other regressors. The nodiscrete option .uses calculus methods 
for all regressors. 

The MEs can be computed as a derivative or as elasticities. MEs and elasticities 
can be computed for any quantity produced by the predict (predict-option) option. If 
predict ( )  is not specified, the default prediction for the previous estimation command 
is used. Let y denote the variable created by the chosen predict.option. Then command 
mfx by default computes the ME oy/ox (option dydx). Other options are eyex for the 
elasticity given in (10 .6) ,  eydx for the semielasticity given in (10 .7) ,  and dyex for the 
quantity given in (10.8) .  

The default is to produce MEs for all regressors. The varlist ( varlist) option instead 
computes for the subset varlist of regressors. 

10.6.6 MEM: Marginal effect at mean 

The mfx command with default settings yields the ME evaluated at the mean for the 
default option of the predict command. After poisson, the default prediction is one 
of E(ylx) ,  so the MEs give the change in the expected number of doctor visits when the 
regressor changes, evaluated at x = x. We have 

* Marginal effects at mean (MEM) using mix defaults 
quietly poisson docvis private chronic female income , vce (robust) 
mix 

Marginal effects after poisson 
y = predicted number of events (predict) 

3 . 0296804 

variable dy/dx Std. Err . z P> l z l  

private* 1 .  978178 . 20441 9 .  68 0 . 000 
chronic* 4 . 200068 . 27941 15 .03  0 . 000 
female* 1 . 528406 . 17758 8 . 6 1  0 . 000 
income . 0107766 . 00331 3 . 25 · O .001 

95/. C . I .  

1 . 57755 2 . 37881 
3 . 65243 4 . 7477 
1 . 18036 1. 87645 

. 00428 . 0 17274 

(*) dy/dx is for discrete change of dummy variable from 0 to 1 

X 

. 785358 

. 326383 

. 471895 
34 . 3402 
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The number of doctor visits increases by 1.98 for those with private insurance and by 
0.01 with a $ 1 ,000 increase in annual income. In this example, the MEs are about three 
times the estimated Poisson coefficients. 

The header reports exp(x',i3) , the predicte� number of doctor visits evaluated at x, to 
equal 3.03. This differs from (1/N) Li exp(x;,a) , the average of the predicted number of 
doctor visits, which from section 10.5.2 equals 3.96. The average of a nonlinear function 
does not equal the nonlinear function evaluated at the average. For similar reasons, we 
will find that the MEM computed here differs from the AME computed below. 

Comparison of calculus and finite-difference methods 

To show that calculus and finite-difference methods can differ considerably, we repeat 
the command with the nodiscrete option, in which case calculus methods are used for 
all variables. We obtain 

. • Marginal effects at mean (MEM) using mfx defaults for all regressors 

. mfx, nodiscrete 
Marginal effects after poisson 

y = predicted number of events (predict) 
3 . 0296804 

variable dy/dx Std. Err. z P> l z l  

private 2 .4197 . 30574 7 . 91 0 . 000 
chronic 3 . 308002 . 17946 18 .43  0 . 000 
female 1 .  492263 . 16759 8 . 90 0 . 000 
income . 0107766 . 00331 3 . 25 0 . 001 

95/. C . I .  X 

1 . 82046 3. 01894 .785358 
2. 95628 3 . 65973 . 326383 
1 . 16378 1 .  82074 .471895 

. 00428 . 017274 34. 3402 

The MEs for the binary regressors change, respectively, from 1.98 to 2.42, 4.20 to 3 .31 ,  
and 1 .53 to 1 .49 .  For binary regressors, the default method uses finite differences, and 
it is conceptually better. 

10.6. 7 MER: Marginal effect at representative value 

The mfx command with the at () option can be used to obtain the ME at a particular 
value of the regTessors. 

As an example, we consider computing the MEs for a privately insured woman with 
no chronic conditions and income of $10,000. We pass the specific values in the order 
of the regressors, here private=! ,  chronic=O, female=1, and income=10. We have 
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. * Marginal effect at representative value (MER) using mfx 

. mfx, at(1 0 1 10) 
Marginal effects after poisson 

y � predicted number of events (predict) 
2 . 9953385 

variable dy/dx Std. Err. z P> l z l  95/. c .  I .  

private* 1 . 647648 . 20728 7 . 9 5  0 . 000 1 .  24138 2 . 05391 
chronic* 5 .  930251 . 40177 14 . 76 0 . 000 5 . 1428 6 . 7177 
female* 1 . 164985 . . 15461 7 . 54 0 . 000 . 861962 1. 46801 
income . 0106545 . 00287 3 . 7 1  0 . 000 .005032 . 016277 

(*) dy/dx is for discrete change of dummy variable from 0 to 1 

X 

0 
1 

10 
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The header gives the predicted number of doctor visits for a privately insured woman 
with no chronic conditions and an income of $ 10,000 to equal 2.995, and the table gives 
the ME for each regressor. 

For example, having private insurance is estimated to increase the number of doctor 
visits by 1.65, with the 95% confidence interval [1 .24, 2.05]. Note that the confidence 
interval is for the change in the expected number of visits E(ylx) .  A confidence interval 
for the change in the actual number of visits (ylx) will be much wider; see the analogous 
discussion for prediction in section 10.5 .2 . 

Related a tO options allow evaluation at a mix of user-provided values and sample 
means and at values given in matrix format; see [R] mfx. 

10.6.8 AME: Average marginal effect 

The user-v<rritten margeff command (Bartus 2005) provides average MEs for a few se­
lected models. 

The basic command synta.x is the same as that for mfx command, though there are 
considerably fewer options. MEs for Pr(y = 1 lx) are computed after commands probi t, 
logi t, logistic, . . cloglog, heckprob, and xtprobi t for binary outcome data. MEs 
for Pr(y = jlx) (j = 1, . . . , m) are computed after the commands oprobi t, ologi t, 
gologit, mlogit, and biprobit for data with m outcomes. MEs for E(ylx) are com­
puted after the commands poisson, nbreg, zip, and zinb for count data. Like mfx, 
the default is to use the finite-difference method for binary 0/1 regressors and calculus 
methods otherwise. 

For the doctor-visits data with an exponential conditional mean and ML estimates, 
we obtain the following: 

(Continued on next page) 
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• Average marginal effect (AME) using margcff 
quietly poisson docvis private chronic female income , vce (robust) 
margeff 

Average marginal effects on E (docvis) after poisson 

docvis Coef . Std. Err. z P> l z l  [95/. Conf. Interval] 

private 2 . 404721 .2438573 9 . 8 6  0 . 000 1 . 926769 2 . 882672 
chronic 4 . 599174 .2886176 1 5 . 94 0 .000  4 . 033494 5 . 164854 

female 1 . 900212 . 2 156694 8 . 8 1  0 .000  1 . 477508 2 . 322917 
income . 0140765 . 004346 3 . 24 0 .  001 . 0055585 . 0225945 

For example, people with private insurance have on average 2.40 more doctor visits 
than those without private insurance afGer controlling for income, gender, and chronic 
conditions. This value is higher than that of 1 .98 obtained by using mfx. Similarly, the 
other MEs increase from 4 .20 to 4 .60, from 1 .53 to 1.90, and from 0.011 to 0.014 .  

The AMEs for single-index models are in practice quite similar to the coefficients 
obtained by OLS regression of y on x. This is the case here because OLS regression, not 
given here, yields coefficients of 1 .92, 4.82, 1 .89, and 0.016. 

For nonlinear models, average behavior of individuals differs from behavior of the 
average individual. The direction of the difference is generally indeterminate, but for 
models with an exponential conditional mean, it can be shown that mfx will produce 
smaller MEs than those from margeff ,  a consequence of the exponential fwtc:tion being 
globally convex. 

The three MES-MEM, MER, and AME-can differ appreciably in nonlinear models. 
Which ME should be used? It is common to use MEM, the default for mfx. For nonlinear 
models, this is better than doing nothing, because it does provide a rough gauge of the 
magnitude of the ME. However, for policy analysis, one should use either the MER for 
targeted values of the regressors, using the at ( )  option for mfx, or the AME, using the 
margeff command. 

Microeconometrics studies ofGen use survey data that are stratified on exogenous 
regressors, in which case the estimators are consistent but the regressors x may be , 
unrepresentative of the population. For example, a nonlinear regression of earnings (y) 
on schooling (x) may use a dataset for which individuals with low levels of schooling are 
oversampled, so that the sample mean x is less than the population mean. Then MER 
can be used with no modification. �ut MEM and AME should be evaluated by using 
sampling weights, introduced in section 3. 7. In particular, the AME should be computed 
as a sample-weighted average of the ME for each individual. The calculations in margeff 
automatically adjust for any weights used during estimation. This can be changed by 
specifying different weights in margeff and by using the nowght option with mfx. 

10.6. 9 Elasticities and semielasticities 

The elasticities and semielasticities defined in section 10.6 .3 can be computed by using 
mfx's options eyex, eydx, and dyex. 
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We continue with the same Poisson regression example, with four regressors, but we 
focus on the impact of just the regressor income by using mfx with the varlist (income) 
option. We evaluate at the sample mean of the regressors x, the default, though the 
a tO option can be used to evaluate at different values of x. 

We first obtain the ME with the dydx option . 

. mfx, dydx varl ist(income) 
Marginal . effects after poisson 

y � predicted number of events (predict) 
3 . 0296804 

variable dy/dx 

income .0 107766 

Std. Err. z P> l z l  

. 00331 3 . 2 5  0 . 001  

95/. C . I .  X 

. 00428 . 0 17274 34. 3402 

The number of doctor visits increases by 0.0108 with a $1,000 increase in annual income. 
This repeats the result given in section 10.6.6, because dydx is the default for mfx. 

vVe next compute the elasticity with the eyex option. We have 

. mfx, eyex varlist(income) 
Elasticities after poisson 

y � predicted number of events (predict) 
c 3 . 0296804 

variable ey/ex Std. Err. z P> l z l  95/. c . r .  X 

income . 1221484 . 03717 3 . 29 0 . 001  . 049291 . 195006 34 . 3402 

The elasticity is 0.122, so a 1% increase in income is associated with a 0.122% increase 
in doctor visits, or a 10% increase in income is associat�d with a 1.22% increase in 
doctor visits. The elasticity equals ME x xjy from (10.6) ,  where evaluation here. is at 
x = 34.34 (the sample mean) and y = 3.03 from the header output (the predicted 
number of doctor visits for x = x). This yields 0.0108 x 34.34/3.03 = 0.122 as given in 
the above output . .. 

The semielasticity is obtained with the eydx option: 

. mfx, eydx varlist(income) 
Elasticities after poisson 

y = predicted number of events (predict) 
3 . 0296804 

variable ey/dx Std. Err. z P> l z l  95/. C. I .  X 

income . 003557 .00108 3 . 29 0 . 001  . 001435 . 005679 34. 3402 

A $1,000 increase in annual income (a one-unit .change in income) is associated with 
a 0.003557 proportionate rise, or a 0.3557% increase in the number of doctor visits. 
This exactly equals the coefficient of income in the original Poisson regression (see 
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section 10.3.2) ,  confirming that if the conditional mean is of exponential form, then the 
coefficient 7J1 is already a semielasticity, as explained in section 10.6.4. 

Finally, the dyex option yields 

. mfx, dyex varlist( income) 
Elasticities after poisson 

y � predicted number of events (predict) 
� 3 . 0296804 

variable dy/ex Std. Err. z P> l z l  95/. c .  I .  X 

income . 3700708 . 1 1383 3 . 25 0 . 001  . 146961 . 593181 34 . 3402 

A proportionate increase of one in income (a doubling of income) is associated with 
0.37 more doctor visits. Equivalently, a 1% increase in income is associated with 0.0037 
more doctor visits. 

10 .6 .10 AME computed manually 

The margeff command applies only after a few commands. The AME can always be 
.computed manually using the following method. 

Predict at the current sample values for all observations, change one regressor by a 
small amount, predict at the new values, subtract the two predictions, and divide by 
the amount of the change. The AME is the average of this quantity. By choosing a very 
small change, we replicate the calculus method. A finite-difference estimate is obtained 
by considering a large change such as a one-unlt change (whether this is large depends 
on the scaling of the regressors) . In either case, we use the preserve and restore 
commands to return to the original data after computing the AME. 

We consider the effect of a small change in income on doctor visits. We have 

* AME computed manually for a single regressor 
use mus10data .dta, clear 

keep if year02 = =  1 
(25712 observations deleted) 

quietly poisson docvis private cbronic female income , vce (robust) 
preserve 

predict muD, n 
quietly replace income = income + 0 . 01 

predict mu1, n 
generate memanual = (mu1-mu0 ) / 0 . 0 1  

summarize memanual 
Variable Obs Moan Std. Dev. Min Max 

me manual 4412 . 0140761 . 0106173 . 0028253 . 055027 
restore 
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The AME estimate is 0 .0140761, essentially the same as the 0 .0140765 obtained by using 
margeff in section 10.6.8. This method gives no standard error for the AME estimate. 
Instead, it computes the standard deviation of the AME for the 4,412 observations. 

A better procedure chooses a change that varies with the scaling of each regressor. 
We use a change equal to the standard deviation of the regressor divided by 1,000. We 
also use the looping command foreach to obtain the AME for each variable. We have 
the following: 

• AME computed manually for all regressors 
global xlist private cbronic female income 
preserve 

predict muD , n 

foreacb var of varlist $xlist { 
2. · quietly summarize var 
3 .  generate delta = r(sd)/1000 
4.  quietly generate orig = ·var· 
5 .  quietly replace ·var· = · v ar ·  + delta 
6 .  predict mu1 , n 
7 .  quietly generate me_ ·var· = (mu1 - muO)/del ta 
8. quietly replace ·var· = orig 
9 .  drop mu1 delta orig 

10. } 
summarize me_* 

Variable Dbs 

me_private 4412 
me_cbronic 4412 

me_female 4412 
me_income 4412 

restore 

Mean 

3 . 16153 
4 . 322181 
1 . 949399 
. 0140772 

Std. Dev. Min 

2 . 384785 . 6349193 
3 . 260333 . 8679963 
1 . 470413 . 3915812 
.0106184 . 0028284 

Max 

12. 36743 
16. 90794 
7 . 625329 

. 055073 

The AME estimate for income is the average 0.0140772; essentially, the same as the 
0.0140765 produced by using margeff .  The other AMEs differ from those from margeff 
because calculus methods are used here for the binary regressors. 

The code can clearly be adapted to use finite differences in those cases. In nonstan­
dard models, such as those fitted by using the ml command, it will be necessary to also 
provide code to replace the predict command. 

10.6. 11  Polynomial regressors 

Regressors may appear as polynomials. Then computing MEs becomes considerably 
more complicated. 

First, consider a linear model that includes a cubic function in regressor z. Then 

E(ylx, z) 
=} ME.:: 

= x' {3 + a1·z + a2z2 + a3z3 

= a1 + 2az.z + 3a3z2 
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Neither mfx nor margeff will compute ME=.  It is not even clear how to compute the 
MEM. Should we evaluate at z2 or z2? The AME can be computed by calculating 
ar + 2a1z + 3a1 z2 for each observation and averaging. 

We do so for a slightly more difficult example, the Poisson model. Then 

E(y [x, z) = exp(x' f3 + arz + a2z2 + a3z3 ) 
=? ME= = exp(x' f3 + a1z + a2z2 + a3z3 ) x (a1 + 2a2z + 3a3z2 ) 

Here we estimate the parameters of a Poisson model for doctor visits with a cubic 
polynomial in income: 

* AME for a polynomial regressor 
generate inc2 = income"2 
generate inc3 = income-3 

quietly poisson docvis private chronic female income inc2 inc3, vce (robust) 
predict muhat , n 

generate me_income = muhat•(_b [incomel +2*_b [inc2] • income+3*_b [inc3] •inc2) 
summarize me_income 

Variable Dbs Mean 

me_income I 4412 . 0178233 

Std. Dev. Min Max 

. 0137618 - . 0534614 . 0483436 

The code uses the simplification that ME= = E(y [x, z) x (ar + 2a2z + 3a3z2 ) .  The AME 
of a change in income is 0.0178 in the cubic model, compared with 0.0141 when income 
enters only linearly. 

10.6.12 I nteracted regressors 

Similar issues arise with regressors interacted with indicator variables. For example, 

E(y [x , z, d) = exp(x'f3 + a1z + a2d + a3d x z) 
=? ME= = exp(x' f3 + arz + a2d + a3d x z) x (a1 + a3d) 

Long and Freese (2006) give an extensive discussion of MEs with interactive regres­
sors, performed by using the user-written prvalue command. These are oriented toward 
calculation of the MEM or MER rather than the AME. 

10.6.13 Complex interactions and nonlinearities 

MEs in models with interactions can become very difficult to interpret and calculate. 

For complex interactions, a simple procedure is to compute the ME by manually 
changing the relevant variables and interactions, recomputing the predicted conditional 
mean, and subtracting. We change by an amount 6, a single variable that, because of 
interactions and/or polynomials, appears several times as a regressor. Let the original 
values of Xi be denoted by Xio, and obtain the prediction /l;o = exp(x�0/3) .  Then change 
!_he �ariable

1 
b;r 2l. to give new values o� x ;  denote� by �1,_ and ;?btain the prediction 

Mil - e..'CIJ(x; 1f3). Then the ME of changmg the vanable 1s (Ma - Mio)/ 6. 
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We illustrate this for the cubic in income example. 

• AME computed manuall y for a complex model 
preserve 
predict muD , n 

quietly summarize income 
generate delta = r(sd)/100 

quietly replace income = income + delta 
quietly replace inc2 = income"2 

quietly replace inc3 = income"3 
predict mu1 , n 

generate me_inc = (mu1 - muO)/del ta 

summarize me_inc 
Variable Obs Mean Std. Dev. Min 

me_inc 
restore 

4412 .01 78287 .0137678 - . 0534507 

:345 

Max 

. 048344 

This reproduces the calculus result because it considers a small change in income, here 
one-hundredth of the standard deviation of income. If instead we had used del ta=1, 
then this program would have given the ME of a one-unit change in the regressor income 
(here a $1,000 change) computed by using the finite-difference method. 

10 .7 Model diagnostics 

As for the linear model, the modeling process follows a cycle of estimation, diagnostic 
checks, and model respecification. Here we briefl.y summarize diagnostics checks with 
model-specifi c checks de[erred to the models chapters. 

10.7 . 1  Goodness-of-fit measures 

The R2 in the linear model does not extend easily to nonlinear models. When fitting by 
NLS a nonlinear model with additive errors, y = m(x' /3) +u, the residual sum of squares 
(RSS) plus the model sum of squares (MSS) do not sum to the total sum of squares (TSS). 
So the three measures MSS/TSS, 1- RSS/TSS, and "P;.)J [the squared correlation between y 
and m(x'.8) J differ. By contrast, they all coincide for OLS estimation of the linear model 
with an intercept. Furthermore, many nonlinear models are based on the distribution 
of y and do not have a natural interpretation as a model with an additive error. 

A fairly universal measure in nonlinear models is p;,u' the squared correlation be­
tween y and fi. This has a tangible interpretation and can be used provided that the 
model yields a fitted value fi. This is the case for most commonly used models except 
multinomial models. 

For ML estimators, Stata reports a pseudo-R2 defined as 

(10. 10) 
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where ln L0 is the log likelihood of an intercept-only model, and ln Lfit is the likelihood 
of the fitted model. 

For doctor visits, we have 

, * Compute pseudo-R-squared after Poisson regression 
. quietly poisson docvis private cbronic female income, vce (robust) 

. display "Pseudo-R-2 = " 1 - e(ll )/e (ll_O) 
Pseudo-R-2 = . 19303857 

This equals the statistic Pseudo R2 that is provided as part of poisson output; see 
section 10.3.2 . 

For discrete dependent variables, R2 has the desirable properties that R2 ;::: 0, pro­
vided that an intercept is included in the model, and R2 increases as reg,Tessors are 
added for models fitted by ML. For binary and multinomial models, the upper bound 
for R2 is 1 ,  whereas for other discrete data models such as Poisson the upper bound for 
R2 is less than 1 .  For continuous data, these desirable properties disappear, and it is 
possible that R2 > 1 or R2 < 0, and R2 does not increase as regressors are added. 

To understand the properties of R2 , let ln Lmax denote the largest possible value of 
lnL( 8) .  Then we can compare the actual gain in the objective function due to inclusion 
of regressors compared with the ma..ximum possible gain, giving the relative gain measure 

Rko 
= 

lnLn.t - ln Lo = 

1 
_ ln Lma:'< - ln  Ln.t 

lnLmax - ln Lo lnLmax - lnLo 

In  general, lnLmo.x is not known, however, making i t  difficult to implement this measure 
(see Cameron and Windmeijer [1997] ) .  For binary and multinomial models, it can be 
shown that ln Lma.x = 0, because perfect ability to model the multinomial outcome 
gives a probability mass function with a value of 1 and a natural logarithm of 0. Then R�0 simplifies to R2 , given in ( 10 . 10 ) .  For other discrete models, such as Poisson, 
ln Lma.x < 0 because the probability mass function takes a maximum value of less than 
1 ,  so the maximum R2 < 1. For continuous density, the log density can exceed zero, so it 
is possible that lnLfie > lnLo > 0 and R2 < 0. An example is given as an end-of-chapter 
exercise. 

10.7.2 � nformation criteria for model comparison 

For ML models that are nested in each other, we can discriminate between models on 
the ba.sis of a likelihood-ratio (LR) test of the restrictions that reduce one model to the 
other; see section 12.4. 

For ML models that are nonnested, a standard procedure is to use information cri­
teria. Two standard measures are Akaike's information criterion (AIC) and Schwarz's 
Bayesian information criterion (BIC). Different references use different scalings of these 
measures. Stata uses 

AIC = - 2 ln L + 2k 
BIC = -2lnL + k ln N  
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Smaller AIC and BIC are preferred, because higher log likelihood is preferred. The 
quantities 2k and k ln N are penalties for model size. 

If the models are actually nested, then a LR test statistic [equals 6.(2 ln L)] could 
be used. Then the larger model is favored at a level of-0.05 if 6 (2 ln L) increases by 
x5.05(6.k) .  By comparison, the AIC favors the larger model if 6 ( 2 ln L) increases by 
26k, which is a smaller amount [e .g., if 6.k = 1 then 2 < x5.05 ( 1 )  = 3 .84 ] . The AIC 
penalty is too small. The BIC gives a larger model-size penalty and is generally better, 
especially if smaller models are desired. 

These quantities are stored in e 0 and are easily displayed by using the postestima­
tion est at ic command. For the Poisson regression with the five regressors, including 
the intercept, we have 

* Report information criteria 
estat ic 

Model Obs 

4412 

11 (null) 11 (model) 

-22929 . 9  -18503.55 

df AIC 

5 37017 . 1  

Note: N=Obs used in calculating BIC; see [R] BIC note 

BIC 

37049 . 06  

The information criteria and LR  test require correct specification of the density, so 
they should instead be used after the nbreg command for negative binomial estimation 
because the Poisson density is inappropriate for these data. 

It is possible to test one nonnested likelihood-based model against another, using 
the LR test of Vuong (1989) . This test is available as the vuong option for the count 
model commands zip and zinb. A general discussion of Vuong's test is given in Greene 
(2003, 751) and Cameron and Trivedi (2005, 280-283). 

10.7.3 Residuals 

Analysis of residuals can be a useful diagnostic tool, as demonstrated in sections 3 . 5  
and 5 .3  for the linear model. 

ln. nonlinear models, several different residuals can be computed. The use of residuals 
and methods for computing residuals vary with the model and estimator. A natural 
starting point is the raw residual, y; - fk  In nonlinear models, this is likely to be 
heteroskedastic, and a common residual to use is the Pearson residual (y; - f};)/ch 
where Cif is an estimate of Var(yi lx;) . 

Residual analysis is well-developed for GLMs, where additional residuals include 
Anscombe and deviance residuals. These residuals are not presented in econometrics 
texts but are presented in texts on GLMs. For the Poisson model fitted with the glm com­
mand, various options of the postestimation predict command yield various residuals 
and the mu option gives the predicted conditional mean. We have 
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* Various residuals after command glm 
quietly glm docvis private chronic female income , family(poisson) 

predict mu, mu 
generate ura� = docvis - mu 
predict upearson, pearson 

predict udevianc e ,  deviance 
predict uanscomb e,  anscombe 

summarize ura� upearson udeviance uanscombe 
Variable Obs Mean Std. Dev .  

ura'f.l' 4412 -3 .34e-08 7 . 408631 
upearson 4412 - .  0 102445 3 . 598716 

udeviance 4412 - . 5619514 2 . 462038 
uanscombe 4412 - . 5995917 2 . 545318 

Min Max 

-13 . 31806 125. 3078 
-3 .519644 9 1 . 16232 
-4. 742847 24. 78259 
-5. 03055 28. 39791 

The Pearson residual has a standard deviation much greater than the expected value of 
1 because it uses c;; = /1.;, when in fact there is overdispersion and O"f is several times 
this. The deviance and Anscombe residuals are quite similar. The various residuals 
differ mainly in their scaling. For these data, the pairwise correlations between the 
residuals exceed 0.92. 

Other options of predict after glm allow for adjustment of deviance residuals and 
the standardizing and studentizing of the various residuals. The cooksd and hat op­
tions aid in finding outlying and influential observations, as for the linear model. For 
defi.nitions of all these quantities, see [R] glm postestimation or a reference book on 
GLMs. 

Another class of models where residuals are often used as a diagnostic are sur­
vival data models. After the streg or stcox commands, the predict options csnell 
and mgale produce Cox-Snell and martingale-like residuals. Schoenfeld residuals are 
obtained as an option directly specified in the stcox command. For defi.nitions, see 
[ST] streg and [ST] stcox. 

10. 7.4 Model-specification tests 

Most estimation commands include a test of overall significance in the header output 
above the table of estimated coefficients. This is a test of joint significance of all the 
regTessors. Some estimation commands provide further tests in the output. For exam­
ple, the xtmixed command includes a LR test against the linear regression model; see 
sections 9 .5 and 9.6. 

More tests may be requested as  postestimation commands. Some commands such 
as linktest, to test model specification, are available after most commands. More 
model-specific commands begin with est at. For example, the poisson postestimation 
command esta t gof provides a goodness-of-fit test. 

Discussion of model-specification tests is given in chapter 12 and in the model-specific 
chapters. 
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10.8 Stata resources 

A complete listing of estimation commands can be obtained by typing help estimation 
commands. For poisson, for example, see the entries [R] poisson and [R] poisson 
postestimation, and the corresponding online help. Useful Stata commands include 
predict, mfx, lincom, and nlincom. A usef1.1l Stata user-written command is margeff. 

Graduate econometrics texts give considerable detail on estimation and less on pre­
diction and computation of MEs. 

10.9 Exercises 

1. Fit the Poisson regression model of section 10.3 by using the poisson, nl, and 
glm commands. In each case, report default standard errors and robust standard 
errors. Use the estimates store and estimates table commands to produce a 
table with the six sets of output and discuss. 

2. In this exercise, we use the medical expenditure data of section 3.4 with the de­
pendent variable y = totexp/1000 and regressors the same as those in section 3.4. 
We suppose that E(y lx) = exp(x' /3), which ensures that E(y lx) > 0. The obvious 
estimator is NLS, but the Poisson MLE is also consistent if E (y lx) = exp(x' /3) and 
does not require that y be integer values. Repeat the analysis of question 1 with 
these data. 

3. Use the same medical expenditure data as in exercise 2. Compare the different 
standard errors obtained with poisson's vee 0 option with the vcetypes oim, opg, 
robust, cluster clustvar, and bootstrap. For clustered standard errors, cluster 
on age. Comment _on your results. 

4. Consider Poisson regression of doc vis on an intercept, private, chronic, and 
income. This is the model of section 10 .5  except female is dropped. Find the 
following: the sample average prediction of docvis; the average prediction if we 
use the Pois§on estimates to predict docvis for males only; the prediction for 
someone who is privately insured, has a chronic condition, and has an income of 
$20,000 (so income=20) ; and the sample average of the residuals. 

5. Continue with the same data and regression model as in exercise 4. Provide a di­
rect interpretation of the estimated Poisson coefficients. Find the ME of changing 
regressors on the conditional mean in the following ways: the MEM using calcu­
lus methods for continuous regressors and finite-difference methods for discrete 
regressors; the MEM using calculus methods for all regressors; the AME using cal­
culus methods for continuous regressors and finite-difference methods for discrete 
regressors; the AME using calculus methods for all regressors; and the MER for 
someone who is privately insured, has a chronic condition, and has a.n income of 
$20,000 (so income=20) . 

6. Consider the following simulated data example. Generate 100 observations of 
y "' N(O, 0.0012), first setting the seed to 10101 .  Let x = ..fY. Regress y on an 
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intercept and x. Calculate the pseudo-R2 defined in (10 .10) .  Is this necessarily a 
good measure when data are continuous? 

7. Consider the negative binomial regression of docvis on an intercept, private, 
chronic, female, and income, using the nbreg command (replace poisson by 
nbreg) . Compare this model with one with income excluded. Which model do 
you prefer on the grounds of 1) AIC, 2) BIC, and 3) a LR test using the lrtest 
command? 
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1 1 . 1  I ntroduction 

The previous chapter considered estimation when a built-in Stata command, poisson, 
existed. Here we present methods for nonlinear models where there is no such command 
and it is instead necessary to provide estimation code. Estimation is more difficult than 
in the linear case because there is no explicit formula for the estimator. Instead, the 
estimator is the numerical solution to an optimization problem. 

In this chapter, we review optimization methods. The discussion can be relevant 
even when a built-in command is used. We present and illustrate the ml command, 
which enables maximum likelihood (ML) estimation if, at a minimum, the log-density 
formula is provided. The command is more generally applicable to other m estimators, 
such as the nonlinear least-squares (NLS) estimator. 

We also present the Mata optimize ( )  ftmction for optimization when the objective 
function is defined using matrix programming language commands. A leading example 
is nonlinear generalized method of moments (GMM), which is not easily handled by ml 
because the objective function is a quadratic form in sums rather than a single sum. 

1 1 . 2  Newton-Raphson method 

Estimators that maximize an objective function, such as the log likelihood, are obtained 
by calculating a sequence of estimates 8 1 ,  82, . . . that move toward the top of the hill. 
Gradient methods do so by moving by an amount that is a suitable multiple of the 
gradient at the current estimate. A standard method is the Newton-Raphson (NR) 
method, which works especially well when the objective ftmction is globally concave. 

11 .2 .1  N R  method 

We consider the estimator 8 that is a local maximum to the objective function Q(£J) ,  
so 8 solves 

g(O) = o 
where g(£J) = EIQ(£J)/EI£J is the gradient vector. Numerical solution methods are needed 
when these first-order conditions do not yield an explicit solution for 8. 

351  
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Let e. denote the sth round estimate of e. Then a second-order Taylor-series ex­
pansion around Bs approximates the objective function Q( (}) by 

� � � 1 � � � 

Q*((}) = Q(8s) + g((},) ' ((} - 8s) + 2 ((} - 8,) 'H(8s)((} - 8s)  

where H = og(8)jo(}' = o2Q(8) j()(}fJ(}' is  the Hessian matrix. Maximizing this approx­
imating function with respect to (} leads to 

aQ*(8)/o8 = g(Bs) + H(e, ) (8 - e,) = o 
Solving for (} yields the NR algorithm 

es+l = Bs - H(Os ) - 1g(O,) ( 1 1 . 1 )  

The parameter estimate is changed by a matrix multiple of  the gradient vector, where 
the multiple is minus the inverse of the Hessian matrix. 

The final step in deriving ( 11 . 1 )  presumes that the inverse exists. If instead the 
Hessian is singular, then e,+l is not uniquely defined. The Hessian may be singular for 
some iterations, and optimization methods have methods for still continuing the itera­
tions. However, the Hessian must be nonsingular at the optimum. Tbis complication 
does not arise if Q((J) is globally concave because then the Hessian is negative definite 
at all points of evaluation. In that case, the NR method works well, with few iterations 
required to obtain the maximum. 

11 .2 .2 NR method for Poisson 

The Poisson model is summarized in section 10.2.2. As noted at the start of section 10.2, 
the fact that we are modeling a discrete random variable places no restriction on the 
generality of the example. Exactly the same points could be illustrated using, for 
example, complete spell duration data modeled using the exponential or even a nonlinear 
model with normally distributed errors. 

For the Poisson model, the objective function, gradient, and Hessian are, respec­
tively, 

Q(/3) 
g(/3) 

H(/3) 

= I:J:1 {- exp(x:/3) + y;x:/3 - lny; ! }  
= '2::!1 {Y i - exp(xi/3)}x.i 
= '2::!1 - e:'Cp(xi/3lx..::< 

( 11 .2)  

Note that H (/3 ) = -X'DX, where X is  the N x K regressor matrix, and D = 
Diag{exp(x:/3)} is an N x N diagonal matrb:: with positive entries. It follows that 
if X is of full rank, then H(/3) is negative definite for all /3, and the objective function 
is globally concave. Combining ( 1 1 . 1 )  and (11 .2 ) ,  the NR iterations for the Poisson 
maximum likelihood estimator (MLE) are 

( 11 .3)  
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11.2 .3 Poisson NR example using Mata 
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To present an iterative method in more detail, we manually code the NR algorithm for 
the Poisson model, using Mata functions that are explained in appendix � - The same 
example is used in subsequent sections to demonstrate use of the Stata ml command 
and the Mata optimize ( ) function. 

Core Mata code _for Poisson NR iterations 

For expositional purposes, we begin with the Mata code for the core commands to 
implement the NR iterative method for the Poisson. 

It is assumed that the regressor matrix X and the dependent variable vector y have 
already been constructed, as well as a vector b of starting values. Iterations stop when 
{ (/3s+l - /3J'(/3s+l - /3. ) } / (/3�{3. ) < 10- 16 . 

• Core Mata code for Poisson MLE l\TR iterations 
mat a 

cha � 1 
do 

mu � exp(X*b) 
grad = x· (y-mu) 
hes = cross(X,  mu, X) 
bold = b 
b � bold + cholinv(hes) •grad 

II initialize stopping criterion 

II k x 1 gradient vector 
II negative of the k x k Hessian matrix 

cha = (bold-b ) ' (bold-b)l (bold'bold) 
iter = iter + 1 

Yhile (cha > 1e-16) 
end 

II end of iteration loops 

The N x 1 vector mu hill2 the ith entry f..li = exp(x';,B ) . The K X 1 vector grad equals 
2::;:,1 (y; - f.t;)X; , and hes=cross (X ,  mu, X) equals L; fL;X;X';. The quickest function 
for taking a matrix inverse is cholinvO for a positive-definite matrix. For this reason, 
we set hes to -H(/3), which is positive definite, but then the NR update has a plus sign 
rather than the minus sign in ( 1 l . 1 ) .  In some cases, hes may not be symmetric because 
of a rounding error� Then we would add the hes = makesymmetric(hes) command. 

Complete Stata and Mata code for Poisson N R iterations 

The complete program has the following sequence: 1) in Stata, obtain the data and 
define any macros used subsequently; 2) in Mata, calculate the parameter estimates 
and the estimated variance-covariance matrix of the estimator (veE) ,  and pass these 
back to Stata; and 3) in Stata, output nicely formatted results. 

We begin by reading in the data and defining the local macro y for the dependent 
variable and the local macro xlist for the regressors. 
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• Set up data and local macros for dependent variable and regressors 
use mus10dat a .dta 
keep if year02 == 

(25712 observations deleted) 
generate cons = 1 
local y docvis 
local xlist private chronic female income cons 

The subsequent Mata program reads in the relevant data and obtains the parameter 
estimates and the estimate of the VCE. The program first associates vector y and matrix 
X with the relevant Stata variables by using the st_view() function. The tokens ( 1 1  1 1 ) 
function is added to convert ' xlist · to a comma-separated list with each entry in 
double quotes, the necessary format for st_view ( ) .  The starting values are simply 
zero for slope parameters and one for the intercept. The robust estimate of the VCE is 
obtained, and this and the parameter estimates are passed back to Stata by using the 
st_matrix() function. We have 

• Complete Mata code for Poisson MLE NR iterations 
mat a: 

---------------------- mata (type end to exit) 

> 
> 
> 
> 

st_vie�o�(y=. , 
st_view(X= . ,  

II � y .. II ) 
tokens ( " "xlist " ' ) )  

b = J(cols(X ) , 1 , 0 )  
n = ro�o�s(X) 
iter = 1 
cha = 
do { 

mu = exp(X*b) 
grad = X · (y-mu) 
hes = cross (X ,  mu, X) 
bold = b 

> b = bold + cholinv (hes) •grad 

II read in stata data to y and X 

II compute starting values 

II initialize number of iterations 
II initialize stopping criterion 

II k x 1 gradient vector 
II negative of the k x k Hessian matrix 

> cha = (bold-b) " (bold-b )l (bold"bold) 
> iter = iter + 1 
> } �o�hile (cha > 1e-16) 

mu = exp(X*b) 
hes = cross (X ,  mu, X) 
vgrad = cross(X ,  (y-mu ) : "2 ,  X )  

I I  end  of  iteration loops 

vb = cholinv (hos) •vgrad•cholinv (hes) •nl(n-cols( X ) )  
iter 

13 
cha 

1 . 1 1465e-24 
st_matrix( "b "  ,b " )  
st_matrix("V" ,vb) 

end 

II number of iterations 

II stopping criterion 

II pass results from Mata to Stata 
II pass results from Mata to Stata 

Once back in Stata, we use the ereturn command to display the results, first as­
signing names to the columns and rows of b and V. We have 
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• Present results, nicely formatted using Stata command ereturn 
matrix colnames ,b = 'xlist • 
matrix colnames V = 'xlist · 
matrix ro�names V = 'xlist· 
ereturn post b V 
ereturn display 

Coef. Std. Err . z P> l z l  [95/. Conf. 

priVate .7986654 . 1090509 7 . 32 0 . 000 . 5849295 
chronic 1 . 091865 . 0560205 1 9 . 49  0 . 000 .9820669 
female .4925481 . 058563 8 . 41 0 . 000 .3777666 
income . 003557 . 001083 3 . 28 0 . 001 .0014344 

cons - . 2297263 . 1 109236 -2. 07 0 . 038 - . 4471325 
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Interval] 

1 .  012401 
1 .  201663 
. 6073295 
. 0056796 

- .  0123202 

The coefficients are the same as those from the poisson commanp (see section 10.3.2) , 
and the standard errors are the same to at least the first three significant digits. Thir­
teen iterations were required because of poor starting values and a tighter convergence 
criterion than used by poisson. 

The preceding NR algorithm can be adapted to use Stata matrix commands, but 
it is better to use Mata functions because these can be simpler. Also Mata functions 
read more like algebraic matrix expressions, and Mata does not have the restrictions on 
matrix size that are present in Stata. 

11 . 3  Gradient methods 

In this section, we consider various gradient methods, stopping criteria, multiple op­
timums, and numerical derivatives. The discussion is relevant for built-in estimation 
commands, as well as for user-written commands. 

1 1 .3.1 Maximization options 

Stata ML estimation commands, such as poisson, and the general-purpose ml command, 
presented in the next section, have various maximization options that are detailed in 
[ R] maximize. 

The default is to provide an iteration log that gives the value of the objective func­
tion at each step plus information on the iterative method being used. This can be 
suppressed using the nolog command. Additional information at each iteration can 
be given by using the trace (current parameter values), gradient (current gradient 
vector), hess ian (current Hessian), and showstep (report steps within each iteration) 
options. 

The technique ( )  option allows several maximization techniques other than NR. The 
nr, bhhh, dfp, bfgs, and nm options are discussed in section 1 1 .3.2. 
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Four stopping criteria-the toleranc e (#) , 1 toleranc e (# ) , gtolerance ( # ) , and 
nrtolerance ( #) options-are discussed in section 11 .3 .4 .  The default is the option 
nrtolerance (1e-5 ) .  

The difficult option uses an alternative method to determine steps when the 
estimates are in a region where the objective flmction is nonconcave. 

The from(iniLspecs) option allows starting values to be set. 

The maximum number of iterations can be set by using the iterat e (#) option 
or by the separate command set maxi ter #- The default is 16,000, but this can be 
changed. 

1 1.3.2 Gradient methods 

Stata maximization commands use the iterative algorithm 

s = 1 ,  . . .  , s  ( 1 1 .4) 

where a, is a scalar step-size adjustment and W s is a q x q weighting matrix. A special 
case is the NR method given in ( 1 1 . 1 ) ,  which uses -H;1 in place of a8 W 8 •  

If the matrix multiplier Ws is too small, we will take a long time to reach the 
maximum. whereas if a multiple is too large, we can overshoot the maximum. The 
step-size �djustment as is used to evaluate Q(Bs+l)  at Bs+l = Bs + asWsgs over a 
range of values of as (such as 0 .5 ,  1, and 2 ) ,  and the value of a8 that leads to the largest 
value for Q(O s+1 ) is chosen. This speeds up computation because calculation of W ,g8 
takes much more time than several subsequent evaluations of Q(O., H ) · Stata starts 
with a, = 1 and progressively halves or doubles a8 •  

Different weighting matrices W s correspond to different gradient methods. Ide­
aJly, the NR method can be used, with Ws = -H;;-1 .  If Hs is nonnegative definite, 
noninvertible, or both, then Hs is adjusted so that it is invertible. Stata also uses 
W, = -{Hs + cDiag(H,)} -1 .  If this fails, then Stata uses NR for the orthogonal sub­
space corresponding to nonproblematic eigenvalues ofHs and steepest ascent (W s = Is) 
for the orthogonal subspace corresponding to problematic (negative or small positive) 
eigenvalues of Hs.  

Other optimization methods can also be used. These methods calculate alternatives 
to H;;-1 that can be computationally faster and can be possible even in regions where 
H, is nonnegative definite, noninvertible, or both. The alternative methods available 
for the ml command are the Berndt-Hall-Hall-Hausman (BHHH), Davidon-Fletcher­
Powell (DFP), Boyden-Fletcher-Goldfarb-Shannon (BFGS), and Nelder-Mead algo­
rithms. These methods can be selected by using the technique 0 option, with ar­
gument, respectively, nr, bhhh, dfp, bfgs, and nm. The methods are explained in, for 
example, Greene (2008) and Gould, Pitblado, and Sribney (2006). 
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Some of these algorithms can converge even if H. is still nonnegative definite. Then 
it is possible to obtain parameter estimates but not standard errors because the latter 
require inversion of be Hessian. The lack of standard errors is a clear signal of problems. 

11 .3.3 Messages during iterations 

The iteration log can include comments on each iteration. 

The message (backed up) is given when the original step size a. in ( 1 1 .4) has been 
halved more than six times. The message (not concave) means that -H, was not 
invertible. In both cases, the ultimate results are fine, provided that these messages are 
not being given at the last iteration. 

11.3.4 Stopping criteria 

The iterative process continues until it is felt that g(O) � 0 and that Q(O) is close to a 
maximum. 

Stata has four stopping criteria: small change in the coefficient vector (toler­
ance ( ) ) ;  small change in the objective function (1 tolerance ( ) ) ;  small gradient rel­
ative to the Hessian (nrtolerance ( )  ) ; and small gradient relative to the coefficients 
(gtolerance 0 ) .  The Stata default values for thesP criteria can be changed; see help 
maximize. 

The default and preferred stopping criterion is nrtolerance 0 ,  which is based on 
g(O)'H(0)-1g(O). The default is to stop when nrtoleranceO < w-s. 

In addition, the user_ should be aware that even if the iterative method has not 
converged, estimation will stop after maxi ter iterations. If the maximum is reached 
without convergence, regression results including parameters and standard errors are 
still provided, along with a warning message that convergence is not achieved. 

11.3.5 Multiple maximums 

Complicated objective functions can have multiple optimums. The following provides 
an example: 

. • Objective function with multiple optima 

. graph twoway function 
> y:100-0 . 0000001•Cx-10 ) • (x-30 ) • (x-50)• (x-50)• (x-70) • (x-80) , 
> range (5 90) plotregion(style (none ) )  
> title ( " Objectivo function Q (theta) as theta varies " )  
> xti tle ( " Theta" , size (medlarge) )  x<Jcale(ti tlegap( •S)) 
> ytitle ( " Q (theta) " ,  size (medlarge) ) yscal�(titlegap( •S) ) 
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Objective function Q(theta) as theta varies 
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Figure 11.1 .  Objective function with multiple optimums 

From figure 11 . 1 ,  there are three local maximums-at () � 15 ,  at () � 50, and at 
() � 75-and two local minimums-at () � 35 and at () � 65. Most econometrics 
estimators are defined as a local maximum, because the asymptotic theory applies to 
an estimator that sets the gradient to zero. The asymptotic theory usually applies to 
the largest of the local maximums, which is () � 15 .  

What problems might a gradient method encounter? If we start at () < 30, we will 
eventually move to the desired optimum at () � 15 .  If instead we start at () > 30,  
then we will move to smaller local maximums at () = 50 or () � 75. Furthermore , the 
objective function is relatively fl at for 30 < () < 80, so it may take quite some time to 
move to a local maximum. 

Even if one obtains parameter estimates, they need not provide the largest local 
maximum. One method to check for multiple optimums is to use a range of starting 
values. This problem is more likely with user-written estimators, because most built-in 
Stata commands apply to models where multiple optimums do not arise. 

1 1 .3.6 Numerical derivatives 

All gradient methods require first derivatives of the objective function, and most require 
second derivatives. For the q x 1 vector (}, there are q first derivatives and q(q + 1)/2 
unique second derivatives that need to be calculated for each observation at each round 
of the iterative process, so a key component is fast computation of derivatives. 

The derivatives can be computed analytically or numerically. Numerical derivatives 
have the attraction of simplicity but can lead to increased computation time compared 
with analytical derivatives. For the Poisson example in section 10.2.2, it was easy to 
obtain and provide analytical derivatives. We now consider numerical derivatives. 
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The scalar derivative df(x)/ dx = lim [ {f(x+ h) - f(x - h)} /2h], so one can approxi-
h-o 

mate the derivative by { f(x + h) - f(x - h)}/2h for suitable small choice of h. Applying 
this to the optimization of Q (8), where differentiation is now with respect to a vector, 
for the first derivative of Q(B 5) with respect to the jth component of the vector (} the . , 
numerical derivative is 

t.Q((}) I /::,.() -
. J a .  

Q (Os + hej ) - Q(Os - hej) 
2h j = 1 ,  . . . ' q 

where h is small and eJ = (0 . . .  0 1 0 . . .  0)' is a column vector with unity in the jth 
row and Os elsewhere. Numerical second derivatives are calculated as the numerical first 
derivative of the numerical or analytical first derivative. In theory, h should be very 
small, beca,use formally 8Q((})/8()J equals the limit of t.Q(e)jt.()J as h -+  0. But in 
practice, too small a value of h leads to inaccuracy due to rounding error. Stata chooses 
2h so that f(x + h) and f(x - h) differ in about half their digit"s, or roughly 8 out of 
16 digits, because computations are in double precision. This computation of h each 
time a derivative is taken increases accuracy at the expense of considerable increase in 
computation time. 

The number of derivatives is greatly reduced if the objective function is an in­
dex model with few indexes. In the simplest case of a single-index model, Q( (}) = 
N- 1 I:;; q(y.; , x:e) so that 8 only appears via x:e. Then, by the chain rule, the gradient 
vector is 

oQ(8) 
= 

2_ '""'N oq(y;, x�8) 
X X; 

88 N L.... i=l 8x�8 

The q scalar derivatives oq(y;, x;e)j()()J are simply the same scaiar derivative oq(y;, x�(}) 
/ox�(} times x;. Similarly, the q(q+ 1)/2 unique second derivatives are simple multiples 
of a scalar second derivative. 

For a multi-index model with .J indexes (often .J :::; 2) ,  there are J first derivatives 
to be calculated. Because few derivatives need to be computed, computation is slowed 
down little when numerical derivatives are used rather than analytical derivatives if J 
is small. 

·· · 

11 .4 The ml command: If method 

The Stata optimization command ml is deliberately set up for multi-index models to 
speed up the computation of derivatives. The name ml is somewhat misleading because 
the command can be applied to any m estimator (see the NLS example in section 11 .4 .5) ,  
but in non-ML cases, one should always use a robust estimate of the VCE. 

The lf method is the simplest method. It requires the formula for a single observa­
tion's contribution to the objective function. For ML estimation, this is the log density. 
The more advanced methods d0-d2 are deferred to section 1 1 . 6 . 
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1 1 .4.1 The ml command 

The key commands for the ml method are the ml model command to define the model 
to be fi t  and the ml maximize command to perform the maximization. 

The syntax for ml model is 

ml model method progname eqt [ eq2 . . .  ] [ if ]  [ in ]  [ weight ] [ ,  options ] 

For example, ml model lf lfpois (y=xl x2) will use the lfpois program to estimate 
the parameters of a single-index model with the dependent variable y, the regressors xl 
and x2, and an intercept. 

The lf and dO methods use only numerical derivatives, the d1 method uses ana­
lytical first derivatives and numerical second derivatives, and the d2 method uses only 
analytical derivatives. The user must provide the formulas for any analytical deriva­
tives. Options include vce (robust) to compute the robust estimate of the VCE, given 
in section 10.4.5 . 

The syntax for ml maximize is 

ml maximize [ , options ] 

where many of the options are the maximization options covered in section 11 . 3 . 1 .  

There are several other ml commands. These include ml check to check that the 
objective function is valid; ml search to fi.nd better starting values; ml trace to trace 
maximization execution; and ml ini t to provide starting values. 

1 1.4.2 The If method 

The simplest method is lf. This is intended for the special case where the objective 
function is an m estimator, simply a sum or average over the N observations of a 
subfunction q.i (8 ) , with parameters that enter as a single-index or a multi-index form. 
Then "'\"" N I I Q(e) = L.....i=l q(yi ,Xj181 ,  . . . , xi.JeJ)  ( 1 1 . 5 )  

Usually, J = 1 ,  i n  which case qi (e ) = q(y., ,x � 18 1 ) ,  or J = 2 .  Most cross-section 
likelihoods and Stata built-in commands fall into this class, which Stata documentation 
refers to as meeting the linear-form restrictions. 

The lf method requires that a program be written to give the formula for the 
subfi.mction q, (e) . This program is subsequently called by the ml model lf command. 

The Stata documentation refers to the fi.rst index �1 81 as thetal, the second index 
x!;282 as theta2, and so on. This has the potential to cause confusion with the standard 
statistical terminolog-y, where () is the generic notation for the parameter vector. 
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11 .4.3 Poisson example: Single-index model 

For the Poisson MLE, Q(/3) = I;i q;(/3), where the log density 

q; (/3) = - exp(x;f3) + Yix;/3 - ln yi !  

i s  of  single-index form. 

361 

(11 .6) 

We first write the program, referenced in ml model, that evaluates qi (/:J) . This 
program has two arguments: lnf, for the evaluated log density, and thetal, for the 
single index x�/3. The dependent variable Yi is assigned by Stata to the global macro 
$ML_yl .  

To improve program readability, we use the local macro y to substitute for $MLyl, 
we define the temporary variable mu equal to exp (thetal) ,  and we define the temporary 
variable lnyfact equal to ln yL The program argument lnf stores the result qi(/3) :  

* Poisson ML program lfpois to 
program lfpois 
1 .  version 1 0 . 1  
2 .  args :nf theta1 
3 .  tempvar lnyfact mu 
4 .  local y "$ML_y1" 
5. generate double " lnyfact' 
6 .  generate double mu 
7 .  quietly replace "lnf' 
8 .  end 

be called by command ml method lf 

I I  theta1=x'b ,  lnf=lnf(y) 

II Define y so program more readable 
lnfactorial C · y · ) 
exp ( " theta 1 · )  
-·mu' + ' y ' * " theta1' - " lnyfact' 

We could have more simply defined lnf as 
"lnf' = -exp ( " theta 1 ' )  + $ML_y1*exp ( "theta1 ' )  - lnfactorial($ML_y1) 

The preceding code instead breaks this into pieces, which can be advantageous when lnf 
is complex. Stata computes lnf using double precision, so the intermediate variables 
should also be calculated in double precision. The lnfactorial 0 function is used 
rather than first computing y! and then taking the natural logarithm, because the latter 
method is not possible if y is at all large. 

The essential commands are ml model and ml max1m1ze. It is good practice to 
additionally use the :nl check and ml search commands before ml maximize. 

For Poisson regression of doc vis on several regressors, with a robust estimate of the 
VCE, we have 

* Command �1 oodel including defining y and x ,  plus ml check 
. ml model lf lfpois (docvis = private chronic female income) . vce (robust) 
. ml check 
Test 1 :  Calling lfpois t o  check i f  i t  computes log pseudolikelihood and 
does not alter coefficient vector . . .  
Passed. 
Test 2: Calling lfpois again to check if the same log pseudolikelihood value 
is returned . . .  
Passed. 

(output omitted) 
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We then type ml search to try to obtain better starting values. 

. * Search for better starting values 

. ml search 
initial: 
( 4412 missing 
improve : 
rescale: 

log pseudolikelihood = -23017.072 
values generated) 
log pseudolikelihood = -230 1 7 . 072 
log pseudolikelihood = -23017 . 072 

ML estimation then occurs by typing 

, * Compute the estimator 
, ml maximize 
initial: log pseudolikelihood = -23017. 072 
rescale: log pseudolikelihood = -23017 . 072 
Iteration 0 :  log pseudolikelihood = -23017. 072 
Iteration 1 :  log pseudolikelihood = -19777 .405 
Iteration 2: log pseudolikelihood = -18513.64 
Iteration 3 :  log pseudolikelihood = -18503 . 556 
Iteration 4 :  log pseudolikelihood = -18503.549 
Iteration 5 :  log pseudolikelihood = -18503. 549 

Log pseudolikelihood = -18503. 549 

Robust 
doc vis Coef . Std. Err . z 

private . 7986654 . 1090015 7 .33 
chronic 1 .  091865 . 0559951 1 9 . 50 
female .4925481 . 0585365 8 . 4 1  
income . 003557 . 0010825 3 . 29 
_cons - .  2297263 . 1108733 -2.07 

Number of obs 
Wald chi2(4) 
Prob > chi2 

P> l z l  [95/. Conf. 

0 . 000 . 5850265 
0 . 000 . 9821167 
0 . 000 . 3778187 
0 . 001  . 0014354 
0 . 038 - . 4470339 

4412 
594.72 
0 . 0000 

Interval] 

1 .  012304 
1. 201614 
. 6072775 
. 0056787 

- . 0124188 

Note that an intercept was automatica�ly added. The results are the same as  those given 
in section 10.3.2 using poisson and as those obtained in section 11 . 2 . 3  using Mata. 

1 1.4.4 Negative binomial example: Two-index model 

A richer model for counts is the negative binomial. The log density, which is explained 
in chapter 17, is then 

Q;((3, a) = ln f(y; + a-1 ) - ln r(y, + a-1) - lnyi! 
- (y; + a-1) ln{1 + a-1 exp(x�,6) } + Yi. ln a +  y;><f3 

This introduces an additional parameter, a, so that the model is now a two-index model, 
with indexes xi/3 and a. 

The following program computes q;(/3, a) for the negative binomial, where the two 
indexes are referred to as theta1 (equals x;f3) and a (equals a) .  
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> 
> 

• Negbin ML program lfnb to be called by command ml method lf 
program lfnb 
1 .  
2 .  
3. 
4 .  
5 .  
6 .  

version 1 0 . 1  
args lnf theta1 a // thetal=x"b, a=alpha , lnf=lnf(y) 
tempvar mu 
local y $ML_y1 // Define y so program more readable 
generate double mu exp ( · theta1 ") 
quietly replace "lnf" = lngamma ( " y " + ( l / "a " ) )  - lngamma ( ( 1 / " a " ) )  

- lnfactorial ( " y " )  - ( " y " + { l /"a " ) ) •ln(1+"a"* "mu " )  
+ · y · • ln ( "a " )  + " y " • ln ( ' mu " )  

7 .  end 
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The program has an additional argument, a, so the call to the program using ml 
maximize includes an additional argument 0 indicating that a is a constant that does 
not depend on regressors, unlike thetal. We have 

• Command lf implemented for negative binomial MLE 
ml model lf lfnb (docvis = private cbronic female income) 0 
ml maximize , 

initial: 
feasible : 
rescale: 
rescale eq: 

no log 
log likelihood = -<inf> 
log likelihood = -14722.779 
log likelihood = -10743. 548 
log likelihood = -10570.445 

(could not be evaluated) 

Log likelihood = -9855 . 1389 

Number of obs 
Wald chi2(4) 
Prob > chi2 

4412 
1 159 .02  
0 . 0000 

eql 

eq2 

docvis 

private 
chronic 
female 
income 

cons 

cons 

Coef . Std. Err. 

.8876559 . 0594232 
1 . 143545 . 0456778 
. 5613027 . 0448022 
. 0845735 . 000805 

- . 4062135 . 0611377 

1 . 726868 .05003 

z P> l z l  

14.94 0 . 000 
25 .04 0 . 000 
1 2 . 53  0 . 000 
5 . 69 0 . 000 

- 6 . 64 0 . 000 

34 .52 0 . 000 

[95/. Conf. Interval] 

. 7711886 1 . 004123 
1 . 054018 1 . 233071 

.4 73492 0 6491135 
.0030007 . 0061563 

- . 5260411 - . 2863858 

1 .  628811 1. 824925 

The standard errors are based on the default estimate of the VCE, because vee (robust) 
was not used in ml maximize. The estimates and standard errors are exactly the same 
as those obtained by using the nbreg command; see section 12.4 . 1 .  

11 .4 .5 NLS example: Nonlikelihood model 

The preceding examples were likelihood-based, but other m estimators can be consid­
ered. 

In particular, consider NLS estimation -vvith an exponential conditional mean. Then 
QN (/3) = 1/N L:;:,1 {Yi - exp (x�f3)f . This is easily estimated by typing 
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• NLS program lfnls to be called by 
program lfnls 

command ml method lf 

1 .  version 1 0 . 1  
2 .  args lnf thetal 
3. local y "$ML_y1" 
4. quietly replace 'lnf"  
5.  end 

II thetal=x " b ,  lnf=squared residual 
II Define y so program more readable 

- c · y ·-exp ( ' theta l " ) ) -2  

Note the minus sign in the definition of  lnf, because the program is  designed to maxi­
mize, rather than minimize, the objective function. 

Running this program, we obtain 

• Command lf implemented for NLS estimator 
ml model lf lfnls (docvis = private chronic female income) , vce(robust) 
ml maximize 
(output o mitted) 

The results, omitted here, give the same coefficient estimates as those obtained from 
the nl command, which are given in section 10.3.5. The corresponding robust standard 
errors differ, however, by as much as 5%. The reason is that nl uses the expected Hessian 
in forming the robust estimate of the VCE (see section 10.4.5) , exploiting additional 
information about the NLS estimator. The ml method instead uses the empirical Hessian. 
For NLS, these two differ, whereas for Poisson MLE, they do not. 

For this example, the default estimate of the VCE, the inverse of the negative Hessian 
matrix, will always be wrong. To see this, consider ordinary least squares (OLS) in the 
linear modeL Then Q N ((3) = (y - X(3)' (y - X/3) has a Hessian of -2 x X'X. Even if 
the errors are homoskedastic, ml would give an estimate of ( l/2) (X'X)-1  rather than 
s2(X'X) - l .  Whenever ml is· used to optimize models that are not likelihood-based, a 
robust estimate of the VCE must be used. 

1 1 . 5  Checking the program 

The initial challenge is to debug a program and get it to successfully run, meaning that 
iterations converge and plausible regression output is obtained. There is a great art to 
this, and there is no replacement for experience. There are many ways to make errors, 
especially given the complexity of program syntax. 

The next challenge is to ensure that computations are done correctly, to verify that 
plausible output is indeed correct output. This is feasible if it is possible to generate 
simulated data that satisfy model assumptions. 

We focus on user-written programs for ml, but many of the following points apply 
to evaluating any estimator. 
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11.5.1 Program debugging .using ml check and ml trace 
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The ml check command provides a check of the code to ensure that it is possible to 
evaluate lnf, though this does not ensure that the evaluation is correct. This command 
is most useful for checking program syntax, because it · provides much more detailed 
information than if we instead proceed directly to ml maximize. 

For example, suppose in the lfpois program we typed the line 

. generate doub:..e 'mu' = exp('hetal ' )  

The mistake i s  that · he tal · was typed rather than • thetal · .  The ml maximize com­
mand leads to failure and the following error message: 

invali<l syntax 
r(198) ; 

This message is not particularly helpful. If instead we type 

. ml search 

before ml maximize, the progTam again fails, but the output now includes 

- generate double ·mu' = exp('heta l ' )  
= generate double _ _  000006 = exp( 
invalid syntax 

which indicates that the error is due to a problem with "hetal " .  

More complete information is given by the ml trace command. I f  we type 

. ml trace on 

before ml maximize, the program fails, and we get essentially the same output as when 
using ml search. Once the program is corrected and runs successfully, ml trace provides 
extensive details on the execution of the program. In this example, 980 lines of detail 
are given. 

The trace facility can also be used for commands other than ml by typing the com­
mand 

set trace on 

A drawback of using trace is that it can produce copious output. 

A more manual-targeted method to determine where problems may arise in a pro­
gram is to include messages in the program. For example, suppose we place in the 
lfpois program the line 

display "I made it to here'' 

If the program fails afcer this line is displayed, then we know that the problem arose 
beyond the line where the display statement was given. 
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1 1 .5.2 Getting the program to run 

The ml check command essentially checks program syntax. This does not protect 
against other coding errors such as misspecification of the log density. Suppose, for 
example, that in the lfpois program we typed 

The error here is that we have 'mu· rather than - ' mu · .  Then we obtain 

. ml maximize 
initial: log pseudolikelihood = -25075 .609 
alternative: log pseudolikelihood = -13483 .451  
(4412 missing values generated) 
rescale: log pseudolikelihood = 1 . 01e+226 
Iteration 0 :  log pseudolikelihood = 1 . 01e+226 (not concave) 
(1 missing value generated) 
Iteration 1 :  log pseudolikelihood = 1 . 76e+266 (not concave) 
(762 missing values generated) 
Hessian has become unstable or asymmetric (NC) 
r(504) ; 

Here the error has occurred quite early. One possibility is that poor starting values were 
given. But using ml search leads to far worse starting values. In this case, the most 
likely explanation is an error in the objective function. 

Poor starting values can lead to problems if the objective function is not globally 
concave. For index models, a good approach is to set all parameters to zero aside from 
the constant , which is set to that value appropriate for an intercept-only model. For 
example, for the Poisson intercept-only model with the parameter a, we have a =  lny, 
because then exp(a) = y. Thus the initial value is (0, . . .  , lnY) .  It can be useful to try 
the model with few regressors, such as with an intercept and a single regressor. 

The ml methods d1 and d2, presented in section 11 .6 ,  require analytical expressions 
for the first and second derivatives. The ml model d1debug and ml model d2debug 
commands check these by comparing these expressions with numerical first and second 
derivatives. Any substantial difference indicates error in coding the derivatives or, 
possibly, the original objective function. 

1 1 .5 .3 Checking the data 

A common reason for program failure is that the program is fine, but the data passed 
to the program are not. 

For example, the lfpois program includes the lnfactorial ( ' y ' )  function, which 
requires that ' y  • be a nonnegative integer. Consider the impact of the following: 

replace docvis = 0 . 5  if docvis == 1 
ml model lf lfpois (docvis = private chronic female income ) ,  vce (robust) 
ml maximize 
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The resulting output afGer maximize includes many lines with 

(700 missing values generated) 

followed by 

could not find feasible values 
r(491 ) ; 
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One should always use summarize to obtain summary statistics of the dependent 
variable and regressors ahead of estimation as a check. Indications of problems include 
an unexpected range, zero standard deviation, and missing values. In this particular 
example, summarize will not detect the problem, but tabulate docvis will. 

11.5.4 Multicollinearity and near collinearity 

If variables are perfectly collinear, then Stata estimation commands, including ml, detect 
multicollinearity and drop the regressor(s) as needed. 

If variables are close to perfectly collinear, then numerical instability may cause 
problems. We illustrate this by adding the additional regTessor extra, which equals 
income plus au, where u is a draw from the uniform distribution and a =  0.001 or 0 .01 .  

First, add the regressor extra that. equals income plus O.OOlu. We have 

• Example with high collinearity interpreted as perfect collinearity 
generate extra = income + 0 . 00 1 •runiform ( )  
ml model lf lfpois (docvis = private chronic female income extra) , vce(robust) 

note: income dropped because of collinearity 

Here ml maximize interprets this as perfect collinearity and drops income before maxi­
mization. 

Next instead add the regressor extra2 that equals income plus the larger amount 
O.Olu. We have 

• Example with high collinearity not interpreted as perfect collinearity 
generate extra2 = income + O . Ol •runiform() 
ml model lf lfpois (docvis = private chronic female income extra2) , vce (robust) 

(Continued on next page) 
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. ml maximize, nolog 

Log pseudolikelihood � -18502.566 

Robust 
doc vis Coef . Std. Err. 

private . 7989946 . 1 089236 
chronic 1 .  09176 . 0559905 
female .4921726 . 0586662 
income 3 . 672265 9 . 498833 
extra2 -3. 668721 9 . 498765 
_cons - . 2109584 . 1247754 

z 

7 . 34 
19 . 50  
8 . 39 
0 . 39  

-0 . 39  
- 1 . 6 9  

Number of  obs 
Wald chi2(5) 
Prob > chi2 

P> l z l  [95/. Conf . 

0 . 000 .5855083 
0 . 000 .9820211 
0 .000  .3771889 
0 . 699 -14 . 9451 
0 . 699 -22. 28596 
0 . 091  - . 4555137 

4412 
590 .21 
0 . 0000 

Interval] 

1 .  012481 
1. 2015 

. 6071563 
22. 28963 
14 .94852 
.0335968 

Now this is no longer interpreted as perfect collinearity, so estimation proceeds. The 
coefficients of income and extra2 are very imprecisely estimated, while the remaining 
coefficients and standard errors are close to those given in section 10.3.2. 

Pairwise collinearity can be detected by using the correlate command, and multi­
collinearity can be detected with the ..rmcoll command. For example, 

. + Detect multicollinearity using _rmcoll 

. _rmcoll income extra 
note: income dropped because of collinearity 
. _rmcoll income extra2 

Another simple data check is to see whether the parameters of the model can be 
estimated by using a closely related Stata estimation command. For the lfpois pro­
gram, the obvious test is regression using poisson. If a command to compute Poisson 
regression was not available, we could at least try OLS regression, using regress. 

11.5 .5 Multiple optimums 

Even when iterations converge and regression output is  obtained, there is a possibility 
that a local rather than a global maximum has been obtained. 

A clear signal of lack of global concavity is warning messages of nonconcavity in 
some of the intermediate iterations. This may or may not be a serious problem, but at 
the least one should try a range of different starting values in this ::;ituation. 

Parameter estimates should not be used if iterations fail to converge. They also 
should not be used if the final iteration has a warning that the objective function is 
nonconcave or that the Hessian is not negative definite, because this indicates that the 
model is not identified. Missing standard errors also indicates a problem. 



11 .5 .6 Checking parameter estimation 369 

11 .5.6 Checking parameter estimation 

Once a program runs, we need to check that it is correct. The following approach is 
applicable to estimation with any method, not just with the ml command. 

To check parameter estimation, we generate data f�om the same data-generating 
process (DGP) as that justifying the estimator, for a large sample size N. Because the 
desired estimator is consistent as N -+ oo, we expect the estimated parameters to be 
very close to those of the DGP. A similar exercise was done in chapter 4. 

To check a Poisson model estimation program, we generate data from the following 
DGP: 

y; = Poisson(,81 + ,B2x ); (.81 , .82) = (1, 2 ) ;  x; "' N(O, 0.5) ; i = 1 , . · . ,  10, 000 

The following code generates data from this DGP: 

• Generate dataset from Poisson DGP for large N 
clear 
set obs 10000 

obs Yas 0 ,  now 10000 
set seed 10101 
generate x � rnormal ( 0 , 0 . 5 )  
generate mu � exp(2 + x) 
generate y = rpoisson(mu) 
summarize mu x y 

Variable Obs Mean 

mu 10000 8 . 386844 
X 10000 . 0020266 
y 1 0000 8 . 3613 

Std. Dev .  

4 . 509056 
.4978215 
5 . 277475 

Min Max 

.9930276 47. 72342 
-2. 006997 1 . 865422 

0 52 

The normal regressor has the desired mean and variance, and the count outcome has a 
mean of 8.36 and ranges from 0 to 52. 

We then run the previously defined lfpois program. 

• Consistency check: Run program lfpois and compare beta to DGP value 
ml model lf lfpois (y � x) 
ml maximize, nolog 

Log likelihood � -24027 . 863 

Number of obs 
Wald chi2(1) 
Prob > chi2 

10000 
20486 . 09  

0 . 0000 

y Coef . Std. Err. z P> l z l  [95/. Conf . Interval] 

X 
_cons 

. 9833643 . 0068704 143 . 13  0 . 000 
2 .001111  . 0038554 519 . 05 0 . 000  

. 9698985 
1 . 993555 

. 9968301 
2 . 008667 

The estimates are 7J2 = 0.983 and 7J 1 = 2 .001; quite close to the DGP values of 1 and 
2 .  The standard errors for the slope coefficient are 0.007 and 0.004, so in 95% of such 
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simulations, we expect 732 to lie within [0.970, 0.997]. The DGP value falls just outside 
this interval, most likely because of randomness. The DGP value of the intercept lies 
within the similar interval [1 .994, 2.009]. 

If N = 1 , 000, 000 , for example, estimation is more precise, and we expect estimates 
to be very close to the DGP values. 

This DGP is quite simple. More challenging tests would consider a DGP with addi­
tional regressors from other distributions. 

1 1 .5.  7 Checking standard-error estimation 

To check that standard errors for an estimator 73 are com_puted correctly, we can per­
form, say, S = 2000 simulations that yield S estimates (3 and S computed standard 
errors s73. If the standard errors are correctly estimated, then the average of the S com-

puted standard er�ors, Sjj = s-1 L;=l Sjj, should equal the standard deviation of the 5 

estimates 73, which is (S - 1) -l L:;� =1 (73- E)2 , where P = s-1 L:;�= 173. The sample size 
needs to be large enough that we believe that asymptotic theory provides a good guide 
for computing the standard errors. We set N = 500. 

We first write the secheck program, which draws one sample from the same DGP 
as was used in the previous section. 

• Program to generate dataset, obtain e�timate, and return beta and SEs 
program secheck, rclass 
1 .  version 1 0 . 1  
2 .  drop _all 
3. set obs 500 
4 .  generate x = rnormal ( 0 , 0 . 5 )  
5 .  generate mu = exp(2 + x)  
6 .  generate y = rpoisson(mu) 
7 .  ml model l f  lfpois ( y  = x) 
8 .  ml maximize 

· 

9 .  return scalar b 1  =_b [_cons] 
10 .  return scalar s e 1  = _se [_cons] 
1 1 .  return scalar b2  =_b[x] 
12 .  return scalar se2 = _se [x] 
13 .  end 

We then run this program 2,000 times, using the simulate command. (The postfile 
command could alternatively be used.) We have 

* Standard errors check: run program secheck 
set seed 10101 
simulate "secheck" bcons=r (b1) se_bcons=r (se1) bx=r(b2) se_bx=r (se2) , 

> reps(2000) 
command : secheck 
statistics: bcons = r(b1)  

se_bcons = r(se1) 
bx r(b2) 
se_bx = r(se2) 
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summarize 
Variable Dbs Mean Std. Dev.  Min Max 

bcons 2000 1 . 999649 .0173978 1 . 944746 2 . 07103 
se_bcons 2000 . 0 172925 .0002185 - 9 164586 . 0181821 

bx 2000 1 . 000492 . 0308205 .8811092 1 . 084845 
se_bx 2000 .0311313 . 0014977 .0262835 .0362388 

The column Obs in the summary statistics here refers to the number of simulations 
(S = 2000). The actual sample size, set inside the secheck program, is N = 500. 

For the intercept ,  we have Sfj1 = 0 .0173 compared with 0.0174 for the standard 
deviation of the 2,000 estimates for 731 (bcons). For the slope, we have sfj2 = 0.0311 
compared with 0.0308 for the standard deviation of the 2,000 estimates for 732 (bx). The 
standard errors are correctly estimated. 

11.6 The ml  command: dO, dl ,  and d2  methods 

The lf method is  fast and simple when the objective function is of the form Q(8) = 

�i q(yi, Xi, 8) with independence over observation i, a form that Stata manuals refer 
to as the linear form, and when parameters appear as a single index or as just a few 
indexes. 

The dO, dl ,  and d2 methods are more general than lf.  They can accommodate 
situations where there are multiple observations or equations for each individual in the 
sample. This can arise with panel data, where data on an individual are available in 
several time periods, with conditional logit models, where regressor values vary over 
each of the potential outcomes, in systems of equations, and in the Cox proportional 
hazards model, where a -risk set is formed at each failure. 

Method dl allows one to provide analytical expressions for the gradient, and method 
d2 additionally allows an analytical expression for the Hessian. This can speed up 
computation comRared with the dO method, which relies on numerical derivatives. 

11 .6.1 Evaluator functions 

The objective function is one with multiple indexes, say, J, and multiple dependent 
variables, say, G, for a given observation. So 

'\:"'N I I _J 
Q(  8) = L...,i=I Q(xli(JlJ X2i82 , · · . , XJi(} J; Yli, · · · ,  Yci) 

where y1i, . . .  , YGi are possibly correlated with each other for a given i though they are 
independent over i . 

For the d0-d2 methods, the syntax is 

ml model method progname eqt [ eq2 . . .  ] [ if ] [ in ]  [ weight ] [ , options ] 
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where method is dO, d1 ,  or d2; progname is the name of an evaluator program; eqt defines 
the dependent variables and the regressors involved in the first index; eq2 defines the 
regressors involved in the second index; and so on. 

The evaluator program, progname, has five arguments: tcid.o, b, lnf, g, and negH. 
The ml command uses the todo argument to request no derivative, the gradient, or the 
gradient and the Hessian. The b argument is the row vector of parameters e. The lnf 
argument is the scalar objective function Q( e) .  The g argument is a row vector for 
the gradient EJQ(e)jEJe', which needs to be provided only for the d1 and d2 methods. 
The negH argument is the negative Hessian matrL-.;: �82Q(e) jEJ()EJe', which needs to be 
provided for the d2 method. 

The evaluators for the d0-d2 methods first need to link the parameters f} to the 
indexes x�;e 1 ,  . . . . This is done with the mleval command, which has the syntax 

mleval newvar = vecname [ ,  eq(#) ] 

For example, mleval ' theta 1 '  = ' b '  , eq ( 1 )  labels the first index x�;e1 as the tal. The 
variables in xli will be listed in eqt in ml model. 

Next the evaluator needs to compute the objective function Q(  e) ,  unlike the lf 
method, where the ith entry q;(e) in the objective function is computed. The mlsum 
command sums q;(e) to yield Q(e) . The syntax is 

mlsum scalarname_lnf = exp [ if ] 

For example, mlsum ' lnf ' = ( '  y' - ' the tal ' )  -2 computes the sum of squared residuals . 
2:::;, (Yi � X�;el )2 . 

The d1 and d2 methods require specification of the gradient. For linear-form models, 
this computation can be simplified with the mlvecsum command, which has the syntax 

mlvecsum scalarnameJnf rowvecname = exp [ if ]  [ ,  eq(#) ] 

For example, mlvecsum ' lnf · ' d1 · = · y · - · theta! · computes the gradient for the subset 
of parameters that appear in the first index as the row vector 2:::;, (Yi � x�;e1)x1i. Note 
that ml vecsum automatically multiplies · y · - '  thetal · by the regTessors x1i in the index 
theta! because equation one is the default when eq () is not specified. 

· 

The d2 method requires specification of the negative Hessian matrix. For linear-form 
models, this computation can be simplified with the mlmatsum command, which has the 
syntax 

mlmatsum scalarname_lnf matrixname = exp [ if ]  [ , eq (#  [ , # ] ) ] 

For example, mlmatsum ' lnf ' " dl ' = ' thetal · computes the negative Hessian matrix 
for the subset of parameters that appear in the first index as 2:::;i x�ie 1 . The mlmatsum 
command automatically multiplies ' theta! · by X1;X�; ,  the outer product of the regres­
sors x1i in the index theta!. 
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11.6.2 The dO method 

We consider the cross�section Poisson model, a single-index model. For multi-index 
models-such as the Weibull-and panel data, Cox proportional hazards, and condi­
tional logit models, see the Weibull example in [R] ml and .Gould, Pitblado, and Sribney 
(2006). Gould, Pitblado, and Sribney (2006) also consider complications such as how 
to make ado-files and how to incorporate sample weights. 

A dO method evaluator program for the Poisson MLE is the following: 

* Method dO: Program dOpois to be called by command ml method dO 
program dOpois 
1 .  version 10 . 1  
2 .  args todo b lnf 
3 .  tempvar theta1 
4 .  . mleval 'theta1'  � ' b ' ,  eq(1)  

II todo is not used,  b�b ,  lnf�lnL 
II theta1�x·b given in eq(1) 

5. local y $ML_y1 II Define y so program more readable 
6 .  mlsum · 1 � ·  � -exp ( ' theta1 ' )  + ' y " • "theta1' - lnfactorial ( ' y ' )  
7 .  end 

The code is similar to that given earlier for the lf method. The mleval command forms 
the single index x!J3. The mlsum command forms the objective function as the sum of 
log densities for each observation. 

Here there is one dependent variable, doc vis , and only one index with the regressors 
private, chronic, f emale, and income, plus an intercept. 

• Method dO :  implement Poisson MLE 
. ml model dO dOpois (docvis � private cbronic fema�e income) 
. ml maximize 
initial: log likelihood � -33899 .609 
alternative: log likelihood � -28031 . 767 
rescale : log likelihood � -24020 .669 
Iteration 0 :  log likelihood � -24020 . 669 . 
Iteration 1 :  log likelihood � -18845.464 
Iteration 2 :  log likelihood � -18510. 287 
Iteration 3 :  log likelihood � -18503. 552 
Iteration 4 :  log likelihocd � -18503. 549 
Iteration 5: ·log likelihood � -18503. 549 

Log likelihood � -18503. 549 

docvis Coef . Std. Err. z 

private . 7986653 . 027719 28.81  
chronic 1 .  091865 . 0157985 69 . 1 1  
female .4925481 . 0 160073 30 .77 
income . 003557 . 0002412 14 .75  
_cons - . 2297263 . 0287022 -8 .00  

Number o f  obs 
Wald chi2(4) 
Prob > chi2 

P> l z l  [95/. Conf . 

0 . 000 .7443371 
0 . 000 1 . 060901 
0 .000 .4611744 
0 . 000 . 0030844 
0 .  000 - . 2859815 

4412 
8052 .34  

0 .0000 

Interval] 

.8529936 
1 . 12283 

. 5239218 

. 0040297 
- . 173471 

The resulting coefficient estimates are the same as those from the poisson command 
and those using the lf method given in section 11 :4.3. For practice, check the nonrobust 
standard errors. 
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1 1.6.3 The dl method 

The dl method evaluator program must also provide an analytical expression for the 
gradient. 

• Method d 1 :  Program d1pois to be called by command ml method d1 
program d1pois 
1 .  version 10 . 1  
2 .  args todo b lnf g 
3 .  tempvar theta1 
4. mleval " theta1' " b " ,  eq(1) 
5 .  local y $ML_y1 
6 .  mlsum " lnf " = -exp( "theta1" ) + 
7 .  i f  C todo"==O I "lnf'>= . )  exit 
8 .  tempname d1 

II gradient g added to the arguments list 
II theta1 = x'b given in eq(1)  

I I Define y .s o  program more readable 
· y · • - theta1 " - lnfactorial ( " y " )  

II Extra code from here on 

9 .  mlvecsum "lnf"  " d 1 '  = y - expCtheta1 ' )  
10 .  matrix · g ·  = { "di  " )  
11 .  end 

The mlvecsum command forms the gradient row vector L:;{Y; - exp(xi�)}xi , where Xi 
are the first-equation regressors. 

The model is run in the same way, with dO replaced by dl and the evaluator func­
tion dOpois replaced by dlpois. The ml model dl dlpois command with the de­
pendent variable docvis and the regressors private ,  chronic, female, and income 
yields the same coefficient estimates and (nonrobust) standard errors as those given in 
::;ection 11.6.2. These results are not shown; for practice ,  confirm this. 

1 1 .6.4 The dl method with the robust estimate of the VCE 

The standard code for methods d0-d2 does not provide an option for robust standard 
errors, whereas the lf program does. But robust standard errors can be obtained if the 
gradient is included (methods dl and d2) . We demonstrate this for the dl method. 

We need to provide the additional argument gl, which must follow negH, so the 
argument list must include negH even if no formula is given for negH. 

* Method d 1 :  With robust SEs program dipoisrob 
program d1poisrob 
1 .  version 1 0 . 1  
2 .  args todo b lnf g negH g1 
3 .  tempvar theta1 
4 .  mleval "theta1" = " b " ,  eq(1) 
5 .  local y $ML_y1 
6 .  tempvar lnyfact mu 

II For robust add g1 and also negH 
II theta1 = x " b  Yhere x given in eq(1) 

II define y so program more readable 

7 .  mlsum "lnf'  = -exp ( " theta1 ' )  + · y · • - theta1"  - lnfactorial ( " y " )  
8 .  i f  ( " todo·=�O I " lnf ·>= . )  exit 
9. tempname d1 

1 0 .  quietly replace " g l' = · y ·  - exp ( " thota 1")  II extra code for robust 
1 1 .  mlvecsum "lnf • • d 1' = "g1 -, eq (1)  I I changed 
12. matrix · g ·  = ( " d 1 " )  
13 .  end 



11 .6 .5  Tbe d2 method 375 

The robust estimate of the VCE is that given in section 10.4.5 ,  with H.i computed by 
using numerical derivatives, and g; = (y; - x�{3):x;. 

We obtain 

• Method d1 : implement Poisson MLE with robust standard errors 
ml model d1 d1poisrob (docvis = private chronic female income) ,  vce(robust) 
ml maximize 

initial: log pseudolikelihood � -33899 . 609 
alternative: log pseudolikelihood -28031 . 767 
rescale: log pseudolikelihood -24020 . 669 
Iteration 0 :  log pseudolikelihood -24020 . 669 
Iteration 1 :  log pseudolikelihood -18845.4 72 
Iteration 2 :  log pseudolikelihood -18510.192 
Iteration 3 :  log pseudolikelihood -18503.551 
Iteration 4 :  l o g  pseudolikelihood -18503. 549 
Iteration 5 :  log  pseudolikelihood -18503.549 

Number of obs 4412 
Wald chi2(4) 594.72 

Log pseudolikelihood -18503.549 Prob > chi2 0 . 0000 

Robust 
docvis Coef. Std. Err .  z P> l z l  [95/. Conf . Interval] 

private . 7986654 . 1090015 7 . 33 0 . 000 . 5850265 1 . 012304 
chronic 1 .  091865 . 0559951 19 .50  0 . 000 . 9821167 1 .  201614 
female .4925481 . 0585365 8 . 4 1  0 .000  . 3778187 . 6072775 
income . 003557 . 0010825 3 . 29 0 . 001  .0014354 . 0056787 

cons - .2297263 . 1 1 08733 -2.07 0 . 038 - . 4470339 - . 0124187 

We obtain the same coefficient estimates and robust standard errors as poisson with 
robust standard errors (see section 11 .4 .3) .  

11 .6.5 The d2 method 

The d2 method evaluator program must also provide an analytical expression for the 
negative of the Hessian. 

• Method d2: Program d2pois to be called by command ml method d2 
program d2pois 
1 .  version 1 0 . 1  
2 .  args todo b lnf g negH 
3 .  tempvar theta1 
4 .  mleval "theta1'  
5. local y $ML_y1 

" b ' ,  eq(1)  

6 .  mlsum " l n f '  = -exp ( " theta1 ' )  + 
7 .  i f  ( " todo'==O I "lnf '>= . )  exit 
8 .  tempname d1 

II Add g and negH to the arguments list 
II theta 1 x ' b  where x given in eq(1)  

II Define y so program more readable 
" y ' • " theta 1' - lnfactorial ( " y ' )  

I I  d 1  extra code from here 

9.  mlvecsum " l.nf '  "d1' = · y ·  - exp ( "theta1 ')  
10 .  matrix ·g·  = ( "d1 ' )  
1 1 .  i f  ( " todo '==1 I "lnf'>= . )  exit II d2 extra code from here 
12 . tempname d11  
13 . mlmatsum "lnf'  "d11 ' = exp ( " theta1 ' )  
1 4 .  matrix "negH' = "d11'  
15 .  end 
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The mlma tsu.m command forms the negative Hessian matrix 2:::;; exp(:<,/3)x;x�, where x; 
are the first-equation regressors. 

The ml model d2 d2pois command with the dependent variable docvis and the 
regressors private, chronic, female and income yields the same coefficient estimates 
and (nonrobust) standard errors as those given in section 11 .6 .:2 .  These results are not 
shown; for practice, confirm this claim. 

With more than one index, it will also be necessary to compute cross-derivatives 
such as ' d12 ' .  The mlmatbysum command is an extension that can be applied when 
the log likelihood for the ith observation involves a grouped sum, such as for panel data. 
See [R] ml for a two-index example, the Weibull MLE. 

1 1 .7 The Mat a optimize() function 

It can be more convenient, even necessary for complicated models, to express an ob­
jective function using matrix programming functions. The Mata optimize ()  function, 
introduced in Stata 10, uses the same optimizer as the Stata ml command, though with 
different syntax. 

11 .7  . 1  Type d and v evaluators 

Because y and x are used to denote dependent variable�:> and re�ret:>t:>Ort:>, the Mata 
documentation uses the generic notation that we want to compute real row vector p 
that maximizes the scalar function f(p). Note that p is a row vector, whereas in this 
book we usually define vectors (such as (3) to be column vectors. 

An evaluator function calculates the value of the objective function at values of the 
parameter vector. It may optionally calculate the gradient and the Hessian. 

There are two distinct types of evaluator functions used by Mata. 

A type d evaluator returns the value of the objective as the scalar v = f(p ). The 
minimal syntax is 

void evaluator( todo , p ,  v ,  g ,  H) 

where todo is a scalar, p is the row vector of parameters, v is the scalar function value, 
g is the gradient row vector EJf(p)/EJp, and H is the Hessian matri..-x EJf(p)/EJpop1• If 
todo equals zero, then numerical derivatives are used (method dO) ,  and g and H need 
not be provided. If todo equals one, then g must be provided (method d1 ) ,  and if todo 
equals two, then both g and H must be provided (method d2) . 

A type v evaluator is more suited to m-estimation problems, where we maximize 
Q(fJ)  = 2:::;�1 q;(fJ). Then it may be more convenient to provide an N x l vector with 
the ith entry q;(fJ) rather than the scalar Q(fJ) .  A type v evaluator returns the column 
vector v, and f(p) equals the sum of the entries in v. The minimal syntax for a type v 
evaluator is 
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void evaluator (todo, p ,  v ,  g ,  H) 

where todo i s  a scalar, p i s  a row vector of parameters, v i s  a column vector, g i s  now 
the gradient matrix 8v / 8p, and H is the Hessian matrix. If todo equals zero, then 
numerical derivatives are used (method vO) and g and H need not be provided. If todo 
equals one, then g must be provided (method vi) ,  and if todo equals two, then both g 
and H must be provided (method v2). 

Up to nine additional arguments can be provided in these evaluators, appearing 
after p and before v. In that case, these arguments and their relative positions need to 
be declared by using the optimize_ini t_arguments 0 function, illustrated below. For 
regression with data in y and X, the arguments will include y and X. 

11 .7 .2 Optimize functions 

The optimize fimctions fall into four broad categories. First, fimctions that define the 
optimization problem, such as the name of the evaluator and the iterative technique to 
be used, begin with optimize_ini t. Second, functions that lead to optimization are 
optimize () or opti:nize_evaluate ( ) . Third, functions that return results begin with 
opt:i.mize_resul t. Fourth, the optimize_query ( ) function lists optimization settings 
and results. 

A complete listing of these functions and their syntaxes is given in [M-5] optimize( ) .  
The following example essentially uses the minimal set of optimize ( )  functions to 
perform a (nonlinear) regression of y on x and to obtain coefficient estimates and an 
estimate of the associated VCE. 

11 .7 .3 Poisson exampie 

vVe implement the Poisson MLE, using the Mata optimiz e ( )  function method v2. 

Evaluator program for Poisson MLE 

The key ingredient is the evaluator program, named poisson. Because the v2  method 
is used, the evaluator program needs to evaluate a vector of log densities, named 
lndensity, an associated gradient matrix, named g, and the Hessian, named H. We 
name the parameter vector b. The dependent variable and the regressor matrix, named 
y and X, are two additional program arguments that will need to be declared by using 
the optimize_ini t_argument ( ) . function. 

For the Poisson MLE, from section 11 .2 .2 ,  the column vector of log densities has the 
ith entry In f(y;jx,) = - exp(x�,(3) + x�(3y; - lny ;!; the associated gradient matrix has 
the ith row {y., - exp(x�(3)}x;; and the Hessian is the matrix Li - exp(x�(3)x;x:. A 
listing of the evaluator program follows: 
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* Evaluator function for Poisson MLE using optimize v2 evaluator 
mata 
--�------------------- mata (type end to exit) 

void. poisson(todo, b, y ,  X, lndens ity, g , H) 
> { 
> Xb = X•b"  
> mu = exp(Xb) 
> lndensity = -mu + y : •Xb - lnfactorial(y) 
> if (todo == 0) return 
> g = (y-mu) :*X 
> if (todo == 1) return 
> H = - cross(X, mu, X) 
> } 
: end 

A better version of this evaluator function that declares the types of all program argu­
ments and other variables used in the program is given in appendix B .3.l .  

The optimize(} function for Poisson MlE 

The complete Mata code has four components. First, define the evaluator, a repeat of 
the preceding code listing. Second, associate matrices y and X with Stata variables by 
using the st_ view ()  function. In the code below, the names of the dependent variable 
and the regressors are in the local macros y and xlist,  defined in section 11 .2 .3. Third, 
optimize, which at a minimum requires the seven optimize 0 functions, given below. 
Fourth, construct and list the key results. 

· 

* Mata code to obtain Poisson ML£ using command optimize 
mat a 
---------------------- mata (type end to exit) --

void poissonmle (todo, b ,  y, X, lndensity, g ,  H) 
> { 
> Xb = X•b· 
> mu = exp(Xb) 
> lndensity = -mu + y : •Xb - lnfactorial(y) 
> if (todo == 0) return 
> g = (y-mu) : •X 
> if (todo == 1) return 
> H = - cross(X, mu, X) 
> } 

st_view(y= . ,  0 ,  
u · y � u ) 

st_viell(X= . , . , tokens ( " -xlist " " ) )  

S = optimize_init( ) 
optimize_init_evaluator(S ,  &poisson() )  
optimize_init_evaluatortype( S ,  "v2")  

optimize_init_argument( S ,  1 ,  y )  

optimize_init_argument ( S ,  2 ,  X )  
optimize_init_params (S, J (l, cols (X) , O ) )  
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b = optimize (S ) 
Iteration 0 :  f(p). = -33899 .609 
Iteration 1 :  f (p) = -19668. 597 
Iteration 2: f (p) = -18585.609 
Iteration 3: f (p) = -18503. 779 
Iteration 4 :  f (p) = -18503. 549 
Iteration 5 :  f (p) = -18503. 549 

Vbrob = optimize_result_ V _robust(S) 
serob c (sqrt(diagonal(Vbrob) ) )  • 

b \ �erob 

. 7986653788 

. 1090014507 

2 

1 . 091865108 
.0559951312 

3 

. 4925480693 

. 0585364 7 46 

4 5 

. 0035570127 - . 2297263376 

. 0010824894 . 1 108732568 

379 

� I �--------------------------------------------------� 

end 

The S = optimize_ini t ( ) function initiates the optimization, and because S is 
used, the remaining functions have the first argument S. The next two optimize()  
functions state that the evaluator is  named poisson and that optimize 0 method v 2  is 
being used. The subsequent two optimiz e ( )  functions indicate that the fi.rst additional 
argument after b in program poisson is y, and the second is X. The next function 
provides starting values and is necessary. The b = optimize (S) function initiates the 
optimization. The remaining functions compute robust standard errors and print the 
results. 

The parameter estimates and standard errors are the same as those from the Stata 
poisson command with the vce (robust) option (see section 1 1 .4 .3) .  Nicely displayed 
results can be obtained by using the st...matrixO function to pass b · and Vbrob from 
Mata to Stata and then by using the ereturn display command in Stata, exactly as 
in the section 1 1 .2 .3 example. 

11 .8  Generalized method of  moments 

As an example of GMM estimation, we  consider the estimation of a Poisson model with 
endogenous regressors. 

There is no built-in Stata command for nonlinear GMM estimation. The two-stage 
least-squares interpretation of linear instrumental variables (rv) does not extend to non­
linear models, so we cannot simply do Poisson regression with the endogenous regressor 
replaced by fitted values from a fi rst-stage regression. And the objective function is not 
of a form well-suited for the Stata ml command, because it is a quadratic form in sums 
rather than a simple sum. Instead, we use Mata to code the GMM objective function, 
and then we use the Mata optimize ( )  function: 
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11 .8 . 1  Definition 

The GMM begins with the population moment conditions 

E{h(w; ,  e)}  = 0 (11 .  7)  

where e is a q x 1 vector, h(- )  i s  an  r x 1 vector function with r 2: q ,  and the vector 
w; represents all observables including the dependent variable, regressors and, where 
relevant, IV. A leading example is linear IV (see section 6.2) , where h(w., , e) = zi(Y; -
x;m. 

If r = q, then the method-of-moments (MM) estimator OMM solves the corresponding 
sample moment condition N-1 L:i h(w., e) = 0. Tbis is not possible if r > q, such 
as for an overidentified linear IV model, because there are then more equations than 
parameters. 

The GMM estimator OcMM minimizes a quadratic form in L h(wi, e) ,  with the 
objective function 

(11 .8) 

where the r x r weighting matrix W is positive-definite symmetric, possibly stochastic 
with a finite probability limit, and does not depend on e. The MM estimator, the special 
case r = q, can be obtained most simply by letting W = I, or any other value, and then 
Q(e) = 0 at the optimum. 

Provided that condition ( 1 1 .7) holds, the GMM estimator is consistent for e and is 
asymptotically normal with the robust estimate of the VCE 

v(ecMM) = (c'wc) - 1 c'wswd (c'wc) - l  

where, assuming independence over i ,  

(11 .9)  

For MM, the variance simplifies to  (c'§-1d) - l  regardless of the choice of W. For 
GMM, different choices of W lead to different estimators. The best choice of W is 

W = §- I , in  which case again the variance simplifies to (1/N) (c'§-1d) -1 . For 
linear IV, an explicit formula for the estimator can be obtained; see section 6.2. 

11 .8 .2  Nonlinear IV example 

vVe consider the Poisson model withan endogenous regressor. There are several possible 
methods to control for endogeneity; see chapter 17 .  We consider use of the nonlinear IV 
(NLIV) estimator. 
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The Poisson regression model specifies that E{y-exp(x' ,6)lx} = 0, because E(ylx) = 

exp(x',6). Suppose instead that E{y - exp(x',6) 1x} "1- 0, because of endogeneity of one 
or more regressors, but there are instruments z such that 

E[ Zi{Yi - exp( x' ,6)}] = 0 · 

Then the GMM estimator minimizes 

( 1 1 . 10 )  

where the r x 1 vector h(,6) = L; Zi{y, - exp(x;,6) } .  This i s  a special case of ( 1 1 .8) 
with h(wi, 0) = zi {Yi - exp(x;,a)} . 

Define the r x K matrix G(,6) = - Li exp(x;,a)z.,x;. Then the K x 1 gradient vector 

g(,6) = G(,6)'Wh(,6) ( 1 1 . 1 1 )  

and the K x K expected Hessian is 

H(,6) = G(,6)'WG(,6)' 

where simplification has occurred by using E{h(,6) } = 0. 

The estimate of the VCE is that in ( 1 1 . 9 )  with G = G(,8) and § 
exp(x;,8) Fziz;. 

L·; {Yi -

11 .8.3 G M M  using the Mata optimize() function 

The first-order conditions g(,6) = 0, where g(,6) is given in ( 1 1 . 1 1 ) ,  have no solution 
for ,6, so we need to use an iterative method. The ml command is not well suited to 
this optimization because Q(,6) given in ( 1 1 . 10 )  is a quadratic form. Instead, we use 
the Ma ta optimiz e () function. 

We let W = (Li Ziz;) - 1 as for linear two-stage least squares. The following Mata 
expressions form the desired quantities, where we express the parameter vector b and 
gradient vector g as row vectors because the optimize ( )  function requires row vectors. 
We have 

Xb = X•b- II b for optimize is 1 x k roY vector 
mu = exp(Xb) 
h = z ·  (y-mu) II h is r x 1 column roY vector 
W = cholinv(z -z )  II W is r x r �atrix 
G = -(mu : • Z )  ·x II G is r x k matrix 
S = ( (y-mu) : • Z ) - ( (y-mu) : •Z)  II S is r x r matrix 
Qb = h-W•h II Q(b) is scalar 
g = c ·w•h II gradient for optimize is 1 x k roY vector 
H = G ·w•G II H essian fo·r optimize is k x k matrix 
V = luinv (G-W•G)•G -W•S•W•G•luinv (G-W•G) 

We fit a model for doc vis, where private is endogenous and firmsize is used as 
an instrument, so the model is just-identified. We use optimize 0 method d2, where 
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the objective function is given as a scalar and both a gradient vector and Hessian 
matrix are provided. The optimize...result_V_robust (S) command does not apply to 
d evaluators, so we compute the robust estimate of the VCE after optimization. 

The structure of the Mata code is similar to that for the Poisson example explained 
in section 1 1 .7.3. We have 

· 

* Mata code to obtain GMM estimator for Poisson using command optimize 
mat a 

---------------------- mata (type end to exit) 
void pgmm(todo, b ,  y, X ,  Z ,  Qb, g, H) 

> { 
> Xb = Hb' 
> mu = exp(Xb) 
> h = Z ' (y-mu) 
> W = cholinv(cross ( Z , Z ) )  
> Qb = h'W•h 
> if (todo == 0) return 
> G = -(mll : • Z ) ' X  
> g = (G"W•h) . 
> if (todo == 1) return 

> _makesymmetric(H) 
> } 

st_ view( y= . , 

st_ vieY(X=. , 
st_ vieY(Z= . , 

lt -- y .. ll ) 
tokens ( " " xlist ' " ) )  

tokens ( " · zl i st • " ) ) 

S = optimize_init ( )  

optimizo_init_Yhich(S,  "min") 
optimize_init_evaluator(S ,  &p�( ) )  
optimize_ini t_eval uatortype( S ,  "d2")  

optimize_init_argument ( S ,  1, y )  
optimize_init_argument ( S ,  2 ,  X )  
optimize_init_argument ( S ,  3 ,  Z )  
optimize_init_params(S, J ( 1 , cols(X) , O ) )  
optimize_init_technique ( S , "nr")  

b = optimize(S) 
Iteration 0: f (p) 71995.212 
Iteration 1 :  f(p) 9259. 0408 
Iteration 2 :  f(p) 1186.8103 
Iteration 3:  f(p) 3 . 4395408 
Iteration 4: f(p) . 00006905 
Iteration 5 :  f(p) 5 .  672e-14 
Iteration 6: f (p )  1 . 861e-27 

II Compute robust estimate of VCE and SEs 
X b  = X•b"  
mu = exp(Xb) 

h = Z ' (y-mu) 
W = cholinv ( cross ( Z , Z ) )  
G = -(mu : •Z )  · x  
Shat = ( (y-mu) : •Z ) ' ( (y-mu) : •Z) •roYs (X)I (ro"s (X)-cols(X))  
Vb = luinv(G 'W•G)•G "W•Shat•W*G•luinv(G'W•G) 
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seb � (sqrt(diagonal (Vb) ) ) '  
b \ seb 

1 
2 

end 

1 . 340291853 
1. 559899278 

2 

1 . 072907529 
. 0763116698 

3 

.477817773 
. 0690784466 

4 5 

. 0027832801 - . 6832461817 

. 0021932119 1 . 350370916 
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More generally, we could include additional instruments, which requires changing 
only the local macro for ' zlist · .  The model becomes overidentified and GMM estimates 
vary with choice of weighting matrix W. The one-step GMM estimator is /3, given above. 
The two-step (or optimal) GMM estimator recalculates /3 by using the weighting matrix 
w = §-1 . 

The Mata code is easily adapted to other cases where E{y - m(x' ,6)lz} = 0 for the 
specified function m(· ) ,  so it can be used, for example, for logit and probit models. 

11 .9  Stata resources 

The key references are [R] ml and [R] maximize. Gould, Pitblado, and Sribney (2006) 
provides a succinct yet quite comprehensive overview of the ml method. 

Nonlinear optimization is covered in Cameron and Trivedi (2005, ch. 10) ,  Greene 
(2003, app. E .6) , and Wooldridge (2002, ch. 12.7 ) . GMM is covered in Cameron and 
Trivedi (2005, ch. 5 ) ,  Greene (2003, ch. 18), and Wooldridge (2002, ch. 14). 

1 1. 10  Exercises 

1. Consider estimation of the logit model covered in chapter 14. Then Q(,6) = 
L;{y ;lni\; + ( 1 - Y;) i\;} , where i\; = A.(x�,6) = exp(x:,6) /{l  + (x�,6) } .  Show 
that g(,6) = L; (Yi - i\;)x; and H(,6) = Li -i\.;(1 - i\;)x;x:. Hint: oi\(z) /oz = 
A.(z){1 - A.(z)} .  Use the data on docvis to generate the binary variable d_dv for 
whether any doctor visits. Using just 2002 data, as in this chapter, use logit 
to .perform logistic regression of the binary variable d_dv on private ,  chronic, 
female, income, and an intercept . Obtain robust estimates of the standard errors. 
You should find that the coefficient of private, for example, equals 1.27266, with 
a robust standard error of 0.0896928. 

2. Adapt the code of section 11.2 .3 to fi t  the logit model of exercise 1 using NR 
iterations coded in Mata. Hint: in defining an n x 1 column vector with entries 
i\; , it may be helpful to use the fact that J (n , 1 ,  1 ) creates an n x 1 vector of ones. 

3. Adapt the code of section 11 .4.3 to fit the logit model of exercise 1 using the ml 
command method lf.  
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4. Generate 100,000 observations from the following logit model DGP: 

Yi = 1 if (31 + f32Xi + Ui > 0 and y; = 0 otherwise; ((31> (32) = (0, 1 ) ;  x; � N(O, 1) 

where u; is logistically distributed. Using the inverse transformation method, a 
draw u from the logistic distribution can be computed as u = - ln{ ( 1 - r)/r} , 
where r is a draw from the uniform distribution. Use data from this DGP to check 
the consistency of your estimation method in exercise 3 or, more simply, of the 
logit command. 

5. Consider the NLS example in section 11 .4.5 with an exponential conditional mean. 
Fit the model using the ml command and the lfnls program. Also fi t  the model 
using the nl command, given in section 10.3 .5 . Verify that these two methods 
give the same parameter estimates but, as noted in the te..'<t, the robust standard 
errors differ. 

6. Continue the preceding exercise. Fit the model using the ml command and 
the lfnls program with default standard errors. These implicitly assume that 
the NLS model error has a variance of a2 = 1 .  Obtain an estimate of s2 = 
( 1 /  N - K) L:; {Y·i - exp(x;,6) } 2 ,  using the postestimation predictnl command to 
obtain exp(x'<;3) .  Then obtain an estimate of the VCE by multiplying the stored 
result e (V) by s2. Obtain the standard error of hriv:>te, and compare this with 
the standard error obtained when the NLS model is fitted using the nl command 
with a default estimate of the VCE. 

7. Consider a Poisson regression of docvis on the regressors private ,  chronic, 
female, and income and the progTams given in section 11 .6 .  Run the ml model 
dO dOpois command, and confirm that you get the same output as produced by 
the code in section 1 1 .6 .2 .  Confi rm that the nonrobust standard errors are the 
same as those obtained using poisson with default standard errors. Run ml model 
d1 d1pois, and confi.rm that you get the same output as produced by the code 
in section 11 .6 .2 .  Run ml model d2 d2pois, and confirm that you get the same 
output as that given in section 11 .6 .2 .  

8. Adapt the code of section 1 1 .6.2 to  fit  the logit model of exercise 1 by using ml 
command method dO. 

9. Adapt the code of section 11.6.4 to fit the logit model of exercise 1 by using ml 
command method dl with robust standard errors reported. 

10 .  Adapt the code of section 11 .6 .5 to fit the logit model of exercise 1 by using ml 
command method d2. 

1 1 .  Consider the negative binomial example given in section 11 .4 .4 . Fit this same 
model by using the ml command method dO. Hint: see the Weibull example in 
[R] ml. 
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12 .1  I ntroduction 

Econometric modeling is  composed of a cycle of initial model specification, estimation, 
diagnostic checks, and model respecifi cation. The diagnostic checks are often based on 
hypothesis tests for the statistical significance of key variables and model-specification 
tests. This chapter presents additional details on hypothesis tests, associated confidence 
intervals, and model-specification tests that are used widely throughout the book. 

The emphasis is on Wald hypothesis tests and confidence intervals. These produce 
the standard regression output and can also be obtained by using the test, testnl, 
lincom, and nlcom commands. ·we also present the other two classical testing methods, 
likelihood-ratio a.:1d Lagrange multiplier tests, and Monte Carlo methods for obtaining 
test size and power. Finally, we discuss model-specifi cation tests, including information 
matri.:'< tests, goodness-of-fit tests, Hausman tests, and tests of overidentifying restric­
tions that are applied in various chapters. Model-selection tests for nonnested nonlinear 
models are not covered, though some of the methods given in chapter 3 for linear mod­
els can be extended to nonlinear models, and a brief discussion for likelihood-based 
nonlinear models is given in section 10.7.2. 

12 .2  Critical values and p-values 

iefore discussing Stata estimahon and testing commands and associated output, we 
discuss how critical values and p-values are computed. 

Introductory econometrics courses often emphasize use of the t(n) and F(h, n) dis­
tributions for hypothesis testing, where n is the degrees of freedom and h is the number 
of restrictions. For cross-section analysis, often n = N - K, where N is the sample size 
and K is the number of regressors. For clustered data, Stata sets n = C - 1, where C 
is the number of clusters. 

These distributions hold exactly only in the very special case of tests of linear re­
strictions for the ordinary least-squares ( OLS) estimator in the linear regression model 
with independent normal homoskedastic errors. Instead, virtually all inference in mi­
croeconometrics is based on asymptotic theory. · This is the case not only for nonlinear 
estimators but also for linear estimators, such as OLS and instrumental variables (rv), 
with robust standard errors. Then test statistics are asymptotically standard normal (Z) 
distributed rathe.r than t(n), and chi-squared [x2 (h)] distributed rather than F(h, n). 

38.5 
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12.2.1 Standard normal compared with Student's t 

The change from t(n) to standard normal distributions is relatively minor, unless n is 
small, say, less than 30. The two distributions are identical for n __, oo. The t distri­
bution has fatter tails, leading to larger p-values and critical values than the standard 
normal at conventional levels of significance such as 0.05. In this book, we rely on 
asymptotic approximations that require samples much larger than 30 and for which the 
difference between the two distributions is negligible. 

12.2.2 Chi-squared compared with F 

Many tests of joint hypotheses use the x2 distribution. A x2(h) random variable has a 
mean of h, a variance of 2h, and for h > 7, the 5% critical value lies between h and 2h. 

The x2(h) distribution is scaled quite differently from the F. As the denominator 
degrees of freedom of the F go to infinity, we have 

F(h, n) 
__, X2�h) as n __, oo ( 12 . 1 )  

Thus, if asymptotic theory leads to a test statistic that is x2(h) distributed, then division 
of this statistic by h leads to a statistic that is approximately F(h, n) distributed if n is 
large. In finite sample::;, the F(h, n) distribution has fatter tails than x2(h)/ h, leading 
to larger p-values and critical values for the F compared with the x2 • 

12.2.3 P lotting densities 

We compare the density of a x2(5) random variable with a random variable that is fi.ve 
times a F(5, 30) random variable . From ( 12 . 1 ) ,  the two are the same for large n but 
will' differ for n = 30. In practice, n = 30 is not large enough for asymptotic theory to 
approximate the finite distribution well. 

One way to compare is to evaluate the formulas for the respective densities at a range 
of points, say, 0 . 1 ,  0 .2, . . .  , 20.0, and graph the density values against the evaluation 
points. The graph twoway function command automates this method. This is left as 
an exercise. 

This approach requires providing density formulas that can be quite complicated 
and may even be unknown to the user if the density is that of a mixture distribution, 
for example. A simpler way is to make many draws from the respective distributions, 
using the methods of section 4.2, and then use the kdensi ty command to compute and 
graph the kernel density estimate. 

We take this latter approach. We begin by taking 10,000 draws from each distribu­
tion. We use the rchi 20 function introduced in an update to Stata 10; see section 4 .2. 
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• Create many draYs from chi(S) and S•F(S ,30) distributions 
set seed 10101 
set obs 10000 

obs Yas 0, noY 10000 
generate chiS = rchi2(S) 

generate xfn = rchi2(S)IS  

generate xfd = rchi2(30)I30 
generate fS_30 = xfnlxfd 

gener�te five_x_fS_30 = S•fS_30 

summarize chiS five_x_fS_30 
Variable 

chiS 
five_x_fS_30 

Dbs 

10000 
10000 

Mean 

S . OS7SS7 
s .314399 

II result xc • chisquared(10) 

II result numerator of F(S ,30)  
II result denominator of F(S ,30)  
II result x f  - F(S ,30)  

Std. Dev .  Min Max 

3 . 203747 . 0449371 26. 48803 
3 . 777S24 . 1302123 30 . 91342 
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For chiS, the average of 5 .06 is close to the theoretical mean of 5, and the sample 
variance of 3.2042 = 10.27 is close to the theoretical variance of 10. For fi ve....x_fS_30, 
the sample variance of 3.7782 = 14.27 is much larger than that of chiS, refiecting the 
previously mentioned fatter tails. 

We then plot the kernel density estimates based on these draws. To improve graph 
readability the kernel density estimates are plotted only for draws less than 25, using 
a method already explained in section 3.2.7. To produce smoother plots, we increase 
the default bandwidth t"o 1 .0 ,  an alternative being to increase the number of draws. We 
have 

• Plot the de�sities for these tYo distributions using kdensity 
label var chiS " c hi(S) " 
label var five_x_fS_30 " S • F ( S , 30 ) "  
kdensity chiS, bY� 1 . 0) generate (kx1 kd1) n(SOO) 

kdensity five_x_fS_30, b Y ( 1 . 0 )  generate (kx2 kd2) n(SOO) 
quietly drop if (chiS > 2S five_x_fS_30 > 2S) 
graph tYOYay (line kd1 kx1) if kx1 < 2S, name(chi) 

graph tYOYay (line kd2 kx2) if kx2 < 2S,  name(F) 
graph tYOYay (line kd1 kx1) (line kd2 kx2, clstyle (p3) ) if kx1 < 2S, 

> scale ( 1 . 2 )  plotregion(style(none ) )  
> title ( " Chisquared(S) and S • F(S ,30)  Densities")  
> xtitle ( " y " ,  size (medlarge) )  xscale(titlegap ( • S ) )  
> ytitle("Density f (y ) " ,  size (medlarge) ) yscale(titlegap(<oS ) )  
> legend(pos(1)  ring(O) col ( 1 ) )  legend(size (small ) )  
> legend(label( 1  "Chi( S) " )  label(2 "S•F(S ,30) " ) )  

In figure 12 . 1 ,  the two densities appear similar, though the density of 5 x F(5,  30) 
has a longer tail than that of x2(5 ) ,  and it is the tails that are used for tests at a 0.05 
level and for 95% confidence intervals. The difference disappears as the denominator 
degrees of freedom (here 30) goes to infinity. 
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Figure 12 . 1 .  x2(5) density compared with 5 times F(5, 30) density 

12.2.4 Computing p-values and critical values 

Stata output automatically provides p-values but not critical values. The p-values can be 
obtained manually from the relevant cumulative distribution function (c .d.f.) ,  whereas 
critical values can be obtained by using the inverse c.d.f. The precise Stata func­
tions vary with the distribution. For details, see [D] functions or type help density 
functions. 

We compute p-values for the test of a single restriction (h = 1 ) .  We suppose the 
test statistic is equal to 2 by using the t(30) or Z distributions. In that case, it is 
equivalently equal to 22 = 4 by using the F(1 ,  30) or x2(1 )  distributions. We have 

+ p-values for t(30) , F ( 1 ,30) , Z ,  and chi ( 1 )  at y = 2 
scalar y = 2 
scalar p_t30 = 2•ttail (30,y) 

scalar p_f1and30 = Ftai l ( 1 , 3 0 , y"2) 
scalar p_z = 2 • ( 1-normal (y ) )  

scalar p_chi1 = chi2tail ( 1 , y "2 )  
display "p-values "  " t (30)  = "  'l.7.4f p_t30 " F ( 1 ,30) =" :(7 . 4 f  

> p_fland30 " z =" !. 7 .4f p_z " chi ( 1) = "  i�7 .4f p_chi1 
p-values t(30) = 0 . 0546 F ( 1 , 30 ) =  0 . 0546 z = 0 . 0455 chi ( 1 ) =  0 . 0455 

The general properties that Z2 = x2(1) and t(n)2 = F(l ,  n) are confirmed for this 
example. Also t(n) -+ Z and F(l, n)/1 -+ x2(1 )  as n -+  oo, but there is still a difference 
for n = 30, with a p-value of 0.0455 compared with 0.05 46. 

We next compute critical values for these distributions for a two-sided test of a single 
restriction at a level of 0.05.  We have 
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• Critical values for t(30) , F ( 1 , 30 ) , Z ,  and chi(1) at level 0 . 0 5  
scalar alpha = 0 .  05 
scalar c_t30 = invttail(30, alpha/2) 
scalar c_f1and30 = invFtail ( 1 , 30 , alpha) 
scalar c_z = -invnormal(alpha/2) 
scalar c_chi1 = invchi2( 1 , 1-alpha) 
display "critical values "  " t(30) =" X7 .3f c_t30 " F ( 1 , 30 ) = "  X7.3f 

> c_f1and30 ' '  z =" '1.7 . 3 f  c_z " chi { l ) = "  X7.3f c_chi1 
critic� values t(30) = 2 . 042 F ( 1 , 3 0 ) =  4 . 171  z = 1 . 960 chi ( 1 ) =  3 . 841 
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Again t(30)2 = F(1, 30) and Z2 = x2(1 ) ,  whereas t(30) � Z and F(1,  30)/1 � x2(1) .  

12.2.5 Which distributions does Stata use? 

In practice, the t and F distributions may continue to be used as an ad hoc finite-sample 
correction, even when only asymptotic results supporting the Z and x2 distributions are 
available. Tbis leads to more conservative inference, with less likelihood of rejecting the 
null hypothesis because p-values are larger and with wider confidence intervals because 
critical values are larger. 

Stata uses the t and F distributions for variants of least squares, such as robust 
standard errors, nonlinear least squares, linear IV, and quantile regression. Stata uses 
the Z and x2 distributions in most other cases, notably, maximum likelihood (ML) and 
quasi-ML nonlinear estimators, such as logit , tobit, and Poisson. 

12 .3  Wald tests and confidence intervals 

A quite universal method for hypothesis testing and obtaining confidence intervals is 
the Wald method, based on the estimated variance-covariance matrix of the estimator 
(veE) presented in sections.3.3 and 10.4. This method produces the test statistics and 
p-values for a test of the significance of individual coefficients, the confidence intervals 
for individual coefficients, and the tests of overall significance that are given in Stata 
regression output. 

Here we provide background on the Wald test, extension to tests of more complicated 
hypotheses that require the use of the test and testnl commands, and extension 
to confidence intervals on combinations of parameters using the lincom and nlcom 
commands. 

12.3.1 Wald test of linear hypotheses 

By a linear hypothesis, we mean one that can qe expressed as a linear combination of 
parameters. Single hypothesis examples include H0 : fJ2 = 0 and H o :  fJ2 - (33 - 5 = 0. 
A joint hypothesis example tests the two preceding hypotheses simultaneously. 
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The Wald test method is intuitively appealing. The test is based on how well the 
corresponding parameter estimates sa_.!;isfy Jhe null hypothesis. For example, to test 
Ho : {32 - {33 - 5 = 0, we ask� whe_iher f32 - (33 - 5 � 0. To implement the test, we need 
to know the distribution of {32 - {33 - 5 . iut this is easy because the estimators used in 
this book are asymptotically normal, and a linear combination of normals is normal. 

We do need to find the variance of this normal distribution. In this example, Var(fj2 -
jj3 - 5)  = Var(,82) + Var(jj3) - 2Cov(i32 , jj3 ) ,  because for the random variables X and 
Y, Var(X - Y) = Var(X) + Var(Y) - 2Cov(X, Y). More generally, it is helpful to use 
matrix notation, which we now introduce. 

Let {3 denote the K x 1 parameter vector, where the results also apply if instead we 
use the more general notation () that includes {3 and any au.\:iliary parameters. Then, 
for example, Ho : {32 = 0 and {32 - {33 - 5 = 0 can be written as 

1 
1 

0 0 
-1 0 � J 

This linear combination can be written as R/3 - r = 0. 

For a two-sided test of h linear hypotheses under Ho , we therefore test 

Ho : R{3 - r = 0 
Ha. : R{3 - r rf 0  

where R is an h x K matrix and r is an h x 1 vector, h :=:; K. Standard examples 
include tests of individual exclusions restrictions, {3j = 0, and tests of joint statistical 
significance, f32 = 0, . . .  , {3q = 0 (with {31 as an intercept coefficient) . 

· 

The Wald test uses the quite intuitive approach of rejecting H0 : R{3 - r = 0 if 
R{:J - r is considerably different from zero. Now 

j3 � N{{3, Var({:J) }  
==:::;. R{:J - r � N {R{3 - r, RV(,6)R'} 
==:::;. R{:J - r � N {0, RVar({:J)R1} under Ho 

(12 .2)  

For a single hypothesis, R{:J - r is  a scalar that is univariate normally distributed, so 
we can transform to a standard normal variate and use standard normal tables. 

More generally, there are multiple hypotheses. To avoid using the multivariate 
normal distribution, we transform to a chi-squared distribution. If the h x l vector 
y "' N(Jl-, :E) , then (y - J.L)':E�1(y - tt) "' x2(h). Applying this result to (12 .2 ) ,  we 
obtain the Wald statistic for the test of H0 : R{3 - r = 0:  

(12.3) 
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Large values of W lead to rejection of H a. At a level of 0.05, for example, we reject H 0 if 
the p-value p = Pr{x2(h) > W} < 0.05, or if W exceeds the critical value c = x6.05(h) , 
where by x6.05(h) we mean the area i n  the right tail i s  0.05.  

In going from (12 .2) to ( 12.3), we also replaced Var(,6) by an estimate, V(,6). For 
the test to be valid, the estimate V(,6) must be consistent for Var(,6) ,  i .e . ,  we need to 
use a correct estimator of the VCE. 

An alternative test statistic is the F statistic, which is the Wald statistic divided by 
the number of restrictions. Then 

F = : /!:., F(h, N - K) under Ho ( 1 2.4) 

where K denotes the number of parameters in the regression model. Large values of 
F lead to rejection of Ha. At a level of 0.05, for example, we rej ect Ho if the p-value 
p = Pr{F(h, N - k) > F} < 0.05, or if F exceeds the critical value c = Fa o5(h, N - K). 

12.3.2 The test command 

The Wald test can be performed by using the test command. Usually, the W in ( 12.3) 
is used, though the F in ( 12.4) is frequently used after fitting linear models. As the 
equations state, W has a large-sample chi-squared distribution, and F has a large-sample 
F distribution. 

The test command has several different syntaxes. The simplest two are 

test coefiist [ , options ] 

test exp = exp [ = . . .  ] [ , options ] 

The syntax is best explained with examples. More complicated syntax enables testing 
across equations in.multiequation models. A multiequation example following the sureg 
command was given in section 5.4. An example following nbreg is given as an end-of­
chapter exercise. It can be difficult to know the Stata convention for naming coefficients 
in some cases; the output from estat vee may give the appropriate complete names. 

The options are usually not needed. They include mtest to test each hypothesis 
separately if several hypotheses are given and accumulate to test hypotheses jointly 
with previously tested hypotheses. 

(Continued on next page) 
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We illustrate Wald tests using the same model and data as in chapter 10 .  We have 

* Estimate Poisson model of chapter 10 
use mus10dat a . dta, clear 
quietly keep if year02==1 

poisson docvis private chronic female income , vce(robust) nolog 
Poisson regression 

Log pseudolikelihood -18503. 549 

docvis 

private 
chronic 

female 
income 

_cons 

Test single coefficient 

Coef . 

0 7986652 
1 . 091865 
.4925481 

.003557 
- . 2297262 

Robust 
Std. Err. 

. 1090014 

.0559951 
. 0585365 
.0010825 
. 1 108732 

z 

7 .33  
19 . 50 
8 . 4 1  
3 . 2 9  

-2 . 07 

Number of obs 
Wald chi2(4) 
Prob > chi2 
Pseudo R2 

P> l z l  [95/. Conf. 

0 . 000 . 5850263 
0 . 000 0 9821167 
0 .000  0 3778187 
0 0 001 .0014354 
0 . 038 - . 4470338 

4412 
594 . 7 2  
0 . 0000 
0 . 1930 

Interval] 

1 . 012304 
1 .  201614 
. 6072774 
. 0056787 

- . 0124186 

To test whether a single coefficient equals zero, we just need to specify the regressor 
name. For example, to test Ho : f3tomo.lo = 0, we have 

. * Test a single coefficient equal 0 
. test female 

( 1) [docvis] female = 0 
chi2( 1) = 70 . 80 

Prob > chi2 = 0 . 0000 

We reject Ho because p < 0.05 and conclude that female is statistically significant at 
the level of 0.05. The test statistic is the square of the z statistic given in the regression 
output (8.4142 

= 70.80), and the p-values are the same. 

Test several hypotheses 

As an example of testing more than one hypothesis, we test Ho f3femalo 
/3privato + /3chronic = 1. Then 

. • Test tYo hypotheses jointly using test 

. test (female) (private + chronic = 1) 
( 1 )  [docvis]female = 0 
( 2) [docvis]private + [docvis] cbronic. 

chi2( 2) = 122.29 
Prob > chi2 = 0 . 0000 

We reject H 0 because p < 0.05 . 

0 and 



12.3.2 The test command 

The mtest option additionally tests each hypothesis in isolation. We have 

. • Test each hypothesis in isolation as Yell as jointly 

. test (female) (private + chronic = 1 ) ,  mtest 
( 1) [docvis]female = 0 
( 2) [docvis]private + [doc vis] chronic = 

( 1 )  
(2 )  

all 

chi2 

70 .80 
56 .53 

122.29 

df 

2 

p 

0 . 0000 # 
0 . 0000 # 

0 . 0000 

# unadJusted p-values 
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As expected, the hypothesis test value of 70.80 for female equals that given earlier 
when the hypothesis was tested in isolation. 

The preceding test makes no adjustment to p·values to account for multiple testing. 
Options to mtest include several that implement Bonferroni's method and variations. 

Test of overall significance 

The test command can be used to test overall significance. We have 

. • Wald test of overall significance 

. test private chronic female income 
( 1 )  [docvis]private = 0 
( 2) [doc vis) chronic = 0 
( 3) [docviz] female � 0 
( 4) [docvis] incop1e = 0 

chi2( 4) = 594 .72 
Prob > chi2 = 0 . 0000 

The Wald test statistic value of 594.72 is the same as that given in the poisson output. 

Test calculated from retrieved coefficients and VCE 

For pedagogical purposes, we compute this overall tes!_ man�l� even though we use 
test in practice. The computation requires r\'ltrieving f3 and V(,B), defining the appro­
priate matrices R and r, and calculating W defi11ed in (12.3) .  In doing so, we note that 
Stata stores regression coefficients as a row vector, so we need to transpose to get the 
K x 1 column vector /3. Because we use Stata estimates of jj and V(/3), in defining R 
and r we need to follow the Stata convention of placing the intercept coefficient as the 
last coefficient. We have 

• Manually compute overall test of significance using the formula for W 
quietly poisson docvis private chronic female income , vcc(robust) 
matrix b = e (b ) " 
matrix V = e (V) 
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matrix R = ( 1 , 0 , 0 , 0 , 0  \ 0 , 1 , 0 , 0 , 0  \ 0 , 0 , 1 , 0 , 0  \ 0 , 0 , 0 , 1 , 0  ) 
matrix r = ( 0  \ 0 \ 0 \ 0) 

matrix W = (R•b-r ) "•iovsym(R•V•R" ) • (R•b-r) 

scalar Wald = W [ 1 , 1 ]  

scalar h = ro�sof (R) 
display "Wald test statistic :  " Wald " r.rith p-value: " chi2tail ( h ,  Wald) 

Wald test statistic: 594. 72457 r.rith p-value : 2 . 35e-131 

The value of 594.72 is the same as that from the test command. 

12.3.3 One-sided Wald tests 

The preceding tests are two-sided tests, such as Pi = 0 against f3J -=f. 0. We now consider 
one-sided tests of a single hypothesis, such as a test of whether Pi > 0 .  

The first step in conducting a one-sided test is determining which side i s  H0 and 
which side is Ha . The convention is that the claim made is set as the alternative 
hypothesis. For example, if the claim is made that the jth regressor has a positive 
marginal effect and this means that Pi > 0, then we test Ho : {3i :::; 0 against Ha : {3i > 0 .  

The second step i s  to  obtain a test statistic. For tests o n  a single regressor, we use 
the z statistic 

'$· z = -1 ;!.., N(O, 1 )  under Ho SjjJ 
where z2 = W given in (12 .3) .  In some cases, the t( n - K)  distribution is used, in which 
case the z statistic is called a t statistic. Regression output gives this statistic, along 
with p-values for two-sided tests. For a one-sided test, these p-v�lues should be halved, 
with the important condition that it is necessary to check that {31 has the correct sign. 
For example, if testing Ho : {3i :::; 0 against Ha : Pi > 0 ,  then we reject Ho at the level 
of 0 .05 if '3J > 0 and the reported two-sided p-value is less than 0 .10 .  If instead '31 < 0 ,  
the p-value for a one-sided test must be  at least 0 . 5 0 ,  because we are on  the wrong side 
of zero, leading to certain rejection at conventional statistical significance levels. 

As an example, consider a test of the claim that doctor visits increase with income, 
even after controlling for chronic conditions, gender, and income. The appropriate test 
of this claim is one of Ho : f31ncomo ::=; 0 against Ha : f31ncomc > 0. The poisson output 
includes '3incomc = 0.0036 with p = 0.001 for a two-sided test. �ecause jjincomo > 0, we 
simply halve the two-sided test p-value to get p = 0.001/2 = 0.0005 < 0.05. So we reject 
Ho : f3incomo ::=; 0 at the 0.05 level. 

More generally, suppose we want to test the single hypothesis H 0 : R{3 - r :::; 0 
against Ha : R{3 - r > 0, where here R{3 - r is a scalar. Then we use 

R/3 - r 
z = --- � N(O, 1) under H0 

8Ri3-r 
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When squared, this statistic again equals the corresponding Wald test, i.e., z2 = W. 
The test command gives W, but z could be either VW or -VW, and the sign of z 
is needed to be able to perform the one-sided test. To obtain the sign, we can also 
compute R/3 - r  by using the lincom command; see section 12.3.7. If R/3- r has a sign 
that differs from that of R,B - r under H0 , then the p-value is one half of the two-sided 
p-value given by test (or by lincom) ; we reject Ho at the a level if this adjusted p-value 
is less than a and do not reject otherwise. If instead R/3 - r has the same sign as that 
of R,B - r under H0 , then we always do not reject Ho . 

12.3.4 Wald test of nonlinear hypotheses (delta method) 

Not all hypotheses are linear combinations of parameters. A nonlinear hypothesis ex­
ample is a test of Ho : .82/ {33 = 1 against Ha. : ,82/ {33 I= 1 .  This can be expressed as a 
test of g(/3) = 0, where g(/3) = ,82/{33 - 1. More generally, there can be h hypotheses 
combined into the h x 1 vector g(/3) = 0, with each separate hypothesis being a separate 
row in g(/3) . Linear hypotheses are the special case of g(/3) = R,B - r .  

The Wald test method is  now based on the closeness of g(/3) to 0. Because /3 
is asymptotically normal, so too is g(/3). Some algebra that includes linearization of 
g(/J) using a Taylor-series expansion yields the Wald test statistic for the nonlinear 
hypotheses Ho : g (/3) = lk · 

w = g(/3)' { RV(/J):R.'} -l g(/3) ::., x2 (h) under Ho, where :R. = 8��)' 1 13 ( 1 2.5) 

This is  the same test statistic as W in  (12 .3 )  upon replacement of R/3 - r by g(/3) 
and replacement of R by R. Again large values of W lead to rejection of H 0, and 
p = Pr{x2(h) > W}. 

The test statistic is often called one based on the delta method because of the 
derivative used to form R. 

12.3.5 The testnl command 

The Wald test for nonlinear hypotheses i s  performed using the testnl command. The 
basic syntax is 

testnl exp = exp [ = . . . ] [ , options ] 

The main option is mtest to separately test each hypothesis in a joint test. 

As an example, we consider a test of H o : · .Brcmule/,8privatc - 1 = 0 against H a. : 

.Bremate/.Bprivatc - 1 1= 0. Then 
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* Test a nonlinear hypothesis using testnl 
testnl _ b [female]/ _b [private] = 1 

(1) _b[femalo]/ _b [private] = 1 
c hi2(1) = 13 .51  

Prob > chi2 = 0 . 0002 

We reject Ho at the 0.05 level because p < 0.05. 
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The hypothesis in the preceding example can be equivalently expressed as /3female = 
fJprivatc- So a simpler test is 

. • Wald test is not invariant 

. test female = private 
( 1) - [docvis]private + [docvis]female = 0 

chi2( 1) = 6 . 85 
Prob > chi2 = 0 . 0088 

Surprisingly, we get different values for the test statistic and p-value, even though both 
methods are valid and are asymptotically equivalent. This illustrates a weakness of 
Wald tests: in finite samples, they are not invariant to nonlinear transformations of the 
null hypothesis. With one representation of the null hypothesis, we might reject H0 at 
the a level, whereas with a different representation we might not. Likelihood-ratio and 
Lagrange multiplier tests do not have tbis weakness. 

12.3.6 Wald confidence intervals 

Stata output provides Wald confidence intervals for individual regression parameters /3j 
of the form iJJ ± Za;2 x sfj, , where za;2 is a standard normal critical value. For some 
linear-model commands, the critical value is from the t distribution rather than the 
standard normal. The default is a 95% confidence interval, which is fjj ± 1 .96 x sfji if 
standard normal critical values (with a = 0.05) are used. This default can be changed in 
Stata estimation commands by using the level ()  option, or it can be changed globally 
by using the set level command. 

Now consider any scalar, say, 7, that is a function g(f3) of {3. Examples include 
7 = fJ2 , 7 = /32 + /33, and 7 = fJ2/ /33. A Wald 100(1 - a)% confidence interval for 7 is 

-:y ± Zaj2 X S"f ( 1 2.6) 

where -:y = g(/3), and s::; is the standard error of -:y. For the nonlinear estimator {3, the 
critical value za;2 is usually used, and for the linear estimator, the critical value ta;2 is 
usually used. Implementation requires computation of-:y and s9, using ( 1 2.7) and (12 .8) 
given below. 

12.3. 7 The lincom command 

The lincom command calculates the confidence interval for a scalar linear combination 
of the parameters R{3 - r. The syntax is 
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lincom exp [ , options ] 
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The eform reports exponentiated coefficients, standard errors, and confidence intervals. 
This is explained in section 12.3.9 . 

The confidence interval is computed by using ( 12 .6), with 1 = R,6 - r and the 
squared standard error 

s� = RV(,{3)R' 

We consider a confidence interval for f3privato + f3cbronic - 1. We have 

• Confidence interval for linear combinations using lincom 
use mus10data.d ta, clear 

(12 .7) 

quietly poisson docvis private chronic female income if  year02==1 ,  vce(robust) 
lincom private + chronic - 1 

( 1) [docvis]private + [docvis] chronic = 1 

doc vis 

(1 )  

Coef.  Std. Err. 

. 8905303 . 1184395 

z P> l z l  

7 . 52  0 . 000 

[95/. Conf . Interval] 

. 6583932 1 . 122668 

The 95% confidence interval is [0.66, 1 .12 ] and is based on standard normal critical 
values because we used the lincom command after poisson. If instead it had followed 
'regress, then t(N - K) critical values would have been used. 

The lincom command also provides a test statistic and p-value for the two-sided test 
of Ho : /3privo.to + f3cllronic - 1 = 0. Then z2 = 7.522 � (0.8905303/0.1184395)2 = 56.53, 
which equals the W obtained in section 12.3.2 in  the example using test ,  mtest. The 
lincom command enables a one-sided test because , unlike using W, we know the sign 
of z .  

12.3.8 The nlc011.1 command (delta method) 

The nlcom command calculates the confidence intervals in (12.6) for a scalar nonlinear 
function g({3) of the parameters. The syntax is 

nlcom [ name : ] exp [ , options ] 

The confi.dence interval is computed by using ( 12 .6) , with 1 = g(,(3) and the squared 
standard error 

(12 .8) 
The standard error s:y and the resulting confi.dence interval are said to be computed by 
the delta method because of the derivative fYr 1 ae. 
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As an example, consider confidence intervals for 1 = f3remate/ {3priva.tc - 1. vVe have 

• Confidence interval for nonlinear function of parameters using nlcom 
nlcom �b [femalel I _b[privatel - 1 

_nl_1 :  _b[femalel I _b[private] - 1 

doc vis 

nl 1 

Coef . Std. Err. 

- . 383286 . 1042734 

z P> l z l  

-3 . 68 0 . 000 

[95/. Conf.  Interval] 

- . 587658 - . 1789139 

Note that z2 = ( -3.68)2 � ( -0.383286/0.1042734)2 = 13 .51 .  This equals the W for the 
test of Ho : f3remo.Ie/ f3pri,.,te - 1 obtained by using the testn1 command in section 12 .3.5. 

12.3.9 Asymmetric confidence intervals 

For several nonlinear models, such as those for binary outcomes and durations, interest 
often lies in exponentiated coefficients that are given names such as hazard ratio or odds 
ratio depending on the application. In these cases, we need a confidence interval for i3 
rather than {3. This can be done by using either the lincom command with the eform 
option, or the n1com command. These methods lead to different confidence intervals, 
with the former preferred. 

We can directly obtain a 95% confidence interval for exp((3,rivate ) ,  using the lincom, 
ef orm command. We have 

. * CI for exp(b) using lincom option eform 

. lincom private , eform 
( 1)  [docvis]private = 0 

docvis 

( 1 )  

exp(b) Std. Err. 

2. 222572 . 2422636 

z P > l z  I 

7 .  33 0 .  000 

[95'1. Conf . Interval] 

1 . 795038 2 . 751935 

This confidence interval is computed by first obtaining the usual 95% confidence interval 
for f3privato and then exponentiating the lower and upper bounds of the interval. We 
have 

. * CI for exp(b) using lincom folloYed by exponentiate 

. lincom private 

( 1) [docvis]private = 0 

docvis 

( 1 )  

Coef . Std. Err. 

. 7986652 . 1090014 

z P> l z l  

7 . 33 0 . 000 

[95/. Conf . Interval] 

.5850263 1 . 012304 

Because f3privo.to E [0.5850, 1 .0123] , it follows that exp(f3privato) E [e0 ·5sso , e L0123 ] , so 
exp(f3privatc) E [1 .795, 2 .752 ] ,  which is the interval given by lincom, eform. 
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If instead we use nlcom, we obtain 

+ CI for exp(b) using nlcom 
nlcom exp{_b[private] )  

_nl_i :  exp(_b [private] ) 

doc vis 

_nl_l 

Coef . Std. Err. 

2 . 222572 . 2422636 

z P> l z l  

9 . 17 0 . 000 
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[95/. Conf . Interval] 

1 .  747744 2 . 6974 

The interval is instead exp(,6'privo.t a )  E [1 .  748, 2.697]. This differs from the [1. 795, 2. 752] 
interval obtained with lincom, and the difference between the two methods can be much 
larger in other applications. 

Which interval should we use? The two are asymptotically equivalent but can differ 
considerabl;( in small samples. The interval obtained J;!y using nlcom is symmetric 
about exp(,6'privato )  and could include negative values (if ,6' is small relative to .s;3) . The 
interval obtained by using lincom, eform is asymmetric and, necessarily, is always 
positive because of exponentiation. This is preferred. 

12.4 likel ihood-ratio tests 

An alternative to the Wald test is the likelihood-ratio (LR) test. This is applicable to 
only ML estimation, under the assumption that the density is correctly specified. 

12.4.1 Likelihood-ratio tests 

Let L(e) = f(yiX, 8) denote the likelihood function, and consider testing the h hy­
potheses Ho : g( e) = 0. Distinguish between the usual unrestricted maximum likelihood 
estimator (MLE) Ov. and the restricted MLE 0.,. that ma..'Cimizes the log likelihood subject 
to the restriction g( e) = 0. 

The motivation for the likelihood-ratio test i s  that if Ho i s  valid, then imposing 
the restrictions in estimation of the parameters should make little difference to the 
maximized value of the likelihood function. The LR test statistic is 

LR = -2{lnL(B.,.) - ln L(O.u ) }  � x2(h) under Ho 

At the 0.05 level, for example, we reject if p = Pr{x2(h) > LR} < 0.05, or equivalently 
if LR > x6 .05 (h) . It is unusual to use an F variant of tllis test. 

The LR and Wald tests, under the conditions in which vce(oim) is specified, are 
asymptotically eq·,1ivalent under H0 and local alternatives, so there is no a priori reason 
to prefer one over the other. 

Nonetheless, the LR test is preferred in fully parametric settings, in part because the 
LR test is invariant under nonlinear transformations, whereas the Wald test is not, as 
was demonstrated in section 12 .3 .5 .  
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Microeconometricians use Wald tests more often than LR tests because wherever 
possible fully parametric models are not used. For example, consider a linear regression 
with cross-section data. Assuming normal homoskedastic errors permits the use of a 
LR test. But the preference is to relax this assumption, obtain a robust estimate of the 
VCE, and use tbis as the basis for W ald tests. 

The LR test requires fitting two models, whereas the Wald test requires fi tting only 
the unrestricted model. And restricted ML estimation is not always possible. The Stata 
ML commands can generally be used with the constraint ( )  option, but this supports 
only linear restrictions on the parameters. 

Stata output for ML estimation commands uses LR tests in two situations: fi.rst, to 
perform tests on a key auxiliary parameter, and second, i n  the test for joint significance 
of regressors automatically provided as part of Stat a output, if the default vee (oim) 
option is used. 

We demonstrate this for negative binomial regression for doctor visits by using de­
fault ML standard errors. We have 

. • LR tests output if estimate by ML Yith default estimate of VCE 
. nbreg docvis private chronic female income , nolog 
Negative binomial regression 

Dispersion = mean 
Log likelihood = -9855 . 1389 

docvis Coef . 

private .8876559 
cbronic 1 . 143545 

female .5613027 
income .0045785 

_cons - . 4062135 

/lnalpha .5463093 

alpha 1 . 726868 

Std. Err. 

.0594232 

.0456778 

.0448022 
. 000805 

.0611377 

.0289716 

.05003 

z 

14 .94  
25 .04 
12 .53  
5 .69  

-6 .64  

Number of obs 
LR chi2(4) 
Prob > chi2 
Pseudo R2 

P> l z l  [95/. Conf. 

0 .  000 . 7711886 
0 .000  1 .  054018 
0 . 000 .473492 
0 . 000 . 0030007 
0 . 000 -. 5260411 

.4895261 

1. 631543 

4412 
1067.55 

0.  0000 
0 . 0514 

Interval] 

1 .  004123 
1 . 233071 
. 6491135 
. 0061563 

- . 2863858 

. 6030925 

1 . 827762 

Likelihood-ratio test of alpha= O :  chibar2(01)  1 . 7e+04 Prob>=chibar2 = 0 . 000 

Here the overall test for joint significance of the four coefficients, given as LR chi2 (4) 
= 1067 .55 ,  is a LR test. 

The last line of output provides a LR test of Ho : a = 0 against Ha : a > 0. Rejection 
of H o favors the more general negative binomial model, because the Poisson is the 
special case a = 0. This LR test is nonstandard because the null hypothesis is on the 
boundary of the parameter space (the negative binomial model restricts a � 0).  In 
this case, the LR statistic has a distribution that has a probability mass of 1/2 at zero 
and a half-x2 ( 1 )  distribution above zero. This distribution is known as the chibar-0-1 
distribution and is used to calculate the reported p-value of 0.000, which strongly rejects 
the Poisson in favor of the negative binomial model. 
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The lrtest command calculates a LR test of one model that is nested in another when 
both are fitted by using the same ML command. The syntax is 

lrtest modelspecl [ modelspec2 ] [ , options ] 
where ML results from the two models have been saved previously by using estimates 
store with t.he names models peel and modelspec2 . The order of the two models does 
not matter. The variation lrtest models peel requires applying estimates store only 
to the model other than the most recently fitted model. 

We perform a LR test of Ho : /3privo.to = 0, f3cb.ronic = 0 by fitting the unre­
stricted model wi.th all regres:;ors and then fitting the restricted model with private 
and chronic excluded. We fit a negative binomial model because this is a reasonable 
parametric model for these overdispersed count data, whereas the Poisson was strongly 
rejected in the test of Ho : a = 0 in the previous section. We have 

• LR test using command lrtest 
quietly nbreg docviz private chronic fema�e income 

estimates store unrestrict 
quietly nbreg docvis female income 
estimates store restrict 

lrtest unrestrict restrict 
Likelihood-ratio test 
(Assumption: restrict nested in UDrestrict) 

LR chi2(2) 
Prob > chi2 � 

808.74 
0. 0000 

The null hypothesis is strongly rejected because p = 0.000. We conclude that private 
and chronic should be included in the model. 

The same test can be performed with a Wald test. Then 

• Wald test of the same hypothesis 
quietly nbreg docvis private chronic female income 

test chroni_c_ private 
( 1) [docvis] chronic = 0 
( 2) [docvis]private = 0 

chi2( 2) � 852.26 
Prob > chi2 = 0 .  0000 

The results differ somewhat, with test statistics of 809 and 852. The differences can be 
considerably larger in other applications, especially those with few observations. 

12.4.3 Direct computation of LR tests 

The default is for the lrtest command to compute the LR test statistic only in situa­
tions where it is clear that the LR test is appropriate. The command will produce an 
error when, for example, the vee (robust) optiC?n is used or when different estimation 
commands are used. The force option causes the LR test statistic to be cqmputed in 
such settings, with the onus on the user to verify that the test is still appropriate. 



402 Chapter 12 Testing methods 

As an example, we return to the LR test of Poisson against the negative binomial 
model, automatically given after the nbreg command, as discussed in section 12.4 .1 . To 
perform this test using the 1rtest command , the force option is needed because two 
different estimation commands, poisson and nbreg, are used. We have 

• LR test using option force 
quietly nbreg docvis private chronic female income 

estimates store nb 
quietly poisson docvis private chronic female income 
estimates store poiss 
lrtest nb poiss, force 

Likelihood-ratio test 
(Assumption: poiss nested in nb) 

. display "Corrected p-value for LR-test � " r(p)/2 
Corrected p-value for LR-test = 0 

LR chi2 ( 1 )  = 17296.82 
Prob > chi2 = 0. 0000 

As expected, the LR statistic is the same as chibar2 (01 )  � 1 .  7e+04, reported in the 
last line of output from nbreg in section 12 .4 .1 .  The lrtest command automatically 
computes p-values using x2(h), where h is the difference in the number of parameters 
in the two fitted models, here x2 (1) . As explained in section 12 .4 . 1 ,  however, the half­
x2 (1 )  should be used in this particular example, providing a cautionary note for the use 
of the force option. 

12 .5  lagrange multiplier test (or score test) 

The third major hypothesis testing method is a test method usually referred to as the 
score test by statisticians and as the Lagrange multiplier (LM) test by econometricians. 
This test is less often used, aside from some leading model-specification tests in situa­
tions where the null hypothesis model is easy to fit but the alternative hypothesis model 
is not. 

12 .5 .1  LM tests 

The unrestricted MLE 8u sets s (Ou )  = 0, where s( 8) = 8 In L( 8)/ f)(} is called the 
score function. An L� test, or score test, is based on closeness of s (Or )  to zero, where 
evaluation is now at 8n the alternative restricted MLE that maximizes lnL( 8) subject 
to the h restrictions g(8) = 0. The motivation is that if the restrictions are supported 
by the data, then Or �  Ou ,  so s (Or )  � s (Ou )  = 0. 

Because s (Or )  � N {0,  Var(Or ) } ,  we form a quadratic form that is a chi-squared 
statistic, similar to the method in section 12.3 . 1 .  This yields the LM test statistic, or 
score test statistic, for H0 : g( fJ) = 0: 
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At the 0.05 level, for example, we reject if p = Pr{x2(h) > LM} < 0.05, or equivalently 
if LM > x6.05(h). It is not customary to use an F variant of this test. 

The preceding motivation explains the term "score test" . The test is also called 
the LM test for the following reason: Let lnL(8) be the log-likelihood function in the 
unrestricted model. The restricted MLE Or maximizes ln£(8) subject to g(B) = 0, so Or 
maximizes 1:: L( 8) -A.' g( B) . An LM test is based on whether the associated Lagrange 
multipliers .-\r of this restricted optimization are close to zero, because A. = 0 if the 
restrictions are valid. It can be shown that �r is a full-rank matrix multiple of s(Or), 
so the LM and score tests are equivalent. 

Under the conditions in which vee Coiro) is specified, the LM test, LR test, and Wald 
test are asymptotically equivalent for Ho and local alternatives, so there is no a priori 
reason to prefer one over the others. The attraction of the LM test is that, unlike 
W ald and LR tests, it requires fitting only the restricted model.. This is an advantage 
if the restricted model is easier to fit, such as a homoskedastic model rather than a 
heteroskedastic model. Furthermore, an asymptotically equivalent version of the LM 
test can onen be computed by the use of an auxiliary regression. On the other hand, 
there is generally no universal way to implement an LM test, unlike vVald and LR tests. 
If the LM test rejects the restrictions, we then still need to fit the unrestricted model. 

12.5.2 The estat command 

�ecause LM tests are estimator specific and model specific, there is no lmtest com­
mand. Instead, LM tests usually appear as postestimation estat commands to test 
misspecifica tions. 

A leading example is the estat hettest command to test for heteroskedasticity 
after regress. This LM-test is implemented by auxiliary regression, which is detailed in 
section 3.5.4. The default version of the test requires that under the null hypothesis, the 
independent homoskedastic errors must be normally distributed, whereas the iid option 
relaxes the normality assumption to one of independent and identically distributed 
errors. 

Another example is the xttestO command to implement an LM test for random 
effects aner xtreg. Yet another example is the LM test for overdispersion in the Poisson 
model, given in an end-of-chapter exercise. 

12.5.3 LM test by auxiliary regression 

For ML estimation with a correctly specified density, an asymptotically equivalent ver­
sion of the LM statistic can always be obtained. from the following auxiliary procedure. 
First, obtain the restricted MLE 8r. Second, form the scores for each observation of the 
unrestricted model, s; (8) = 8 lnf(Y; IJGt, 8)/88, and evaluate them at Or to give s; (Br) . 
Third, compute N times the uncentered R2 (or, equivalently, the model sum of squares) 
from the auxiliary regression of 1 on s;(Br ) . 

. 
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It is easy to obtain restricted model scores evaluated at the restricted MLE or unre­
stricted model scores evaluated at the unrestricted MLE. However, this auxiliary regres­
sion requires computation of the unrestricted model scores evaluated at the restricted 
MLE. If the parameter restrictions are linear, then these scores can be obtained by using 
the constraint command to define the restrictions before estimation of the unrestricted 
model. 

We illustrate this method for the LM test of whether Ho : /3privuto =·0, f3cbronic = 0 
in a negative binomial model for docvis that, when unrestricted, includes as regressors 
an intercept, female, income, private, and chronic. The restricted MLE 73r is then 
obtained by negative binomial regression of docvis on aJl these regressors, subject to 
the constraint that /3privato = 0 and /3chronic = 0. The two constraints are defined by 
using the constraint command, and the restricted estimates of the unrestricted model 
are obtained using the nbreg command with the constraint s ( )  option. Scores can 
be obtained by using the predict command with the scores option. However, these 
scores are derivatives ·of the log density with respect to model indices (such as x�{3) 
rather than with respect to each parameter. Thus following nbreg only two "scores" 
are given, fJ ln f(Yi)/8x;{3 and B ln f(y.;)/8a. These two scores are then expanded to 
K + 1 scores 8 'm f(Yi )/8/3j = {8ln f(yi)/8x�{3} x Xij, ;' = 1 ,  . . .  , K, where K i s  the 
number of regressors in the unrestricted model, and 8ln f(Yi)/Ba, where cY. is the scalar 
overdispersion parameter. Then 1 is regressed on these K + 1 scores. 

We have 

• Perform LM test that b_private=O, b_chronic=O using auxiliary regression 
use mus10data.d ta, clear 

quietly keep if year02==1 
generate one = 1 
constraint define 1 private = 0 
constraint define 2 chronic = 0 

quietly nbreg docvis female income private chronic ,  constraint s(1  2) 
predict eqscore ascor e , scores 

generate s1restb = eqscore•one 
generate s2restb = eqscore•female 
generate s3restb = eqscore•income 

generate s4restb = eqscore•privato 
generate s5restb = eqscore•chronic 
generate salpha = ascore•one 

quietly regress one s1restb s2restb s3restb s4restb s5restb salpha, noconstant 
scalar lm = e (N )•e (r2) 
display "LM = N x uncentered Rsq = " 1m " and p = " chi2tai l ( 2, lm) 

LM = N x uncentered Rsq = 4 24 .17616 and p = 7 . 786e-93 

The null hypothesis is strongly rejected with LM = 424. By comparison, in sec­
tion 12.4 .2, the asymptotically equivalent LR and Wald statistics for the same hypothesis 
were, respectively, 809 and 852. 
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The divergence of these purportedly asymptotically equivalent tests is surprising 
given the large sample size of 4,412 observations. One explanation, always a possibility 
with real data, is that the unknown data-generating process (DGP) for these data is 
not the fitted negative binomial model-the asymptotic equivalence only holds under 
Ho, which includes correct model specification. A secoi1d explanation is that this LM 
test has poor size properties even in relatively large samples. This explanation could be 
pursued by adapting the simulation exercise in section 12 .6 to one for the LM test with 
data generated from a negative binomial model. 

Often more than one auxiliary regression is available to implement a specific LM test. 
The easiest way to implement an LM test is to find a reference that defines the auxiliary 
regression for the example at hand and then implement the regression. For example, to 
test for heteroskedasticity in the linear regression model that depends on variables z.;, 
we calculate N times the uncentered explained sum of squares from the regression of 
squared OLS residuals u'f on an intercept and z.;; all that is needed is the computation 
of u;. In this case, estat hettest implements this anyway. 

The auxiliary regression versions of the LM test are known to have poor size proper­
ties, though in principle these can be overcome by using the bootstrap with asymptotic 
refinement. 

12.6 Test size and power 

We consider computation of the test size and power of a Wald test by Monte Carlo 
simulation. The goal is to determine whether tests that are intended to reject at, 
say, a 0.05 level really do reject at a 0.05 level, and to determine the power of tests 
against meaningful parameter values under the alternative hypothesis. This extends the 
analysis of section 4.6 ,  �hich focused on the use of simulation to check the properties 
of estimators of parameters and estimators of standard errors. Here we instead focus 
on inference. 

12.6 .1 Simulation DGP:  O LS with chi-squared errors 

The DGP is the same as that in section 4.6 ,  with data generated from a linear model 
with skewed errors, specifically, 

where /31 = 1, {32 = 2, and the sample size N = 150. The [x2(1 ) - 1] errors have a mean 
of 0, a variance of 2, and are skewed. 

In each simulation, both y and x are redrawn, corresponding to random sampling of 
individuals. We investigate the size and power of t tests on H a: /32 = 2 ,  the DGP value 
after OLS regression. 
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12.6.2 Test size 

In testing H0 , we can make the error of rejecting H o when H o is true. This is called a 
type I error. The test size is the probability of making this error. Thus 

Size = Pr(Reject H oiH o true) 

The reported p-value of a test is the estimated size of the test. Most commonly, we 
reject H 0 if the size is less than 0.05. 

The most serious error is one of incorrect test size, even asymptotically, because of, 
for example, the use of inconsistent estimates of standard errors if a Wald test is used. 
Even if this threshold is passed, a test is said to have poor finite-sample size properties 
or, more simply, poor finite-sample properties, if the reported p-value is a poor estimate 
of the true size. Often the problem is that the reported p-value is much lower than the 
true size, so we reject H o more often than we should. 

For our example with DGP value of /32 = 2, we want to use simulations to estimate 
the size of an a-level test of H0 : (32 = 2 against Ha. : {32 f. 2. In section 4.6.2, we did so 
when a = 0.05 by counting the proportion of simulations that led to rejection of Ho at 
a level of a = 0.05. The estimated size was 0.046 because 46 of the 1,000 simulations 
led to rejection of Ho-

A computationally more-efficient procedure is to compute the p-value for the test 
of H0 : (32 = 2 against Ha. : /32 I 2 in each of the 1,000 simulations, because the 1 ,000 
p-values can then be used to estimate the test size for a range of values of a, as we 
demonstrate below. The p-values were computed in the chi2data program defined in  
section 4.6.1 and returned as  the scalar p2, but these p-values were not used in any 
subsequent analysis of test size. We now do so here. 

The simulations in section 4.6 were performed by using the simulate command. 
Here we instead use postfile and a forvalues loop; the code is for the 1 ,000 simula­
tions: 

• Do 1000 simulations where each gets p-value of test of b2-2 
set seed 10101 

postfile sim pvalues using pvalues , replace 
forvalues i - 1/1000 { 
2 .  drop _all 
3 .  
4 .  
5 .  
6 .  
7 .  
8. 
9 .  

10 .  } 

quietly set cbs 150 
quietly generate double x - rchi 2 ( 1 )  
quietly generate y - 1 + 2•x + rchi2 (1 )-1  
quietly regress y x 
quietly test x - 2 
scalar p = r(p) II p-value for test this simulation 
post sim (p) 

. postclose sim 

The simulations produce 1,000 p-values that range from 0 to 1 .  
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• Summarize the p-value from each of the 1000 tests 
use pvalues ,  clear 
summarize pvalues 

Variable Dbs 

pvalues 1000 

Mean 

.5175818 

Std. Dev. Min Max 

. 2890325 . 0000108 .9997772 
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These should actually have a uniform distribution, and the histogram command reveals 
tha t this is the case. 

Given th� 1,000 values of pva1ues, we can find the actual size of the test for any 
choice of a .  For a test at the a =  0.05 level, we obtain 

* Determine size of test at level 0 . 05 
count if pvalues < .05 
46 ·  

display "Test size from 1000 simulations = " r(N) /1000 
Test size from 1000 simulations = . 046 

The actual test size of 0.046 is reasonably close to the nominal size of 0.05. Furthermore, 
it is exactly the same value as that obtained in section 4.6 .1 because the same seed and 
sequence of commands was used there. 

As noted in section 4.6.2, the size is not estimated exactly because of simulation 
error. If the true size equals the nominal size of a, then the proportion of times H0 is 
rejected in S simulations is a random variable with a mean of a and a standard deviation 
of Ja(l � a)/S � 0.007 when S = 1000 and a =  0.05. Using a normal approximation, 
the 95% simulation interval for this simulation is [0.036, 0.064], and 0.046 is within this 
interval. More precisely, the cii command yields an exact binomial confidence interval. 

* 95/. simulation interval using exact binomial at level 0 .05  with S=1000 
cii 1000 50 

Variable Dbs Mean 

1000 .05 

Std. Err. 

. 006892 

-- Binomial Exact -­

[95/. Conf . Interval] 

. 0373354 . 0653905 

With S = 1000, the 95% simulation interval is [0.037, 0.065] . With S = 10, 000 simula­
tions, this interval narrows to [0.046, 0.054]. 

In general, tests rely on asymptotic theory, and we do not expect the true size to 
exactly equal the nominal size unless the sample size N is very large and the number 
of simulations S is very large. In this example, with 150 observations and only one 
regressor, the asymptotic theory performs well even though the model error is skewed. 

12.6.3 Test power 

A second error in testing, called a type II error; is to fail to reject Ho when we should 
reject H0. The power of a test is one minus the _probability of making this error. Thus 

Power = Pr(Reject Ha iHo false) 
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Ideally, test size is minimized and test power is maximized, but there is a trade-off 
with smaller size leading to lower power. The standard procedure is to set the size 
at a level such as 0.0.5 and then use the test procedure that is known from theory or 
simulations to have the highest power. 

The power of a test is not reported because it needs to be evaluated at a specific Ha 
value, and the alternative hypothesis Ha defines a range of values for (3 rather than one 
single value. 

We compute the power of our test of (32 = (Jfa against Ha : ,82 = (Jfa ,  where f3fa 
takes on a range of values. We do so by first writing a program that determines the 
power for a given value f3fa and then calling this program many times to evaluate at 
the many values of (Jfa_ 

The program is essentially the same as that used to determine test size, except that 
the command generating y becomes generate y "'  1 + b2Ha*x + rchi2 ( 1 ) - 1 .  vVe allow 
more fiexibiUty by allowing the user to pass the number of simulations, sample size, Ho 
value of fJ2 , Ha value of {32 , and nominal test size (a) as the arguments, respectively, 
numsims, numobs, b2HO, b2Ha, and nominalsize .  The r-class program returns the 
computed power of the test as the scalar p. We have 

• Program to compute power of test given specified HO and Ha values of b2 
program power, rclass 

version 10 . 1 
args numsims numobs b2HO b2Ha nominalsize 

II Setup before simulation loops 
drop _all 

end 

set seed 10101 
postfile sim pvalues using power, replace 

forvalues i = 1l"numsims" { 
drop _all 
quietly set cbs "numobs" 

II Simulation loop 

quietly generate double x = rchi2 (1 )  
quietly generate y = 1 + "b2Ha"•x + rchi2 ( 1 ) - 1  
quietly regress y x 
quietly test x = "b2HO" 
scalar p = r(p) 
post sim (p) 

} 
postclose sim 
use power, clear 

II Determine the size or power 
quietly count if pvalues < "nominalsize"  
return scalar power=r (N)I "numsims " 

This program can also be used to find the size of the test of Ho : {32 = 2 by setting 
f3fa = 2. The following command obtains the size using 1,000 simulations and a sample 
size of 150, for a test of the nominal size 0.05. 
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• Size = power of test of b2H0=2 when b2Ha=2,  s�1000, N=150, alpha=0 .05  
power 1000 150 .2 .00  2 . 00 0 .05  
display r(power) " is the test power" 

.046 is the test power 
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The program power uses exactly the same coding as that given earlier for size compu­
tation, we have the same number of simulations and same sample size, and we get the 
same size result of 0.046. 

To find the test power, we set f32 = f3fa, where f3fa differs from the null hypothesis 
value. Here we set f3fa = 2.2 , which is approximately 2.4 standard errors away from the 
H 0 value of 2.0 because, from section 4.6 .1 ,  the standard error of the slope coefficient 
is 0.084. We obtain 

• Power of test of b2H0=2 when b2Ha=2 . 2 ,  S=1000, N=150, alpha= 0 . 05 
power 1000 150 2 .00  2 . 20 0 . 05 
display r(power) " is the test power" 

. 657 is the test power 

Ideally, the probability of rejecting Ho : f3z = 2.0 when {32 = 2 .2 is one. In fact, it is 
only 0.657. 

We next evaluate the power for a range of values of f3fa, here from 1.60 to 2.40 in 
increments of 0.025. We use the postfile command, which was presented in chapter 4: 

• Power of test of HO : b2=2 against Ha:b2= 1 . 6 , 1 . 625,  . . .  , 2 . 4  
postfile simofsims b2Ha power using simresults,  replace 

forvalues i = 0/33 { 
2.  drop _all 
3 .  scalar b2Ha = 1 . 6  + 0 . 025• - i -
4 .  power 1000 1 5 0  2 . 0 0  b2Ha 0 . 05 
5 .  post simofsims ( b2Ha) (r (power)) 
6 . } 
postclose si:nofs'ims 
use simresul ts ,  clear 
summarize 

Variable Dbs Mean 

b2Ha 34 2 . 0125 
power 34 . 6 103235 

Std. Dev. Min 

.2489562 1 . 6  
.3531139 .046 

Max 

2 . 425 
. 99 7  

The simplest way to see the relationship between power and (3fa is to  plot the power 
curve. 

(Continued on next page) 
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• Plot the power curve 
twoway (coDnected power b2Ha) , scale ( 1 . 2 )  plotregion(style (none ) )  

1.6 1 .6  2 
b2Ha 

2.2 2.4 

Figure 12 .2 .  Power curve for the test of Ho : fJ2 = 2 against Ha : fJ2 =I 2 when (32 tak--es 
on the values (J!ja = 1.6, . . .  , 2.4 under Ha and N = 150 and S = 1000 

As you can see in fi gure 12.2, power is minimized at fJ§fa = f3f0 = 2, and then the 
power size equals 0.05, as desired. As !�Jla -

{3!j01 increases, the power goes to one, but 
power does not exceed 0.9 until !fJ!Ja - (J!j0 I > 0.3 . 

The power curve can be made smoother by increasing the number of simulations or 
by smoothing the curve by, for example, using predictions from a regression of power 

· on a quartic in b2Ha. 

12 .6.4 Asymptotic test power 

The asymptotic power of the Wald test can be obtained without resorting to simulation. 
We do this now, for the square of the t test. 

We consider W = {(,82 - 2)/s{h F· Then W � x2(1) under Ho : fJ2 = 2. It can be 

shown that under Ha : (32 = (Jfa , the test statistic W � noncentral x2(h; >.) , where the 
noncentrality parameter A =  ((3!/a - 2f/(J}, · [If y "' N(o, I) ,  then (Y - o)' (y - 8) "' 
x2(1) and y'y "' noncentral x2(h; o' 8) . ]  

We again consider the power of a test of (32 = 2 against fJ.Jla = 2.2. Then A = ((J!ja - fJ!/0?/a� = (0.2/0.084)2 = 5.67, where we recall the earlier discussion that 
the DGP is such that (Jjj2 = 0.084. A x2(1 ) test rejects at a level of a = 0.05 if 

W > 1.962 = 3.84. So the asymptotic test power equals Pr{W > 3.84\W � noncentral 
x2(1 ;  5.67) } .  The nchi20 function gives the relevant c.d.f., and we use 1-nchi20 to 
get the right tail. We have 
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• Power of chi(l)  test when noncentrality parameter lambda � 5 . 6 7  
display 1-nchi2 ( 1 , 5 . 67 , 3 . 84) 

. 6633429 

4 1 1  

The asymptotic power of  0.663 is similar t o  the estimated power of  0.657 from the 
Monte Carlo example at the top of page 409. This closeness is due to the relatively 
large sample size with just one regressor. 

12.7 Spec;ification tests 

The preceding Wald, LR, and LM tests are often used for specifi cation testing, particu­
larly of inclusion or exclusioi:1 of regressors. In this section, we consider other specifi ca­
tion testing methods that differ in that they do not work by directly testing restrictions 
on parameters. Instead, they test whether moment restrictions implied by the model, 
or other model properties , are satisfi.ed. 

12.7 . 1  Moment-based tests 

A moment-based test, or m test, is one of moment conditions imposed by a model but 
not used in estimation. Specifically, 

Ho : E{m(yi ,xi , e ) }  = o (12.9) 

where m( · ) is an h x 1 vector. Several examples follow below. The test statistic is based 
on whether the sample analogue of this condition is satisfied, i .e . , whether m(O) = 

L,;:,l m(yi, Xi, e) = 0. This statistic is asymptotically normal because e is, and taking 
the quadratic form we obtain a chi-squared statistic. The m test statistic is then 

M = m(e)' [ v {m(O)}  rl m(O) � x2 (h) under Ho 

As usual, we reject at the a level if p = Pr{x2 (h) > W} < a. 

Obtaining V {m(O)} can be difficult. Often this test is used after ML estimation, 
because likelihood"based models impose many conditions that can be used as the basis 
for an m test. Then the auxiliary regression for the LM test (see section 12.5.3) can be 
generalized. We compute NI as N times the uncentered R2 from the auxiliary regression 
of 1 on m(yi ,xi , e )  and si (e) , where Si(8) = o lnf(Yilxi, fJ)/8(}. In finite samples, the 
test statistic has a size that can differ signifi.cantly from the nominal size, but this can 
be rectified by using a bootstrap with asymptotic refinement. 

An example of this auxiliary regression, used to test moment conditions implied by 
the tobit model, is given in section 16.4. 

12.7 .2 Information matrix test 

For a fully parametric model, the expected value of the outer product of the first deriva­
tives of ln L( 8) equals the negative expected value of the second derivatives. This prop­
erty, called the information matrix (IM) equality, enables the variance matrix of the MLE 



412 Chapter 12 Testjng methods 

to simplify from the general sandwich form A - 1BA-1 to the simpler form -A-\ see 
section 10.4.4. 

The IM test is a test of whether the IM equality holds. It is a special case of (12.9) 
with m(yi, Xi, e )  equal to the unique elements in  Si( e)si( 8)' + os.;( 8)/ a e. For the linear 
model under normality, the IM test is performed by using the estat imtest command 
after regress; see section 3.5.4 for an example. 

12.7 .3 Chi-squared goodness-of-fit test 

A simple test of goodness of fit is the following. Discrete variable y takes on the values 
1 ,  2, 3, 4 ,  and 5 ,  and we compare the fraction of sample values y that take on each 
value with the corresponding predicted probability from a fitted parametric regression 
model. The idea extends easily to partitioning on the basis of regressors as well as y 
and to continuous regressor y, where we replace a discrete value with a range of values. 

Stata implements a goodness-of-fit test by using the estat gof command following 
logi t, logistic ,  probi t, and poisson. An example of estat gof following logit 
regression is given in section 14.6. A weakness of this command is that it treats estimated 
coefficients as known, ignoring estimation error. The goodness-of-fit test can instead be 
set up as an m test that provides additional control for estimation error; see Andrews 
(1988) and Cameron and Trivedi (2005, 266-271) . 

12.7 .4 Overidentifying restrictions test 

In the generalized methods of moments (GMM) estimation framework of section 11 .8 ,  
moment conditions E{h(yi, xi ,  8 ) }  = 0 are used as the basis for estimation. In  a just­
identified model, the GMM estimator solves the sample analog I::: I h(yi, X.;, e) = 0. In 
an overidentified model, these conditions no longer hold exactly, and an overidentifying 
restrictionS (OIR) test is based On the closeneSS of 2::::::1 h(y;, X;, e) to 0 ,  where e is the 
optimal GMM estimator. The test is chi-squared distributed with degrees of freedom 
equal to the number of overidentifying restrictions. 

This test is most often used in overidentified IV models, though it can be applied 
to any overidentified model. It is performed in Stata with the estat overid command 
after ivregress gmm; see section 6.3.7 for an example. 

, 

12 .7.5 Hausman test 

The Hausman test compares two estimators where one is consistent under both H 0 and 
Ha while the other is consistent under Ho only. If the two estimators are dissimilar, 
then Ho is rejected. An example is to test whether a single regressor is endogenous by 
comparing two-stage least-squares and OLS estimates. 

· 
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We want to test H0 : plim(O - e) = o. Under standard assumptions, each estimator 
is asymptotically normal and so is their difference. Taking the usual quadratic form, 

H = (0 - e)' {V(O - e) } -l (0 - e) � x
_
2 (h) under Ho 

The hausman command, available after many estimation commands, implements this 
test under the strong assumption that 0 is a fully efficient estimator. Then it can be 
shown that 1/(0 - e) = V(e) - V(O) . In some common settings, the Hausman test can 
be more simply performed with a test of the significance of a subset of variables in an 
auxiliary regression. Both variants are demonstrated in section 8.8.5. 

The standard microeconometrics approach of using robust estimates of the VCE im­
plicitly presumes that estimators are not efficient. Then the preceding test is incorrect. 
One solution is to use a bootstrapped version of the Hausman test; see section 13.4.6. 
A second approach is to test the statistical significance in the ·appropriate auxiliary 
regression by using robust standard errors; see sections 6.3.6 and 8.8.5 for examples. 

12.7.6 Other tests 

The preceding discussion only scratches the surf ace of specification testing. Many model­
specific tests are given in model-specific reference books such as Baltagi (2008) for panel 
data, Hosmer and Lemeshow (2000) for binary data, and Cameron and Trivedi (1998) 
for count data. Some of these tests are given in estimation command output or through 
postestimation commands, usually as an estat command, but many are not. 

12 .8  Stata resour.ces 

The Stata documentation [o] functions, help functions, or help density functions 
describe the functions to compute p-values and critical values for various distributions. 
For testing, see the relevant entr;.es for the commands discussed in this chapter: [R] test, 
[R] testnl, [R] lincom, [R] nlcom, [R] lrtest, [R] bausman, [R] regress postestima­
tion (for estat imtest) , and [R] estat. 

Much of the material in this chapter is covered in Cameron and 1'rivedi (2005, ch. 7 
and 8) and various chapters of Greene (2008) and Wooldridge (2002). 

12.9 Exercises 
1. The density of a x2 (h) randoin variable is f(y) = {y(h/2l- 1 exp(-y/2 ) }/{2h/2 

f(h/2)} , where r( - )  is the gamma function and f(h/2) can be obtained in Stata 
as exp (lngamma(h/2) ) .  Plot this density for h = 5 and y :::; 25. 

2 .  Use Stata commands to find the appropria�e p-values for t(lOO), F(l ,  100), Z ,  and 
x2 (1) distributions at y = 2.5 . For the same distributions, find the critical values 
for tests at the 0.01 level. 
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3. Consider the Poisson example in section 12.3, with a robust estimate of the VCE. 
Use the test or testnl commands to test the following hypotheses: 1) Ho : 
.G'remale - 100 x .G'income = 0.5; 2) Ha :  .G'rema.le = 0; 3) test the previous two hypotheses 
jointly with the mtest option; 4) Ho : ,G'fema.le = 0; and 5) Ho : .G'fc';;�';;· = 1. Are you 
surprised that the second and fourth tests lead to different Wald test statistics? 

4. Consider the test of Ho : .G'remate/ .G'priva.te - 1 = 0, given in section 12.3.5. It can 
be shown that, given that f3 bas the entries .G'private >  .G'chronic , .G'rema.le, .G'income , and 
.6'-cons, then R defined in (12 .5) is given by 

0 .,.,.....l_ 0 0 ] P'pt'lv-<ot"J 

Manually calculate the Wald test statistic defined in (12 .5) by adapting the code 
at the end of section 12.3.2. 

5 .  The claim is made that the effect of private insurance on doctor visits is less than 
that of having a chronic condition, i .e . , that .G'priva.te - .G'chronic < 0. Test this claim 
at the 0.05 level. Obtain 95% and 99% confidence intervals for .G'pr;vate - .G'chronic · 

6 .  Consider the negative binomial example in section 12 .4 .1, where we test H0 : o: = 0. 
Use the output from the nbreg command to  compute the Wald test statistic, and 
compare this with the LR test statistic given in the output. Next calculate this 
Wald test statistic using the testnl command as follows: Fit the model by using 
nbreg, and then type estat vee .  You will see that the estimate lnalpha is 
saved in the equation lnalpha with the name _cons. vVe want to test o: = 0, in 
which case exp(lno:) = 0. Give the command testnl exp( [lnalpha] _cons)=O. 
Compare the results with your earlier results. 

7. Consider the Poisson example of section 12.3.2. The parametric Poisson model 
imposes the restriction that Var(yix) = exp(x' (3). An alternative model is that 
Var(yix) = exp(x' f3 )+o:xexp(x' (3)2. A test of overdispersion is a test of H0 : o: � 0 
against Ha : o: > 0. The LM test statistic can be computed as the t test that o: = 0 
in the auxiliary OLS regression of { (Yi - Jli? - Jli}/Jli on Jli (no intercept) where 
'jli = exp(x'/3). Perform this test. 

8. Consider the DGP y = 0 + ,6'2x + c, x ,...., N(O, 1 ) ,  N = 36. For this DGP, what do 
you expect Var(�) to equal? Consider a test of H0 : .6'2 = 0 at the 0.05 level. By 
simulation, find the size of the test and the power when ,6'2 = 0.25. 

9 .  Consider the same DGP as in the previous question, but adapt i t  to a probit model 
by defi.ning y* = 0 + .G'2x + c, and define y = 1 if y* > 0 and y = 0 otherwise. 
Consider a test of H0 :  ,6'2 = 0 at the 0.05 level. By simulation, find the size of the 
test and the power when ,6'3 = 0.25. 
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13.1 Introduction 

The chapter considers bootstrap methods. The most common use of the bootstrap is 
to provide standard-error estimates when analytical expressions are quite complicated. 
These standard errors are then used to form confidence intervals and test statistics. 

Additionally, a more complicated bootstrap with asymptotic refinement can provide 
tests with an actual size closer to the nominal size and confidence intervals with an 
actual coverage rate closer to the nominal coverage rate, compared with the standard 
inferential methods presented in the preceding chapter. 

13 .2 Bootstrap methods 

A bootstrap provides a way to perform statistical inference by resampling from the 
sample. The statistic being studied is usually a standard error, a confidence interval, 
or a test statistic. 

13.2.1 Bootstrap estimate of standard error 

As a leading example, consider calculating the standard error of an estimator B when 
this is difficult to do using conventional methods. Suppose 400 random samples from 
the population were available. Then we could obtain 400 different estimates of B and 
let the standard error of B be the standard deviation of these 400 estimates. 

In practice, however, only one sample from the population is available. The boot­
strap generates multiple samples by resampling from the current sample. Essentially, 
the observed sample is viewed as the population, and the bootstrap is a method to ob­
tain multiple samples from this population. Given 400 bootstrap resamples, we obtain 
400 estimates and then estimate the standard error of B by the standard deviation of 
these 400 estimates. 

Let er '  . . . ' B"B denote t�e estimates, where here B 400. Then the bootstrap 
estimate of the variance of e is 

. 
B 

'Varaaot(B) = B � 1 2)eb - B* )2 (13 .1 )  
b�l � il � 

where e· = 1/ B Lb=l e; is the average of the B bootstrap estimates. 
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The square root of Yarsoot(B) , denoted by sesoot(B) , is called the bootstrap estimate 
of the st�;_ndard error of e. Some authors more correctly call this the� bootstrap standard 
error of e, or the bootstrap estimate of the standard deviation of () , because the term 
"standard error" means estimated standard deviation. 

13.2 .2 Bootstrap methods 

The plural form, bootstrap methods, is used because there is no one single bootstrap. As 
already noted, the bootstrap can be used to obtain the distribution of many different 
statistics. There are several different ways to obtain bootstrap resamples. Even for 
given statistic and bootstrap resampling methods, there are different ways to proceed. 

The simplest bootstraps implement standard asymptotic methods. The most com­
mon use of the bootstrap in microeconometrics is standard-error estimation. More 
complicated bootstraps implement more refined asymptotics. 

13.2.3 Asymptotic refinement 

Consider a statistic such as a Wald test statistic of a single restriction. Asymptotic 
methods are used to obtain an approximation to the cumulative distribution function 
of this statistic. For a statistic with a limiting normal distribution based on conven­
tional first-order root-N a::;ymptotics, the approximation error behaves in the limit as a 
multiple of N-112 (so the error disappears as N __, oo ). For example, a one-sided test 
with the nominal size of 0.05 will have the true size 0.05 + O(N-112 ) ,  where O(N-112) 
behaves as a constant divided by -/N. 

Asymptotic methods with refinement have an approximation error that disappears 
at a faster rate. In particular, bootstraps with asymptotic refinement can implement 
second-order asymptotics that yield an approximation error that behaves as a multiple of 
N-1 . So a one-sided test with a nominal size of0.05 now has a true size of0.05+0(N-1 ) .  
This improvement i s  only asymptotic and is not guaranteed to  exist i n  small samples. 
But simulation studies usually find that the improvement carries over to small samples. 

We present confidence intervals with asymptotic refinement in sections 13.3.6-13.3.8, 
and both hypothesis tests and confidence intervals with asymptotic refinement in sec­
tion 13.5. 

13 .2 .4 Use the bootstrap with caution 

Caution is needed in applying the bootstrap because it is easy to misapply. For example, 
it is always possible to compute se(e) by using the formula in (13 .1 ) .  But this estimate is 
inconsistent if, for example, the bootstrap resampling scheme assumes independent ob­
servations when observations are in fact correlated. And in some cases, Var(B) does not 
exist, even asymptotically. Then se(B) is estimating a nonexistent standard deviation. 
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The bootstraps presented in this chapter assume independence of observations or 
of clusters of observations. This does permit dependence via clustering, provided 
that observations are combined into clusters that are independent and the bootstrap 
is over the clusters. Then the bootstrap commands given in this chapter should in­
clude the cluster ( varlist) option, where varlist denotes the clustering variables. The 
idcluster( newvar) option may additionally be needed; see section 13.3.5. 

The bootstraps also assume that the estimator is a smooth estimator that is root-N 
consistent anP. asymptotically normal distributed. Some variations of the bootstrap can 
be applied to more complicated cases than this, but one should first read relevant journal 
articles. In particular, care is needed for estimators with a nonparametric component, 
for nonsmooth estimators, and for dependent data. 

The Stata defaults for the number of bootstrap replications are set very low to speed 
up computation time. These values may be adequate for exploratory data analysis but 
should be greatly increased for published results; see section 13.3.4. And for published 
results, the seed should be set, using set seed, rather than determined by the computer 
clock, to enable replication. 

13 .3  Bootstrap pairs using the vce(bootstrap) option 

The most common use of the bootstrap is to obtain a consistent estimate of the standard 
errors of an estimator, with no asymptotic refinement. With st.anclarcl Stata estimation 
commands, this can be easily done by using the vce (bootstrap) option. 

13.3.1 Bootstrap-pairs method to estimate VCE 

Let w; denote all the data for the ith observation. Most often, w; 7 (y.; , x.; ) ,  where y is 
a scalar dependent vaxiable and x is a regressor vector. More generally, wi = (y., , x; , z.;. ) ,  
where now there may be several dependent variables and z denotes instruments. We 
assume w., is independent over i .  

Stata uses the following bootstrap-pairs algorithm: 

1. Repeat steps a) and b) B independent times: 

a) Draw a bootstrap sample of size N by sampling with replacement from the 
original data w1 , . . . , wN. Denote the bootstrap sample by wj,  . . . , wj,r. 

b) Calculate an estimate, 8* ,  of e ba�ed on wj , . . . , w;, . 
-· -* 2. Given the B bootstrap estimates, denoted by el ,  . . .  ' e  B> the bootstrap estimate 

of the variance-covariance matrix of the estimator (veE) is 

VBoot (O) = 
B � 1 t (e: - B*) (e: - e*) '  
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The corresponding standard-error estimate of the jth component of 0 is then 

The bootstrap resamples differ in the number of occurrences of each observation. 
For example, the first observation may appear twice in the first bootstrap sample, zero 
times in the second sample, once in the third sample, once in the fourth sample, and so 
on. 

The method is called bootstrap pairs or paired bootstrap because in the simplest 
case wi = (y; , x; )  and the pair (y,, x; ) is being resampled. It is also called a case 
bootstrap because all the data for the ith case is resampled. It is called a nonparametric 
bootstrap because no information about the conditional distribution of Yi given x., is 
used. For cross-section estimation commands, this bootstrap gives the same standard 
errors as those obtained by using the vee (robust) option if B _,. oo, aside from possible 
differences due to degrees-of-freedom correction that disappear for large N. 

This bootstrap method is easily adapted to cluster bootstraps. Then w i becomes 
We, where c = 1, . . .  , C denotes each of the C clusters, data are independent over c, 
resampling is over clusters, and the bootstrap resample is of size C clusters. 

13.3.2 The vce(bootstrap) option 

The bootstrap-pairs method to estimate the VCE can be obtained for most Stata cross­
section estimation commands by using the estimator command option 

vee (bootstrap [ ,  bootstrap_options ] ) 
We list many of the options in section 13.4.1 and illustrate some of the options in the 
following example. 

The vce (bootstrap) option is also available for some panel-data estimation com­
mands. The bootstrap is actually a cluster bootstrap over individuals i, rather than 
one over the individual observations (i, t ) .  

13.3.3 Bootstrap standard-errors example 

We demonstrate the bootstrap using the same data on doctor visits (docvis) as that in 
chapter 10, except that we use one regressor (chronic) and just the first 50 observations. 
This keeps output short, reduces computation time, and restricts attention to a small 
sample where the gains from asymptotic refi.nement may be greater. 

* Sample is only the first 50 observations of chapter 10 data 
use muslOdata . dta 
quietly keep if year02 -- 1 

quietly drop if _n > 50 
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quietly keep docvis chronic age 

quietly save bootdat a . dta, replace 
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The analysis sample, saved as bootdata .  dta, is used a number of times in this chapter. 
For standard-error computation, we set the number of bootstrap replications to 400. 

We have 

• Option vce (bootstrap) to compute bootstrap standard errors 
poisson docvis chronic ,  vce(boot, reps(400) seed(10101) nodots) 

Poisson regression 

Log likelihood = -238. 75384 

docvis 

chronic 
cone 

Observed Bootstrap 
Coef . Std. Err. 

. 9833014 . 5253149 
1 . 031602 .3497212 

Number of o bs 50 
Replications 400 
Wald chi2(1) 3 . 5 0  
Prob > chi2 0 . 0612 
Pseudo R2 0 . 0917 

z P> l z l  
Normal-based 

[95/. Conf . Interval] 

1 . 8 7  0 . 061 
2 . 9 5  0 . 003 

- . 0462968 
. 3461607 

2 . 0129 
1 .  717042 

The output is qualitatively the same as that obtained by using any other method of 
standard-en-or estimation. Quantitatively, however, the standard errors change, leading 
to different test statistics, z-values, and p-values. For chronic, the standard error of 
0.525 is similar to the robust estimate of 0.515 given in the last column of the results 
from estimates table in the next section. Both standard errors control for Poisson 
overdispersion and are much larger than the default standard errors from poisson. 

13.3.4 How many bootstraps? 

The Stata default is to perform 50 bootstrap replications, to minimize computation 
time. This value Ill:B:Y be useful during the modeling cycle, but for final results given in 
a paper, this value is too low. 

Efron and Tibshirani (1993, 52) state that for standard-error estimation "B = 50 
is often enough to give a good estimate" and "very seldom are more than B = 200 
replications needed" .  Some other studies suggest more bootstraps than this. Andrews 
and Buchinsky (2000) show that the bootstrap estimate of the standard error of (j with 
B = 384 is withi n 10% of that with B = oo with a probability of 0.95, in the special case 
that e has no excess kurtosis. We choose to use B = 400 when the bootstrap is used to 
estimate standard errors. The user-written bssize command (Poi 2004) performs the 
calculations needed to implement the methods of Andrews and Buchinsky (2000) . 

For uses of the bootstrap other than for standard-error estimation, B generally needs 
to be even higher. For tests at the a level or at 100(1 - a)% confidence intervals, there 
are reasons for choosing B so that a(B + 1) is an integer. In subsequent analysis, we 
use B = 999 for confidence intervals and hypothesis tests when a = 0.05. 
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To see the effects of the number of bootstraps on standard-error estimation, the 
following compares results with very few bootstraps, B = 50, using two different seeds, 
and with a very large number of bootstraps, B = 2000. We also present the robust 
standard error obtained by using the vee (robust) option. We have 

* Bootstrap standard errors for different reps and seeds 
quietly poisson docvis chronic,  vce (boot ,  reps(50) seed( 10101) )  
estimates store boot50 

quietly poisson docvis chronic ,  vce (boot ,  reps(50) seed(20202)) 
estimates store boot50diff 

quietly poisson docvis chronic , vce (boot ,  reps(2000) seed(10101))  
estimates store boot2000 

quietly poisson docvis chronic ,  vce (robust) 
estimates store robust 

estimates table boot50 boot50diff boot2000 robust ,  b(%8 .5f)  se(%8 .5f)  

Variable boot50 boot 50-f boot2000 robust 

chronic 0 . 98330 0. 98330 0 . 98330 0 . 98330 
0. 47010 0 . 50673 0 . 53479 0 .  51549 

cons 1 . 03160 1 . 03160 1 . 03160 1 . 03160 
0 . 39545 0 . 32575 0 . 34885 0 . 34467 

legend: b/se 

Comparing the two replications with B = 50 but different seed, the standard error 
of chronic differs by 5% (0.470 versus 0.507). For B = 2000, the bootstrap standard 
errors still differ from the robust standard errors (0.535 v·ersus 0.515) due in part to the 
use of N / (N - K) with N = 50 in calculating robust standard errors. 

13.3.5 Clustered bootstraps 

For cross-section estimation commands, the vee (bootstrap) option performs a paired 
bootstrap that assumes independence over i. The bootstrap resamples are obtained by 
sampling from the individual observations with replacement. 

The data may instead be clustered, with observations correlated within cluster and 
independent across clusters. The vee (bootstrap , cluster( varlist) ) option performs 
a cluster bootstrap that samples the clusters with replacement. If there are C clus­
ters, then the bootstrag resample has C clusters. This may mean that the number 
of observations N = I:c=l Nc may va.ry across bootstrap resamples, but this poses no 
problem. 
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As an example, 

. * Option vce(boot, cluster) to compute cluster-bootstrap standard errors 

. poisson docvis chronic, vce(boot, cluster(age) reps(400) seed(10101) nodots) 
Poisson regression 

Log likelihood = -238.75384 

Observed 
doc vis Coef . 

chronic . 9833014 
cons 1 . 031602 

Numb\'r of obs 
Replications 
Wald chi2(1 )  
Prob > chi2 
Pseudo R2 

50 
400 

4 . 12 
0 . 0423 
0 . 0917 

(Replications based on 26 clusters in age) 

Bootstrap Normal-based 
Std. Err. z P> l z l  [95/. Conf . Interval] 

.484145 2 .03  D .  042 . 0343947 1 .  932208 

. 303356 3 .40  0 . 001 . 4370348 1 .  626168 
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The cluster-pairs bootstrap estimate of the standard error of f3cbror.ic is 0.484, simi­
lar to the 0.525 using a bootstrap without clustering. If we instead obtain the usual 
(nonbootstrap) cluster-robust standard errors, using the vee (cluster age) option, the 
cluster estimate of the standard error is 0.449. In practice, and unlike this example, 
cluster-robust standard errors can be much larger than those that do not control for 
clustering. 

Some applications use cluster identifiers in computing estimators. For example, 
suppose cluster-specific indicator variables are included as regressors. This can be done, 
for example, by using the xi prefix and the regressors i .  id, where id is the cluster 
identifier. If the first cluster in the original sample appears twice in a cluster-bootstrap 
resample, then its cluster dummy will be nonzero twice in the resample, rather than 
once, and the cluster dummies will no longer be unique to each observation in the 
resample. For the bootstrap resample, we should instead define a new set of C unique 
cluster dummies that will each be nonzero exactly once. The idcluster ( newvar) option 
does this, creating a new variable containing a unique identifier for each observation in 
the resampled cluster. This is particularly relevant for estimation with fixed effects, 
including fixed-effects panel-data estimators. 

For some xt commands, the vce(bootstrap) option actually performs a cluster 
bootstrap, because clustering is assumed in a panel setting and xt commands require 
specification of the cluster identifier. 

13.3.6 Bootstrap confidence intervals 

The output after a command with the vce(boDtstrap) option includes a "normal­
based" 95% confidence interval for () that equals 

[B - 1.96 X seBoot (B) , B + 1·.96 X SeBoot(B) J  
and is a standard Wald asymptotic confidence interval, except that the bootstrap is 
used to compute the standard error. 
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Additional confidence intervals can be obtained by using the postestimation estat 
bootstrap command, defined in the next section. 

The percentile method uses the relevant percentiles of the empirical distribution of 
the B bootstrap estimates 8!, . . .  , 83 . In particular, a percentile 95% confidence interval 
for 8 is 

(8ii.o2s , 8ii 975 ) 

ranging from the 2.5th percentile to the 97.5th percentile o f  8i , . . .  , 83 . This confidence 
interval has the advantage of being asymmetric around 8 and being invariant to mono­
tonic transformation of 8. Like the normal-based confidence interval, it does not provide 
an asymptotic refinement, but there are still theoretical reasons to believe it provides a 
better approximation than the normal-based confi.dence interval. 

The bias-corrected (Be) method is a modifi cation of the percentile method that 
incorporates a bootstrap estimate of the finite-sample bias in 8. For examp"le, if the 
estimator is upward biased, as measured by estimated median bias, then the confi.­
dence interval is moved to the left. So if 40%, rather than 50%, of 8;_ , . . .  , 8  'B are less 
than 8, then a se 95% confidence interval might use [80_007, 80_9 27] , say, rather than 
[8ii.o2s, 8a.97s l ·  

The se accelerated (sea) confidence interval is an adjustment to the se method that 
adds an "acceleration" component that permits the asymptotic variance of 8 to vary 
with 8. This requires the use of a jackknife that can add considerable computational 
time and is not possible for all estimators. The formulas for se and sea confidence 
intervals are given in [R] bootstrap and in books such as Efron and Tibshirani (1993, 
185) and Davison and Hinkley (1997, 204). 

The sea confidence interval has the theoretical advantage over the other confidence 
intervals that it does offer an asymptotic refinement. So a sea 95% confidence interval 
has a coverage rate of 0.95 + O(N-1 ) ,  compared with 0.95 + O(N-112) for the other 
methods. 

The percentile-t method also provides the same asymptotic refinement. The estat 
bootstrap command does not provide percentile-t confidence intervals, but these can 
be obtained by using the bootstrap command, as we demonstrate in section 13.5.3. 
Because it is based on percentiles, the sea confi.dence interval is invariant to monotonic 
transformation of 8, whereas the percentile-t confidence interval is not. Otherwise, there 
is no strong theoretical reason to prefer one method over the other. 

13.3.  7 The postestimation estat bootstrap command 

The esta t bootstrap command can be issued after an estimation command that has 
the vce(bootstrap) option, or after the bootstrap command. The syntax for estat 
bootstrap is 

estat bootstrap [ ,  options ] 
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where the options include normal for normal-based confidence intervals, percentile for 
percentile-based confidence intervals, be for BC confidence intervals, and option be a for 
BCa confidence intervals. To use the be a option, the preceding bootstrap must be done 
with bca to perform the necessary additional jackknife computation. The all option 
provides all available confidence intervals. 

13.3.8 Bootstrap confidence-intervals example 

We obtain these various confidence intervals for the Poisson example. To obtain the BCa 
interval , the original bootstrap needs to include the be a option. To speed up bootstraps, 
we should include only necessary variables in the dataset . For bootstrap precision, we 
set B = 999. We have 

* Bootstrap confidence intervals :  normal-based, percentile, BC , and BCa 
quietly poisson docvis chronic , vce(boot, reps(999) seed(10101) bca) 
estat bootstrap , all 

Poisson regression Number of obs 
Replications 

Bootstrap 
doc vis 

Observed 
Coef . Bias Std. Err. [95/. Conf . Interval] 

chronic 

cons 

. 98330144 - . 0244473 . 54040762 

1 . 0316016 - . 0503223 . 35257252 

(N) normal confidence interval 
(P) percentile confidence interval 
(BC) bias-corrected confidence interval 

- . 075878 
- . 1316499 
- . 0820317 
- . 0215526 

. 3405721 

. 2177235 

. 2578293 

.3794897 

(BCa) bias-corrected and accelerated confidence interval 

2 . 042481 
2 . 076792 
2 . 100361 
2 . 181476 
1 . 722631 
1 . 598568 
1 . 649789 
1 . 781907 

50 
999 

(N) 
(P) 

(BC) 
(BCa) 

(N) 
(P) 

(BC) 
(BCa) 

The confidence intervals for ,Bchconic are, respectively, [-�0.08, 2.04] , [ -0.13, 2.08], [ -0.08, 
2.10], and [-0.02, 2 .18]. The differenc;:_s here are not gTeat. Only the normal-based 
confi.dence interval is symmetric about t1chronic ·  

13.3.9 Bootstrap estimate of bias 
=· 

Suppose that the estimator B is biased for 8. Let 8 be the average of the B bootstraps 
- � 

and 8 be the estimate from the original model. Note that 8 is not an unbiased estimate 
of 8. Instead, the difference r - (f provides a bootstrap estimate of the bias of the 
estimate () .  The bootstrap views the data-generating process (DGP) value as 8, and r 
is viewed as the mean of the estimator given this DGP value. 
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Below we list e (b_b s ) ,  which contains the average of the bootstrap estimates . 
. matrix list e (b_bs) 
e(b_bs) [ 1 , 2] 

docvis: docvis: 
chronic cons 

y1 . 95885413 . 9812793 

The above output indicates _!hat 8* = 0.95885413, and the output from estat 
bootstrap , all indicates that () = 0.98330144. Thus the bootstrap estimate of bias 
is -0.02444731 ,  which is reported in the estat bootstrap , all output. Because 
e = 0.98330144 is downward biased by 0.02444731 ,  we must add back this bias to 
get a Be estimate of () that equals 0 .98330144 + 0.02444731 = 1.0077. Such Be esti­
mates are not used, however, because the bootstrap estimate of mean bias is a very 
noisy estimate; see Efron and Tibshirani ( 1993, 138). 

1 3.4 Bootstrap pairs using the bootstrap command 

The bootstrap command can be applied to a wide range o f  Stata commands such 
as nonestimation commands, user-written commands, two-step estimators, and Stata 
estimators without the vce(bootstrap) option. Before doing so, the user should ver­
ify that the estimator is one for which it is appropriate to apply the bootstrap; see 
section 13.2.4. 

13.4.1 The bootstrap command 

The syntax for bootstrap is 

bootstrap explist [ , options eform_option ] : command 

The command being bootstrapped can be an estimation command, other commands 
such as su=arize, or user-written commands. The argument explist provides the 
quantity or quantities to be bootstrapped. These can be one or more expressions, 
possibly given names [so newvarname = (exp)] . 

For estimation commands, not setting explist o r  setting explist t o  _b leads to a 
bootstrap of the parameter estimates. Setting explist instead to _se leads to a bootstrap 
of the standard errors of the parameter estimates. Thus bootstrap : poisson y x 
bootstraps parameter estimates, as does bootstrap _b: poisson y x. The bootstrap 
_se : poisson y x command instead bootstraps the standard errors. The bootstrap 
_b [x] : poisson y x command bootstraps just the coefficient of x and not that of the 
intercept. The bootstrap bx=_b [x] : poisson y x command does the same, with the 
results of each bootstrap stored in a variable named bx rather than a variable given the 
default name of _bs_l. 

The options include reps ( #)  to set the number of bootstrap replications; seed(#)  
t o  set the random-number generator seed value to  enable reproducibility; nodots to 
suppress dots produced for each bootstrap replication; cluster(varlist) if the boot-
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strap is over clusters; idcluster(newvar ) , which is needed for some cluster bootstraps 
(see section 13.3.5) ;  group (varname) , which may be needed along with idcluste r O ;  
strata(varlist ) for bootstrap over strata; size ( # )  to draw samples o f  size #; bca to 
compute the acceleration for a sea confidence interval; and saving()  to save results 
from each bootstrap iteration in a file. The eform_option option enables bootstraps for 
! rather than fJ. 

If bootstrap is applied to commands other than Stata estimation commands, it 
produces a warning message. For example, the user-written poissrobust command 
defined below, leads to the warning 

Warning: Since poissrobust is not an estimation command or does not set 
e ( sample) , bootstrap has no way to determine which observations are 
used in calculating the statistics and so assumes that all 
observations are used. This means no observations will be excluded 
from the resampling because of missing valuez or other reazo�s . 

If the assumption is not true, press Break, save the data, and drop 
the observations that are to be excluded.  Be sure that the dataset 
in memory contains only the relevant data. 

Because we know that this is not a problem in the examples below and we want to 
minimize output, we use the nowarn option to suppress this warning. 

The output from bootstrap includes the bootstrap estimate of the standard error 
of the statistic of ir:.terest and the associated normal-based 95% confidence interval. 
The esta t bootstrap command after bootstrap computes other, better confidence 
intervals. For brevity, we do not obtain these alternative and better confidence intervals 
in the examples below. 

13.4.2 Bootstrap parameter estimate from a Stata estimation command 

The bootstrap command is easily applied to an existing Stata estimation command. It 
gives exactly the same result as given by directly using the Stata estimation command 
with the vee (bootstrap) optiol!, if this option is available and the same values of B 
and the seed are used. 

'vVe illustrate this for doctor visits. Because we are bootstrapping parameter esti­
mates from an estimation command, there is no need to provide explist. 

* Bootstrap command applied to Stata estimation command 
bootstrap, reps(400) seed(10101) nodots noheader: poisson docvis chro�ic 

doc vis 

chronic 
cons 

Observed Bootstrap 
Coef.  Std. Err.  

.9833014 .5253149 
1 . 031602 . 3497212 

z P> l z l  

1 .  87 0 .061  
2 . 9 5  0 . 003 

Normal-based 
[95/. Conf . Interval] 

- . 0462968 
.3461607 

2 . 0129 
1 .  717042 

The results are exactly the same as those obtair:ied in section 13.3.3 by using poisson 
with the vce(bootstrap) option. 
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13.4.3 �ootstrap standard error from a Stata estimation command 

Not only is 8 not an exact estimate of () ,  but se(B) is not an exact estimate of the 
standard deviation of the estimator '8. We consider a bootstrap of the standard error, 
se(B), to obtain an estimate of the standard error of se(B). 

We bootstrap both the coefficients and their standard errors. We have 

. • Bootstrap standard error estimate of th0 standard error of a coeff estimate 

. bootstrap _b _se,  reps(400) seed(10101) nodots :  poisson docvis chronic 
Bootstrap results Number of o bs 50 

Replications 400 

Observed Bootstrap Normal-based 
Coef . Std. Err. z P> l z l  [95/. Conf. Interval] 

doc vis 
chronic .9833014 . 5253149 1 . 87 0 . 06 1  - . 0462968 2 . 0 129 

_cons 1 . 031602 . 3497212 2 . 9 5  0 . 003 .3461607 1 .  717042 

docvis_se 
chronic . 1393729 . 0231223 6 .03  0 . 000 . 094054 . 1846917 

_cons . 0995037 . 0201451 4 . 94 0 . 000 .06002 . 1389875 

The bootstrap reveals that there is considerable noise in se(Jchronic) , with an estimated 
standard error of 0.023 and the 95% confidence interval [0.09, 0.18]. 

Ideally, the bootstra_p standard error of jj, here 0.525, should be close to the mean 
of the bootstraps of se((J), here 0.139. The fact that they are so different is a clear sign 
of problems in the method used to obtain se(jjchronic). The problem is that the default 
Poisson standard errors were used in poisson above, and given the large overdispersion, 
these standard errors are very poor. If we repeated the exercise with poisson and the 
vee (robust) option, this difference should disappear. 

13.4.4 Bootstrap standard error from a user-written estimation com­
mand 

Continuing the previous example, we would like an estimate of ti1e robust standard errors 
after Poisson regression. This can be obtained by using poisson with the vee (robust) 
option. We instead use an alternative approach that can be applied in a wide range of 
setting-s. 

We wlite a program named poi ssrobust that returns the Poisson maximum likeli­
hood estimator (MLE) estimates in b and the robust estimate of the VCE of the Poisson 
MLE in V. Then we apply the bootstrap command to poissrobust rather than to 
poisson, vce (robust) . 
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Because we want to return e and V, the program must be eclass. The program is 
* Program to return b and robust estimate V of the VCE 
program poissrobust, eclass 
version 1 0 . 1  
tempname b V 
poisson docvis chronic , vce(robust) 
matrix " b "  = e(b) 
matrix ·v·  = e(V) 
ereturn post · b - · v · 
end 

Ne.."'C-t it is good practice to check the program, typing the commands 

* Check preceding program by running once 
poissrobust 
ereturn display 

The omitted output is the same as that from poisson, vee (rob�st) . 

We then bootstrap 400 times. The bootstrap estimate of the standard error of se(B) 
is the standard deviation of the B values of se(B) .  We have 

. * Bootstrap standard-error estimate of robust standard errors 

. bootstrap _b _se ,  reps(400) seed(10101) nodots nowarn: poissrobust 

Bootstrap results Number of obs 50 

Observed Bootstrap 
Coef . Std. Err. 

docvis 
chronic . 9833014 .5253149 

cons 1 . 031602 .3497212 

docvis_se 
chronic .5154894 . 0784361 

cons .3446734 .0613856 -

z 

1 .  87 
2 . 9 5  

6 .  57 
5 . 6 1  

Replications 400 

Normal-based 
P> l z l  [95/. Conf . Interval] 

0 .  061 - . 0462968 2 . 0129 
0 . 003 .3461607 1 .  717042 

0 . 000 . 3617575 . 6692213 
0 . 000 .2243598 .464987 

There is considerable noise in the robust standard error, with the standard error of se(,Bchronic) equal to 0.078 and a 95% confidence interval of [0.36, 0.67]. The upper limit 
is about twice the lower limit, as was the case for the default standard error. In other 
examples, robust standard errors can be much less precise than default standard errors. 

13.4.5 Bootstrap two-step estimator 

The preceding method of applying the bootstrap command to a user-defined estimation 
command can also be applied to a two-step estimator. 

A sequential two-step estimator of, say, {3 is one that depends in part on a con­
sistent first-stage estimator, say, a. In some examples-notably, feasible generalized 
least squares (FGLS), where a denotes error variance parameters-one can do regular 
inference ignoring any estimation error in a. More generally, however, the asymptotic 
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distribution of /3 will depend on that of a. Asymptotic results do exist that confirm 
the asymptotic normalitx of leading examples of two-step estimators , and provide a 
general formula for Var(/3). But this formula is usually complicated, both analytically 
and in implementation. A much simpler method is to use the bootstrap, which is valid 
if indeed the two-step estimator is known to be asymptotically normal. 

A leading example is Heckman's two-step estimator in the selection model; see sec­
tion 16.6.4. We use the same example here as in chapter 16. We first read in the data 
and form the dependent variable dy and the regressor list given in xlist. 

* Set up the selection model t�o-step estimator data of chapter 16 
use mus16data .d ta, clear 
generate y = ambexp 
generate dy = y > 0 

generate lny � ln(y) 
(526 missing values generated) 
, global xlist age female educ blhisp totchr ins 

The following program produces the Heckman two-step estimator: 

• Program to return b for Heckman 2-step estimator of selection model 
program heckt�ostep, eclass 
version 1 0 . 1  
tempname b V 
tempvar xb 
capture drop invmills 
probit dy $xlist 
predict ' xb · ,  xb 
generate invmills = normalden ( " x b " ) /normal ( " xb " )  
regress lny $xlist invmills 
matrix " b "  = e(b) 
ereturn post ' b "  
end 

This program can be checked by typing hecktwostep in isolation. This leads to the same 
parameter estimates as in section 16.6.4 . Here f3 denotes the second-stage regression 
coefficients of regressors and the inverse of the Mills' ratio. The inverse of the Mills' 
ratio depends on the first-stage probit parameter estimates a. Because the above code 
fails to control for the randomness in a, the standard errors following hecktwostep 
differ from the correct standard errors given in section 16.6.4. 

To obtain correct standard errors that control for the two-step estimation, we boot­
strap. 
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• Bootstrap for Heckman two-step estimator using chapter 16 example 
. bootstrap _b, reps(400) <>eed(10101) nodots nowarn: hecktwostep 
Bootstrap results Number of o bs 3328 

Replications 400 

·Observed Bootstrap Normal-based 
Coef . Std. E=. z P> l z l  [95/. Conf. Interval] 

age .202124 . 0233969 8 . 64 0 .  000 . 1562671 .247981 
f�male . 2891575 .0704133 4 . 11 0 . 000 .1511501 . 4271649 

educ . 0119928 . 0 1 14104 1 .  05 0 . 293 -. 0103711 . 0343567 
blhisp - . 1810582 . 0654464 -2 . 77 0 . 006 - . 3093308 - .0527856 
totchr .4983315 .0432639 1 1 . 5 2  0 .  000 . 4 135358 .5831272 

ins - . 0474019 . 050382 -0 .94  0 . 347 - . 1461488 . 051345 
invmills - . 4801696 .291585 - 1 . 65 0 . 100 -1 .0 51666 .0913265 

_cons 5 . 302572 .2890579 18 .34 0 . 000 4 . 736029 5 .  869115 

The standard errors are generally within 5% of those given in chapter 16, which are 
based on analytical results. 

13.4.6 Bootstrap Hausman test 

The Hausman test statistic, presented in section 12.7.5 , is 

where e and e are different estimators of e. 
Standard implementations of the Hausman test, including the hausman command 

presented in section 12. 7.5, require that one of the estimators be fully efficient under 
H0. Great simplification occurs because Var(e - 0) = Var(O) - Var(e) if e is fully 
efficient under H0. For some likelihood-based estimators, correct model specification is 
necessary for consistency and in that case the estimator is also fully efficient. But often 
it is possible and standard to not require that the estimator be efficient. In particular, 
if there is reason to use robust standard errors, then the estimator is not fully efficient. 

The bootstrap can be used to estimate Var(O - 0 ) ,  without the need to assume that 
one of the estimators is fully efficient under H0. The B replications yield B estimates 
of e and e, and hence of e - e. We estimate Var(B - e) with (1/ B - 1) Lb(Bb - eb -e:iff)(B;, - eb - e:iff)', where e:iff = 1/  B I;b(Bb - eb ) .  

As an example, we consider a Hausman test for endogeneity of  a regTessor based 
on comparing instrumental-variables and ordinary least-squares (OLS) estimates. Large 
values of H lead to rejection of the null hypothesis that all regressors are exogenous. 

The following program is written for the two�stage least-squares example presented 
in section 6.3.6. 
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* Program to return (b1-b2) for Hausman test of endogenei ty 
program hausmantest, eclass 
version 10 . 1  
tempname b bols biv 
regress ldrugexp hi_empunion totchr age female blhisp line, vce (robust) 
matrix "bols"  = e(b) 
ivregress 2sls ldrugexp (hi_empunion = ssiratio) totchr age female blhisp /// 

line,  vce (robust) 
matrix "biv" = e(b) 
matrix "b"  = "bols" - "biv" 
ereturn post " b "  
end 

This progTam can be checked by typing hausmantest in isolation. 
We then run the bootstrap. 

* Bootstrap estimates for Hausman test using chapter 6 example 
use mus06dat a . dta,  clear 
bootstrap _b, reps(400) seed(10101) nodots nowarn: hausmantest 

Bootstrap results Number of obs 
Replications 

10391 
400 

Observed Bootstrap Normal-based 
Coef . Std. Err. z P> l z l  [95/. Conf . Interval] 

hi_empunion . 9714701 .2396239 4 . 05 0 . 000 .5018158 1. 441124 
totchr - . 0098848 . 00463 -2 . 13  0 . 033 - . 0189594 - . 0008102 

age .0096881 . 002437 3 . 9 8  0 . 000 . 0049117 . 0144645 
female . 0782115 . 0221073 3 . 54 0 . 000 . 0348819 . 1215411 
blhisp . 0661176 . 0208438 3 . 17 0 . 002 . 0252646 . 1069706 

line - . 0765202 . 0201043 -3 .81  0 . 000 - . 1 159239 - . 0371165 
_cons - . 9260396 . 2320957 -3 .99  0 . 000 - 1 . 380939 - .  4711404 

For the single potentially endogenous regTessor, we can use the t statistic given 
above, or we can use the test command. The latter yields 

. * Perform Hausman test on the potentially endogenous regressor 

. test hi_empunion 
( 1) hi_empunion = 0 

chi2( 1) 
Prob > chi2 

16 .44  
0 . 0001 

The null hypothesis of regressor exogeneity is strongly rejected. The test command 
can also be used to perform a Hausman test based on all regTessors. 

The preceding example has wide applicability for robust Hausman tests. 

13.4.7 Bootstrap standard error of the coefficient of variation 

The bootstrap need not be restricted to regression models. A simple example is to 
obtain a bootstrap estimate of the standard error of the sample mean of docvis. This 
can be obtained by using the bootstrap _se :  mean docvis command. 
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A slightly more difficult example is to obtain the bootstrap estimate of the standard 
error of the coefficient of variation ( = sx/x) of doctor visits. The results stored in r ( )  
after summarize allow the coefficient of variation to b e  computed as r(sd) /r(mean) , 
so we bootstrap this quantity. 

To do this, we use bootstrap with the expression coeffvar= (r(sd) /r (mean) ) .  
This bootstraps the quantity r (sd)/r (mean) and gives it the name coeffvar. 'vVe have 

* Bootstrap estimate of the standard error of the coefficient of variation 
, use bootdata .dta , clear 
. bootstrap coeffvar=(r(sd)/ r(mean) ) ,  reps(400) seed( 10101) nodots nowarn 
> saving(coeffofvar, replace) : summarize docvis 
Bootstrap results 

command: summarize docvis 'coeffvar : r(sd)/r(mean) 

. coeffvar 

Observed Bootstrap 
Coef . Std. Err. 

1. 898316 . 2718811 

Number of obs 
Replications 

50 
400 

z P > l z l  

6 .  98 0 .  000 

Normal-based 
[95/. Conf . Interval] 

1 .  365438 2 . 431193 

The normal-based bootstrap 9.5% confidence interval for the coefficient of variation is 
[1.37, 2.43]. 

13 .5 Bootstraps with asymptotic refinement 

Some bootstraps can yield asymptotic refinement, defined in section 13.2.3. The postes­
timation esta t bootstrap command automatically provides BCa confidence intervals; 
see sections 13.3.6-13.3.8. In this section, we focus on an alternative method that 
provides asymptotic refinement, the percentile-t method. The percentile-t method has 
general applicability to hypothesis testing and confidence intervals. 

13.5 .1  Percentile-t method 

A general way to obtain asymptotic refinement is to bootstrap a quantity that is asymp­
totically pivotal, meaning that its asymptotic distribution does not depend on unknown 
parameters. The estimate 8 is not asymptotically pivotal, because its variance depends 
on unknown parameters. Percentile methods therefore do not provide an asymptotic re­
finement unless an adjustment is made, notably, that by the BCa percentile method. The 
t statistic is asymptotically pivotal, however , and percentile-t methods or bootstrap-t 
methods bootstrap the t statistic. 

We therefore bootstrap the t statistic: 
t = (8- (})jse(B) (13.2 ) 

The bootstrap views the original sample as the DGP, so  the bootstrap sets the DGP 
value of (} to be 8. So in each bootstrap resampl"e, we compute a t  statistic centered on 
8: 
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t� = (8b - 8)/se(8b )  (13.3) 

where 8� is the parameter estim�te in the bth bootstrap, and se(8b )  is a consistent 
estimate of the standard error of ()b , often a robust or cluster-robust standard error. 

The B bootstraps yield the t-values t'i , . . .  , t8, whose empirical distribution is used 
as the estimate of the distribution of the t statistic. For a two-sided test of Ho : 8 = 0 ,  
the p-value o f  the original test statistic t = 8jse(8) is 

which is the fraction of times in B replications that it I < i t '  I .  The percentile-t critical 
values for a nonsymmetric two-sided test at the 0.05 level are t0.025 and t0.975. And a 
percentile-t 95% confidence interval is 

[8 + t0.025 x se(8) ,  8 + t0 .975 x se(8) ]  

The formula for the lower bound has  a plus sign because t0.025 < 0 .  

13.5.2 Percentile-t Wald test 

(13.4) 

Stata does not automatically produce the percentile-t method. Instead, the bootstrap 
command can be used to bootstrap the t statistic, saving the B bootstrap values 
t'i , . . .  , t8 in a file. This file can be accessed to obtain the percentile-t p-values and 
critical values. 

'vVe continue with a count regression of docvis on chronic. A complication is that 
the standard error given in either (13.2) or (13.3) needs to be a consistent estimate of 
the standard deviation of the estimator. So we use bootstrap to perform a bootstrap of 
poisson, where the VCE is estimated with the vee (robust) option, rather than using 
the default Poisson standard-error estimates that are greatly downward biased. 

We store the sample parameter estimate and standard error as local macros before 
bootstrapping the t statistic given in (13 .3) .  

• Percentile-t for a single coefficient: Bootstrap the t statistic 
use bootdat a . dta , clear 

quietly poisson docvis chronic ,  vce (robust) 
local theta = _ b [chronic] 
local sotheta = _so [chronic] 
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. bootstrap tstac= ( (_b [chronic ]- "theta " ) /_se [chronic] ) ,  seed(10101) reps(999) 
> nodots saving (percentilet, replace) : poisson docvis chronic,  vce (robust) 

Bootstrap results Number of obs 
Replications 

command: poisson docvis chronic ,  vce( robust) 
tstar: (_b [chronic] - . 9833014421442413) /_se [cbronic] 

50 
999 

Observed Bootstrap 
Coef . Std . Err .  z P> l z  I 

Normal-based 
[95% Conf . Interval] 

tstar 0 1 . 3004 0 . 0 0  1 . 000 -2. 548736 2 . 548736 

433 

The output indicates that the distribution of t• is considerably more dispersed than a 
standard normal, with a standard deviation of 1.30 rather than 1.0 for the standard 
normal. 

To obtain the test p-value, we need to access the 999 values of t• saved in the 
percen tilet .d ta file . 

. • Percentile-t p-valuc for symmetric two-sided Wald test of HO :  theta = 0 

. use percentilet, clear 
(bootstrap : poisson) 
. quietly count if abs ( " theta "/ ' setheta") < abs(tstar) 

. display "p-value = " r(N)/ _N 
p-value = . 14514515 

We do not reject Ho : JJchronic = 0 against Ho : JJchronic =f. 0 at the 0.05 level because 
p = 0.145 > 0.05. By c9mparison, if we use the usual standard normal critical values, 
p = 0.056, which is considerably smaller. 

The above code can be adapted to apply to several or all parameters by using the 
bootstrap command to obtain _b and _se, saving these in a file, using this file, and 
computing for each parameter of interest the values t *  given e·, e, and se(B*) .  

13.5.3 Percentiie-t Waid confidence interval 

The percentile-t 95% confidence interval for the coefficient of chronic is obtained by 
using (13.4) , where t;: ,  . . .  , t:B were obtained in the previous section. We have 

• Percentile-t critical values and confidence interval 
_pctile tstar, p ( 2 . 5 , 9 7 . 5 )  

scalar 1 b = 'theta" + r ( r 1 ) • " setheta • 

scalar ub = " theta" + r (r2) • " setheta" 
display " 2 . 5  and 97 .5  percentiles of t• distn: " r(r1 )  " ,  " r(r2) _n 

> 1195  percent percentile-t COnfidence interval is (11 lb II ' I I  U b II ) II 

2 . 5  and 97. 5 percentiles of t •  distn: - 2 . 7561963, 2 . 5686913 
95  percent percentile-t confidence interval is ( - . 43748842 , 2 . 3074345) 
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The confidence interval is [ -0.44, 2 .31] ,  compared V.:ith the [ -0.03, 1.99] , which 
could be obtained by using the robust estimate of the VCE after poisson. The wider 
confidence interval is due to the bootstrap-t critical values of -2. 76 and 2.57, much larger 
than the standard normal critical values of -1.96 and 1.96. The confidence interval is 
also wider than the other bootstrap confidence intervals given in section 13.3.8. 

Percentile-t 95% confidence intervals, like BCa confi.dence intervals, have the advan­
tage of having a coverage rate of 0.95 + O(N-1 )  rather than 0.95 + O(N- 112) . Efron 
and Tibshirani (1993, 184, 188, 326) favor the BCa method for confi.dence intervals. But 
they state that "generally speaking, the bootstrap-t works well for location parameters" , 
and regression coefficients are location parameters. 

13 .6 Bootstrap pairs using bsample and simulate 

The bootstrap command can be used only i f i  t is possible to provide a single expression 
for the quantity being bootstrapped. If this is not possible, one can use the bsample 
command to obtain one bootstrap sample and compute the statistic of interest for this 
resample, and then use the simulate or postfile command to execute this command 
a number of times. 

13.6.1 The bsample command 

The bsample command draws random samples with replacement from the current data 
in memory. The command syntax is 

bsample [ exp ] [ if ] [ in ] [ , options ] 
where exp specifi.es the size of the bootstrap sample, which must be at most the size 
of the selected sample. The strata(varlist) , cluster( varlist ) , idcluster(nev.rva r ) ,  
and weight ( varna me) options allow stratification, clustering, and weighting. The 
idclusterO option is discussed in section 13.3.5. 

13.6.2 The bsample command with simulate 

An e,"{ample where bootstrap is insufficient is testing Ho : h(/3) = 0, where h(· ) is a 
scalar nonlinear function of (3, using the percentile-t method to get asymptotic refine­
ment. The bootstraps will include computation of se{h(B; ) } ,  and there is no simple 
expression for this. 

In such situations, we can follow the following procedure. First, write a program that 
draws one bootstrap resample of size N with replacement, using the bsample command, 
and compute the statistic of interest for this resample. Second, use the simulate or 
postfile command to execute the program B times and save the resulting B bootstrap 
statistics. 
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We illustrate this method for a Poisson regression of docvis on chronic, using 
the same example as in section 13.5.2. We first define the program for one bootstrap 
replication. The bsample command without argument produces one resample of all 
variables with a replacement of size N from the original sample of size N. 

The program returns a scalar, tstar, that equals t• in (13.3) .  Because we are not 
returning parameter estimates, we use an r-class program. We have 

• Program to do one bootstrap replication 
program· onebootrep, rclass 
version 10 . 1  
drop _all 
use bootdata.dta 
bsample 
poisson docvis chronic,  vce (robust) 
return scalar tstar = (_b [chronic] -$theta) /_se[chronic] 
end 

Note that robust standard errors are obtained here. The referenced global macro, theta, 
constructed below, is the estimated coefficient of chronic in the original sample. We 
could alternatively pass this as a program argument rather than use a global macro. 
The program returns tstar. 

'vVe next obtain the original sample parameter estimate and use the simulate com­
mand to run the onebootrep program B times. 'vVe have 

• Now do 999 bootstrap replications 
use bootdata .dta , clear 

quietly poisson docvis chronic, vce (robust) 
global theta = _ b[chronic] 
global setheta = _se [chronic] 
simulate tstar=r(tstar) , seed(10101) reps(999) nodots 

> saving(perce�tilet2, replace) :  onebootrep 

command:  onebo�trep 
tstar :  r (tstar) 

The percentilet2 file has the 999 bootstrap values t!, . . .  , ti)99 that can then be 
used to calculate the bootstrap p-value . 

. • Analyze the results to get the p-value 

. use percentilet2, clear 
(simu�ate :  onebootrep) 
. quietly count if a bs($theta/$setheta) < a bs(tstar) 
. display "p-value = " r(N)/ _N 
p-value = . 14514515 

The p-value is 0.145, leading to nonrejection of Ho : f3chronlc = 0 at the 0.05 level. This 
result is exactly the same as that in section 13.5 .2 .  
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13.6.3 Bootstrap Monte Carlo exercise 

One way to verify that the bootstrap offers an asymptotic refinement or improvement in 
finite samples is to perform a simulation exercise. This is essentially a nested simulation, 
with a bootstrap simulation in the inner loop and a Monte Carlo simulation in the outer 
loop. 

We first define a program that does a complete bootstrap of B replications, by calling 
the onebootrep program B times. 

• Program to do one bootstrap of B replications 
program mybootstrap ,  rclass 
use bootdata .dta , clear 
quietly poisson docvis chronic ,  vce(robust) 
global theta = _b[chronic] 
global setheta = _se [chronicl 
simulate tstar=r(tstar) , reps(999) nodots Ill 

saving (percentilet2, replace) : onebootrep 
use percentilet2, clear 
quietly count if abs($theta/$setheta) < abs(tstar) 
return scalar pvalue = r ( N)/_N 
end 

We next check the program by running it once: 

set seed 10101 

mybootstrap 
command: onebootrep 

tstar: r (tstar) 

(simulate: onebootrep) 
. display r (pvalue) 
. 14514515 

The p-value is the same as that obtained in the previous section. 
To use the mybootstrap program for a simulation exercise, we use data from a 

known DGP and run the program S times. We draw one sample of chronic, held 
constant throughout the exercise in the tempx file. Then, S times, generate a sample of 
size N of the count docvis from a Poisson distribution-or, better, a negative binomial 
distribution-run the mybootstrap command, and obtain the returned p-value. This 
yields S p-values, and analysis proceeds similar to the test size calculation example in 
section 12.6.2. Simulations such as this take a long time because regressions are run 
S x B times. 

13 .7 Alternative resampling schemes 

There are many ways to resample other than the nonparametric pairs and cluster-pairs 
bootstraps methods used by the Stata bootstrap commands. These other methods 
can be performed by using a similar approach to the one in section 13.6.2, with a pro­
gram written to obtain one bootstrap resample and calculate the statistic(s) of interest, 
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and this program then called B times. We do so for several methods, bootstrapping 
regression model parameter estimates. 

The programs are easily adapted to bootstrapping other quantities, such as the t 
statistic to obtain asymptotic refinement. For asymptotic refinement , there is particular 
benefit in using methods that exploit more information about the DGP than is used 
by bootstrap pairs. This additional information includes holding x fi.."(ed through the 
bootstrap;, called a design-based or model-based bootstrap; imposing conditions such 
as E( ulx) = 0 in the bootstrap; and for hypothesis tests, imposing the null hypothesis 
on the bootstrap resamples. See, for example, Horowitz (2001), MacKinnon (2002), and 
the application by Cameron, Gelbach, and Miller (2008). 

13.7 .1 Bootstrap pairs 

We begin with bootstrap pairs, repeating code similar to that in section 13.6.2. The 
following program obtains one bootstrap resample by resampling from the original data 
with replacement. 

* Program to resample using bootstrap pairs 
program bootpairs 
version 10 . 1  
drop _all 
use bootdata.dta 
bsample 
poisson docvis chronic 
end 

To check the program, we run it once. 

. * Check the program by running once 

. bootpairs 

We then run the program 400 times. We have 

• Bootstrap- pairs for the parameters 
simulate _b, seed(10101) reps(400) nodots : bootpairs 

command: bootpairs 

summarize 

Variable 

docvis_b_c-c 
docvis_b_c_s 

Obs 

400 
400 

Mean 

. 9741139 
. 9855123 

Std. Dev. Min Max 

. 5253149 - . 6184664 2 . 69578 

. 3497212 - . 3053816 1 . 781907 

The bootstrap estimate of the standard error of /3cllronic equals 0.525, as in section 13.3.3. 

13. 7.2 Parametric bootstrap 

A parametric bootstrap is essentially a Monte Carlo simulation. Typically, we hold Xi 
fi"<ed at the sample values; replace y; by a random draw, yi , from the density f(Y; Ix;, 8) 
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with (} evaluated at the original sample estimate, e; and regress Yi on X;. A parametric 
bootstrap requires much stronger assumptions, correct specification of the conditional 
density of y given x, than the paired or non parametric bootstrap. 

To implement a parametric bootstrap, the preceding bootpairs program is adapted 
to replace the bsample command with code to randomly draw y from f(ylx, 0) .  

For doctor visits, which are overdispersed count data, we use the negative binomial 
distribution rather than the Poisson. We first obtain the negative binomial parameter 
estimates, 0, using the original sample. In this case, it is sufficient and simpler to obtain 
the fitted mean, Jli = exp(:<,B ) , and the dispersion parameter, o. We have 

• Estimate the model with original actual data and save estimates 
use bootdata . dta 
quietly nbreg docvis chronic 
predict muhat 
global alpha = e (alpha) 

We use these estimates to obtain draws of y from the negative binomial distribution 
given 5 and 'j}.; , using a Poisson-gamma mi.'Cture (explained in section 17.2.2). The 
rgamma(1/a ,a)  function draws a gamma variable, 11, named nu with a mean of 1 and 
a variance of a ,  and the rpoisson(nu*mu) function then generates negative binomial 
draws with a mean of f.L and a variance of f.L + aJJ-2• We have 

• Program for parametric bootstrap generating from negative binomial 
program bootparametri c ,  eclass 

version 10 . 1  
capture drop nu dvhat 
generate nu = rgamma ( 1/$alpha ,$alpha) 
generate dvhat = rpoisson(muhat•nu) 
nbreg dvhat chronic 

end 

We check the program by using the bootparametric command and then bootstrap 400 
times. 

• Parametric bootstrap for the parameters 
simulate _b, seed(10101) reps(400) nodots: bootparametric 

command:  bootparametri c  

summarize 
Variable Obs Mean Std. Dev. Min Max 

dvhat_b_ch-c 400 . 9643141 . 4639161 -. 4608808 2 .  293015 
dvhat_b_cons 400 . 9758856 .2604589 . 1053605 1 .  679171 
lnalpha_b_-s 400 .486886 . 2769207 - . 4448161 1 .  292826 

Because we generate data from a negative binomial model and we fit a negative binomial 
model, the average of the 400 bootstrap coefficient estimates should be close to the DGP 
values. This is the case here. Also the bootstrap standard errors are within 10% of those 
from the negative binomial estimation of the original model, not given here, suggesting 
that the negative binomial model may be a reasonable one for these data. 
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13 . 7 .3 Residual bootstrap 

For linear OLS regression, under the strong assumption that errors are independent 
and identically distributed, an alternative to bootstrap pairs is a residual bootstrap. 
This holds x; fixed at the sample values and replaces y; with y; = x�.B + ui , where 
ui are bootstrap draws from the original sample residuals ul,  . . . , UN· This bootstrap, 
sometimes called a design bootstrap, can lead to better performance of the bootstrap 
by holding regressors fixed. 

The bootpairs program is adapted by replacing bsample with code to randomly 
draw uJ from ur, . . .  ' UN and then form Yi = xi.B + ui . This is not straightforward 
because the bsample command is intended to bootstrap the entire dataset in memory, 
whereas here we wish to bootstrap the residuals but not the regressors. 

As illustration, we continue to use the docvis example, even though Poisson regres­
sion is more appropriate than OLS regression. The following code· performs the residual 
bootstrap: 

• Residual bootstrap for OLS with iid errors 
use bootdata .dta, clear 
quietly regress docvis chronic 
predict uhat , resid 
keep uhat 
save residuals, replace 
program bootresidual 
version 1 0 . 1  
drop _all 
use residuals 
bsample 
merge using bootdata . dta 
regress docvis chronic 
predict xb . 
generate ystar = xb + u 
regress ystar chronic 
end 

We check the program by vsing the bootresidual command and bootstrap 400 
times. 

• Residual bootstrap for the parameters 
simulate _b, seed(10101) reps(400) nodot s :  bootresidual 

command : bootresid ual 
summarize 

Variable Obs Mean Std. Dev. Min Max 

_b_chronic 400 4 . 73843 2 .  184259 - 1 . 135362 1 1 . 5334 
_b_cons 400 2 . 853534 1 .  206185 . 1 126543 7 . 101852 

The output reports the average of the 400 slope coefficient estimates ( 4.738), close to 
the original sample OLS slope coefficient estimate; not reported, of 4.694. The bootstrap 
estimate of the standard error (2.18) is close to the original sample OLS default estimate, 
not given, of 2.39. This is expected because the residual bootstrap assumes that errors 
are independent and identically distributed. 



440 Chapter 13 Bootstrap methods 

13.7 .4 Wild bootstrap 

For linear regression, a wild bootstrap accommodates the more realistic assumption that 
errors are independent but not identically distributed, permitting heteroskedasticity. 
This holds X. fixed at the sample values and replaces Yi with y'[ = x;� + Ui ,  where 
Ui = aiui, and ai = ( 1 - J5)j2 ::::::: -0.618034 with the probability (1 + v'5)/2v'5 ::::::: 
0 .723607 and ai = 1 - ( 1 - .J5)/2 with the probability 1 - (1 + v'5)/2v'5. For each 
observation, u; takes only two possible values, but across all N observations there are 
2N possible resamples if the N values of G.i are distinct. See Horowitz (2001, 3215-3217 ) ,  
Davison and Hinkley (1997, 272), or Cameron and 'I'rivedi (2005, 376) for discussion. 

The preceding bootresidual pr'ogram is adapted by replacing bsample with code 
to randomly draw u; from ui and then form yj' = x:� + u.T . 

The Stata code is the same as that in section 13 .7 .1, except that the bsample com­
mand in the bootpairs program needs to be replaced with code to randomly draw u; 
from fii and then form yi• = x:� + U:. 

* Wild bootstrap f o r  OLS with i i d  errors 
use bootdata. dta, clear 
program bootwild 
version 10 . 1  
drop _all 
use bootdata.dta 
regress docvis chronic 
predict xb 
predict u, resid 
gen us tar = - 0 .  618034•u 
replace ustar = 1 . 6 18034•u if runiform( )  > 0 . 723607 
gen ystar = xb + ustar 
regress ystar chronic 
end 

We check the program by issuing the bootwild command and bootstrap 400 times. 

• Wild bootstrap for the parameters 
simulate _b, seed(10101) reps( 400) nodots :  bootwild 

command : bootwild 

s=ize 
Variable 

_b_chronic 
_b_cons 

Obs 

400 
400 

Mean 

4 . 4 69173 
2 . 891871 

Std. Dev. Min Max 

2 . 904647 -2 . 280451 12 . 38536 
. 9687433 1 . 049138 5 . 386696 

The wild bootstrap permits heteroskedastic errors and yields bootstrap estimates of 
the standard errors (2.90) that are close to the original sample OLS heteroskedasticity­
robust estimates, not given, of 3.06. These standard errors are considerably higher than 
those obtained by using the residual bootstrap, which is clearly inappropriate in this 
e..'Cample because of the inherent heteroskedasticity of count data. 

The percentile-t method with the wild bootstrap provides asymptotic refinement to 
Wald tests and confidence intervals in the linear model with heteroskedastic errors. 
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13.7 .5 Subsampling 

The bootstrap fails in some settings, such as  a nonsmooth estimator. Then a more 
robust resampling method is subsampling, which draws a resample that is considerably 
smaller than the original sample. 

The bsample 20 command, for example, draws a sample of size 20. To perform 
subsampling where the resamples have one-third as many observations as the original 
sample, repla�e the bsample command in the bootstrap pairs with bsample int (JII/3) , 
where the int O function truncates to an integer toward zero. 

Subsampling is more complicated than the bootstrap and is currently a topic of 
econometric research. See Politis, Romano, and Wolf (1999) for an introduction to this 
method. 

13.8 The jackknife 

The delete-one jackknife is a resampling scheme that forms N resamples of size (N - 1) 
by sequentially deleting each observation and then estimating 8 in each resample. 

13.8.1 Jackknife method 

Let 0; denote the parameter estimate from the sample with the ith observation deleted, 
i = 1, . . .  , N, let e be the original sample estimate of 8, and let 0 = N-1 L;;:1 0,. denote 
the average of the N jackknife estimates. 

The jackknife has several uses. The i�C jackknife estimate of 8 equals NB- (N -1)0 = 
N � - � �• � � 

(1/N) Ll=l {N8- (N - 1 )8 ; } . The variance of the N pseudovalues 8, = N8 -(N - 1 )8., 
can be used to estimate Var(B) .  The BCa method for a bootstrap with asymptotic 
refinement also uses the jackknife. 

There are two variants of the jackknife estimate of the veE. The Stata default is 

and the rose option gives the variation 

The use of the jackknife for estimation of the VCE has been largely superseded by the 
bootstrap. The method entails N resamples, which requires much more computation 
than the bootstrap if N is large. The resamples 

·
are

. 
not random draws, so there is no 

seed to set. 
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13 .8.2 The vce(jackknife) option and the jackknife command 

For many estimation commands, the vce(jackknife)  option can be used to obtain the 
jackknife estimate of the VCE. For example, 

• Jackknife estimate of standard errors 
use bootdata . dta, replace 
poisson docvis chronic , vc e(jackknife,  mse nodots )  

Poisson regression 

Log likelihood = -238. 75384 

docvis 

chronic 
cons 

Jknife • 
Coef.  Std.  Err . 

. 9833014 . 6222999 
1 . 031602 .3921051 

Number of cbs 
Replications 
F (  1 ,  49) 
Prob > F 
Pseudo R2 

50 
50 

2 . 50 
0 . 1205 
0 . 0917 

t P> l t l  [95/. Conf . Interval] 

1 . 58 0 . 121 
2. 63 0. 011  

- .  2672571 
. 2436369 

2 . 23386 
1 .  819566 

The jackknife estimate of the standard error of the coefficient of chronic is 0.62, larger 
than the value 0.53 obtained by using the vce (boot , reps (2000))  option and the 
value 0.52 obtained by using the vee (robust) option; see the poisson example in 
section 13.3.4. 

The j ackknife command operates similarly to bootstrap. 

13 . 9  Stata resources 

For many purposes, the vee (bootstrap) option of an estimatio:1 command suffices (see 
[R] vce_option) possibly followed by estat boot strap. For more-advanced analysis, 
the bootstrap and bsample commands can be used. 

For applications that use more elaborate methods than those implemented with the 
vee (bootstrap) option, care is needed, and a good understanding of the bootstrap is 
recommended. References include Efron and Tibshirani (1993) , Davison and Hinkley 
( 1 997), Horowitz (200 1) ,  Davidson and MacKinnon (2004, ch. 4) ,  and Cameron and 
Trivedi (2005, ch. 9). Cameron, Gelbach, and Miller (2008) survey a range of boot­
straps, including some with asymptotic refinement , for the linear regression model with 
clustered errors. 

1 3 . 1 0  Exercises 

1. Use the same data as that created in section 13.3.3, except keep the first 100 
observations and keep the variables educ and age. After a Poisson regression of 
docvis on an intercept and educ, give default standard errors, robust standard 
errors, and bootstrap standard errors based on 1,000 bootstraps and a seed of 
10101. 
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2. For the Poisson regression in exercise 1 ,  obtain the following 95% confidence in­
tervals: normal-based, percentile, BC ,  and BCa. Compare these. Which, if any, is 
best? 

3. Obtain a bootstrap estimate of the standard devia�ion of the estimated standard 
deviation of docvis. 

4: Continuing with the regression in exercise 1, obtai� a bootstrap estimate of the 
standard deviation of the robust standard error of f3educ · 

5. Continuing with the regression in exercise 1 ,  use the percentile-t method to per­
form a Wald test with asymptotic refinement of H0 : f3 = 0 against Ha. : f3 /:; 0 at 
the 0.05 level, and obtain a percentile-t 95% confidence interval. 

6. Use the data of section 13 .3 .. 3 with 50 observations. Give the command given at 
the end of this exercise. Use the data in the percentil e .  dta fi.le to obtain for 
the coefficient of the chronic variable: 1 )  bootstrap standard error; 2)  bootstrap 
estimate of bias; 3) normal-based 95% confidence interval; and 4) percentile-t 95% 
confidence interval. For the last, you can use the centile command. Compare 
your results with those obtained from estat bootstrap, all after a Poisson 
regression with the vce (bootstrap) option. 

bootstrap bstar=_b[chronic] , reps(999) seed(10101) nodots Ill 
saving(percentile, replace) : poisson docvis cbronic 

use percentile,  clear 

7. Continuing from the previous exercise, does the bootstrap estimate of the distri­
bution of the coefficient of chronic appear to be normal? Use the summarize and 
kdensi ty commands. 

8. Repeat the percentile-t bootstrap at the start of section 13 .5 .2. Use kdensi ty 
to plot the bootstrap Wald statistics. Repeat for an estimation by poisson with 
default standard errors, rather than nbreg. Comment on any differences. 
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14.1 I ntroduction 

Regression analysis of a qualitative binary or dichotomous variable is a commonplace 
problem in applied statistics. Models for mutually exclusive binary outcomes focus on 
the determinants of the probability p of the occurrence of one outcome rather than an 
alternative outcome that occurs with a probability of 1 - p. An example where the 
binary variable is of direct interest is modeling whether an individual has insurance. In 
regression analysis, we want to measure how the probability p varies across individuals 
as a function of regressors. A different type of example is predicting the propensity 
score p, the conditiocal probability of participation (rather than non participation) of an 
individual in a treatment program. In the treatment-effects literature, this prediction 
given observable variables is an important intermediate step, even though ultimate 
interest lies in outcomes of that treatment. 

The two standard binary outcome models are the logit model and the probit model. 
These specify different functional forms for p as a function of regressors, and the models 
are fitted by maximum likelihood (ML). A linear probability model (LPM), fitted by 
ordinary least squares ( OLS), is also used at times. 

This chapter deals with the estimation and interpretation of cross-section binary 
outcome models using a set of standard commands that are similar to those for linear 
regression. Several extensions are also considered. 

14.2 Some parametric models 

Different binary outcome models have a common structure. The dependent variable,  y; ,  
takes only two values, so its distribution i s  unambiguously the  Bernoulli, or binomial 
with one tail, with a probability of p;. Logit and probit models correspond to different 
regression models for P; . 

14.2.1 Basic model 

Suppose the outcome variable, y, takes one of two values: 

{ l with probab ility p y = 0 with probability 1 - p 

445 
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Given our interest in mode)jng p as a function of regressors x, there is no loss of generality 
in setting the outcome values to 1 and 0. The probability mass function for the observed 
outcome, y, is pY ( 1 - p)1-v , with E(y) = p and Var(y) = p(1 - p) . 

A regression model is formed by parameterizing p to depend on an index function 
x'(3, where x is a K x 1 regressor vector and (3 is a vector of unknown parameters. In 
standard binary outcome models, the conditional probability has the form 

Pi ::=: Pr(yi = 1jx) = F(x�(3) (14 .1) 

where F( · ) is a specified parametric function of x' (3 ,  usually a cumulative distribution 
function ( c.d.f.) on ( - oo ,  oe) because this ensures that the bounds 0 :::; p :::; 1 are 
satisfied. 

14.2.2 logit, probit, linear probability, and clog-log models 

Models differ in the choice of function, F( · ) . Four commonly used functional forms for 
F(x' (3) ,  shown in table 14.1 ,  are the logit, pro bit, linear probability, and complementary 
log -log (clog -log) forms. 

Table 14.1 .  Four commonly used binary outcome models 

Model 

Logit 
Pro bit 
Linear probability 
Complementary log-log 

Probability p = Pr(y = llx) 

ll.(x'f3) = ex'/3 / ( 1  + ex'i3 ) 
<l>(x' /3) = r�'t. rp(z)dz 
F(x'f3) = x' f3 
C(x' f3) = 1 - exp{- exp(x' /3)} 

Marginal effect fJp I ax j 

ll.(x'/3){1 - ll.(x'f3)}{3j 
rp(x'f3){3j 
{3j 
e..xp{- exp(x' f3)} exp(x' f3){3j 

The logit model specifies that F(.) = A(. ) ,  the c.d.f. ci the logistic distribution. The 
pro bit model specifies that F( · ) = <T>( · ) , the standard normal c.d.f. Logit and pro bit 
functions are symmetric around zero and are widely used in microeconometrics. The 
LPM corresponds to linear regression and does not impose the restriction that 0 :::; p :::; 1 .  
The complementary log-log model is asymmetric around zero. Its use is sometimes 
recommended when the distribution of y is skewed such that there is a high proportion 
of either zeros or ones in the dataset. The last column in the table gives expressions for 
the corresponding marginal effects, used in section 14.7, where ¢( ·) denotes the standard 
normal density. 

14.3 Estimation 

For parametric models with exogenous covariates, the maximum like)jhood estimator 
(MLE) is the natural estimator, because the density is unambiguously the Bernoulli. 
Stata provides ML procedures for logit ,  probit, and clog-log models, and for several 
variants of these models. For models with endogenous covariates, instrumental-variables 
(rv) methods can instead be used; see section 14.8. 
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14.3.1  latent-variable interpretation and identification 
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Binary outcome models can be given a latent-variable interpretation. This provides a 
link with the linear regTession model, explains more deeply the difference between logit 
and probit models, and provides the basis for extension to some multinomial models 
given in chapter 15. 

We distinguish between the observed binary outcome, y ,  and an underlying contin­
uous unobservable (or latent) variable, y• ,  that satisfies the single-index model 

y• = x'{3 + u  
Although y• is not observed, we do observe . { 1 if y• > 0 y = 0 if y• ::; 0 

(14.2) 

(14.3) 

where the zero threshold is a normalization that is of no consequence if x includes an 
intercept. 

Given the latent-variable models (14.2) and (14 .3) , we have 

Pr(y = 1) = Pr(x'(J + u > 0) 
= Pr( -u < x' /3) 
= F(x'f3) 

where F( · ) is the c.d.f. of -u. This yields the probit model if u is standard normally 
distributed and the logit model if u is logistically distributed. 

Identifi.cation of the latent-variable model requires that we fix its scale by placing a 
restriction on the varian�e of u, because the single-index model can only identify f3 up 
to scale. An explanation for this is that we observe only whether y• = x' f3 + u > 0. 
But this is not distinguishable from the outcome x'/3+ + u+ > 0, where 13+ = a/3 and 
u+ = au for any a > 0. vVe can only identify {3/17, where 17 is the standard deviation 
(scale parameter) of u. 

To uniquely define the scale of {3, the convention is to set 17 = 1 in the pro bit model 
and 1r/.../3 in the logit model. As a consequence, {3 is scaled differently in the two 
models; see section 14.4.3. 

14.3.2 M l estimation 

For binary models other than the LPM, estimation is by ML. This ML estimation is 
straightforward. The density for a single observation can be compactly written as 
pr· (1 - p.t) l-y; , where p; = F(x;f3). For a sample of N independent observations, the 
MLE, {3, maximizes the associated log-likelihood .function 

Q(/3) = L:1[y; ln F(x;f3) + (1- y;) ln{1 - F(x�/3)} ] 
The MLE is obtained by iterative methods and is asymptotically normally distributed. 
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Consistent estimates are obtained if F( · )  is correctly specified. When instead the 
fLmctional form F (· )  is misspecified, pseudolikelihood theory applies. 

14.3.3 The logit and probit commands 

The syntax for the logit command is 

logi t depvaT [ indepvaTs ] [ if ]  [ in ] [ weigh t ]  [ , options] 

The syntax for the probi t and cloglog commands is similar. 

Like the regress command, available options include vce (cluster dustvaT) and 
vce (robust) for variance estimation. The constant is included by default but can be 
suppressed by using the noconstant option. 

The or option of logit presents exponentiated coefficients. The rationale is that 
for the logit model, the log of the odds ratio ln{p/ ( 1 - p ) }  can be shown to be linear in 
x and (3. It follows that the odds ratio p/(1 - p) = exp(x' (3), so that e/3, measures the 
multiplicative effect of a unit change in regressor Xj on the odds ratio. For this reason, 
many researchers prefer logit coefficients to be reported after exponentiation, i .e ., as e/3 
rather than f3. Alternatively, the logistic command estimates the parameters of the 
logit model and directly reports the exponentiated coefficients. 

14.3.4 Robust estimate of the VCE 

Binary outcome models are um:sual in that there is no  advantage in using the robust 
sandwich form for the variance-covariance matrix of the estimator (VCE) of the MLE 
if data are independent over i and F(x' (3) is correctly specified. The reason is that 
the ML default standard errors are obtained by imposing the restriction Var(ylx) = 

F( x' (3) { 1 - F( x' (3) } , and this must necessarily hold because the variance of a binary 
variable is always p(1 - p) ;  see Cameron and Trivedi (2005) for further explanation. 
If F(x'/3) is correctly specified, the vce (robust) option is not required. Hence, we 
may infer a misspecified functional form F(x' (3) if the use of the vce (robust) option 
produces substantially different variances from the default. 

At the same time, dependence between observations may arise because of cluster 
sampling. In that case, the appropriate option is to use vce ( cluster clustvaT) . 

14.3.5 OLS estimation of L P M  

IfF(· ) is assumed to b e  linear, i .e . ,  p = x 1  (3 ,  then the linear conditional mean function 
defines the LPM. The LPM can be consistently estimated by OLS regression of y on x 
using regress. A major limitation of the method, however, is that the fi tted values x'f3 
will not necessarily be in the [0, 1] interval. And, because Var(ylx) = (x' /3) ( 1 - x' (3) for 
the LPM, the regression is inherently heteroskedastic, so a robust estimate of the VCE 
should be used. 
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14.4 Example 

We analyze data on supplementary health insurance coverage. Initial analysis estimates 
the parameters of the models of section 14.2 .  

14.4.1 Data description 

The data come from wave 5 (2002) of the Health and Retirement Study (HRS), a panel 
survey sponsored by the National Institute of Aging. The sample is restricted to Medi­
care beneficiaries. The HRS contains information on a variety of medical service uses. 
The elderly can obtain supplementary insurance coverage either by purchasing it them­
selves or by joining employer-sponsored plans. We use the data to analyze the purchase 
of private insurance (ins) from any source, including private markets or associations. 
The insurance coverage broadly measures both individually pur�hased and employer­
sponsored private supplementary insurance, and includes Medigap plans and other poli­
cies. 

Explanatory variables include health status, socioeconomic characteristics, and 
spouse-related information. Self-assessed health-status information is used to gener­
ate a dummy variable (hstatusg) that measures whether health status is good, very 
good, or excellent . Other measures of health status are the number of limitations (up 
to five) on activities of daily living ( adl) and the total number of chronic conditions 
(chronic) . Socioeconomic variables used are age, gender, race, ethnicity, marital sta­
tus, years of education, and retirement status (respectively, age, f emale, white, hisp, 
married, educyear, retire) ; household income (hhincome) ; and log household income 
if positive (line ) .  Spouse retirement status (sretire) is an indicator variable equal to 
1 if a retired spouse is present. 

For conciseness, we use global macros to create variable lists, presenting the variables 
used in sections 14.4-14.7 followed by additional variables used in section 14.8. We have 

* Load data 
use mus14data . dta 
* Interaction variables 
drop age2 agefem agechr ageYhi 
* Summary statistics of variables 
global xlist age hstatusg hhincome educyear married hisp 
generate line = ln(hhinc) 

(9 missing values generated) 
. global extralist line female Yhite chronic adl sretire 

(Continued on next page) 
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summarize ins retire $xlist $oxtralist 

Variable Dbs Mean Std. Dev. Min Max 

ins 3206 . 3870867 .4871597 0 
retire 3206 . 6247661 .4842588 0 1 

age 3206 66 . 91391 3. 675794 52 86 
hstatusg 3206 . 7046163 .4562862 0 
bhincome 3206 45 . 26391 6 4 . 33936 0 1312.124 

educyear 3206 1 1 . 89863 3 . 304611 0 17 
married 3206 .7330006 .442461 0 

hisp 3206 . 0726762 . 2596448 0 
line 3197 3 . 383047 . 9393629 - 2 . 292635 7 . 179402 

female 3206 .477854 .4995872 0 

1.1hite 3206 . 8206488 .383706 0 1 
chronic 3206 2 . 063319 1 . 416434 0 8 

adl 3206 . 301622 . 8253646 0 5 
sretire 3206 . 3883344 .4874473 0 

14.4.2 logit regression 

We begin with ML estimation of the logit model. 

. * Legit regression 

. legit ins retire $xlist 
Iteration 0: log likelihood - 2139.7712 
Iteration 1 :  log likelihood = -1998. 8563 
Iteration 2 :  log likelihood = -1994.9129 
Iteration 3 :  log likelihood = -1994. 8784 
Iteration 4 :  log likelihood -1994.8784 
Logistic regression 

Log likelihood -1994. 8784 

ins Coef . Std. Err. z 

retire . 1969297 . 0842067 2 . 34 
age - . 0145955 . 0 1 12871 -1 .29  

hstatusg . 3122654 . 0916739 3 . 4 1  
hhincome . 0023036 . 000762 3 . 02 
educyear . 1 142626 . 0142012 8 . 05 

married . 578636 . 0933198 6 . 20 
hisp - . 8103059 . 1957522 -4 . 14  

_cons -1 . 715578 .7486219 -2 . 29 

Number of o bs 
LR chi2(7) 
Prob > chi2 
Pseudo R2 

P> l z l  [95/. Conf. 

0 . 019 . 0318875 
0 . 196 - . 0367178 
0 . 001  . 1325878 
0 .003  . 00081 
0 . 000 . 0864288 
0 .  000 . 3957327 
0 . 000 - 1 . 193973 
0 . 022 -3 . 18285 

3206 
289.79 
0 . 0000 
0 . 0677 

Interval] 

. 3619718 

. 0075267 
. 491943 

. 0037972 

. 1420963 

. 7615394 
- . 4266387 
- . 2483064 

All regressors other than age are statistically signifi.cantly different from zero at the 
0.05 level. For the logit model, the sign of the coefficient is also the sign of the marginal 
effect. Further discussion o: these results is deferred to the next section, where we 
compare logit parameter estimates with those from other models. 
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The iteration log shows fast convergence in four iterations. Later output suppresses 
the iteration log to save space. In actual empirical work, it is best to keep the log. For 
example, a large number of iterations may signal a high degree of multicollinearity. 

14.4.3 Comparison of binary models and parameter estimates 

It is well known that logit and probit models have similar shapes for central values of 
F(-) but differ in the tails as F( ·) approaches 0 or 1. At the same time, the corresponding 
coefficient estimates from the two models are scaled quite differently. It is an elementary 
mistake to suppose that the different models have different implications simply because 
the estimated coefficients across models are different. However, this difference is mainly 
a consequence of different functional forms for the probabilities. The marginal effects 
and predicted probabilities, presented in sections 14.6 and 14. 7, are much more similar 
across models. 

Coefficients can be compared across models, using the following rough conversion 
factors (Amerniya 1981, 1,488) : 

� � 

,i3Logit � 4/3oLS 
f3Probit � 2 .5f3oLs 
f3Logit � 1.6{3Probit 

The motivation is that it is better to compare the marginal effect, 8pj8xj , across models, 
and it can be shown that 8pj8xj $ 0.25jjj for logit, 8p/8xi $ 0.4jjj for probit, and 
8p/8xj = fjj for OLS. The greatest departures across the models occur in the tails. 

We estimate the parameters of the logit and probit models by ML and the LPM 
by OLS, computing standard errors and z statistics based on both default and robust 
estimates of the VCE. The following code saves results for each model with the estimates 
store command. 

• Estimation of several models 
quietly legit ins retire $xlist 
estimates store blogit 

quietly probit ins retire $xlist 
estimates store bprobit 
quietly regress ins retire $xlist 
estimates store bols 

quietly legit ins retire $xlist, .vce(robust) 
estimates store blogitr 
quietly probit ins retire $xlist, vce (robust) 
estimates store bprobitr 
quietly regress ins retire $xlist , vce (robust) 

estimates store bolsr 



452 Chapter 14 Binary outcome models 

This leads to the following output table of parameter estimates across the models: 

• Table for comparing models 
estimates table blogit blogitr bprobit bprobitr bols bolsr, t sta ts (N 11) 

> b (/.7.3f) stfmt (/.8.2f) 

Variable blogit blogitr bprobit bprobitr bols bolsr 

retire 0 . 197 0 . 197 0 . 118 0 . 118 0 . 041 0 . 041 
2 . 34 2 . 32 2 . 31 2 .30  2 . 24 2 . 24 

age -0 .015 -0.015 -0 . 009 - 0 . 009 -0.003 -0 .003 
- 1 . 2 9  - 1 . 3 2  -1 .29  -1 .32  -1 .20  - 1 . 25 

hstatusg 0 .312  0 .312  0 . 198 0 . 198 0 . 066 0 . 066 
3 . 4 1  3 . 4 0  3 . 56 3 . 5 7  3 . 37 3 . 45 

hhincome 0 . 002 0 . 002 0 . 001 0 . 001  0 . 000 0 .  000 
3 . 0 2  2 . 0 1  3 . 19 2 . 21 3 . 58 2 . 6 3  

educyear 0 . 114 0 . 114 0 . 071 0 . 07 1  0 .  023 0 . 023 
8 . 0 5  7 . 9 6  8 . 34 8 . 33 8 . 15 8 . 63 

married 0 . 579 0 . 579 0 . 362 0 . 362 0 . 123 0 . 123 
6 .20  6 . 15 6 .47 6 .46 6 . 38 6 .  62 

hisp -0 .810 -0 . 810 -0.4 73 -0 .473 -0 . 121 -0 . 121 
-4 . 14  -4 . 18  -4.28 -4 .36 -3 .59 -4.49 

_cons -1 . 7 16  - 1 . 716 - 1 .069 - 1 . 069 0 . 127 0 . 127 
-2 .29 -2 .36  -2.33 -2 . 40 0. 7 9  0 . 83 

N 3206 3206 3206 3206 3206 3206 
11 -1994.88 -1994 .88  -1993.62 -1993 .62 -2104.75 -2104.75 

legend: b/t 

The coefficients across the models tell a qualitatively similar story about the impact of 
a regressor on Pr(ins = 1 ) .  The rough rules for parameter conversion also stand up 
reasonably well, because the logit estimates are roughly five times the OLS estimates, 
and the probit estimates are roughly three times the OLS coefficients. The standard 
errors are similarly rescaled, so that the reported z statistics for the coefficients are 
similar across the three models. For the logit and probit coefficients, the robust and 
default z statistics are quite similar, aside from those for the hhincome variable. For 
OLS, there is a bigger difference. 

In section 14.6, we will see that the fitted probabi)jties are similar for the logit and 
probit specifications. The linear functional form does not constrain the fitted values to 
the [0, 1] interval, however, and we find differences in the fitted-tail values between the 
LPM and the logit and probit models. 

14.5 Hypothesis and specification tests 

We next consider several tests of the maintained specification against other alternatives. 
Some of these tests repeat and demonstrate many of the methods presented in more 
detail in chapter 12, using commands for the nonlinear logit model that are similar to 
those presented in chapter 3 for the linear regression model. 
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14.5. 1 Wald tests 

Tests on coefficients of variables are most easily performed by using the test command, 
which implements a Wald test. For example, we may test for the presence of interaction 
effects with age. Four interaction variables (age2, agefem, agechr, and agewhi) are 
created, for example, agefem equals age times female, and then they are included in 
the logit regression. The null hypothesis is that the coefficients of these four regressors 
are all zero, because then there are no interaction effects. We obtain 

• Wald test for zero interactions 
generate age2 = age•age 

generate agefem = age•female 
generate agechr = age•chronic 
generate ageYhi = age•Yhite 

global intlist age2 agefem agechr ageYhi 
quietly logit ins retire $xlist $intlist 
test $in tlis t 

( 1) age2 = 0 
( 2) agefem = 0 
( 3) agechr = 0 
( 4) ageYhi = 0 

chi2( 4) = 7 .45  
Prob > chi2 = 0 . 1 141 

The p-value is 0.114 ,  so the null hypothesis is not rejected at the 0.05 level or even the 
0.10 level. 

14.5.2 likelihood-ratio tests 

A likelihood-ratio (LR) test (see section 12.4) provides an alternative method for testing 
hypotheses. It is asymptotically equivalent to the Wald test if the model is correctly 
specified. To implement the LR test of the preceding hypothesis, we estimate parameters 
of both the general and the restricted models and then use the lrtest command. We 
obtain 

• Likelihood-ratio test 
quietly legit ins retire $xlist $intlist 
estimates store B 

quietly legit ins retire $xlist 
lrtest B 

Likelihood-ratio test 
(Assumption: . nested in B) 

LR c hi2(4) 
Prob > chi2 = 

This test has a p-value of 0.109, quite similar to that for the Wald test. 

7 .57  
0 . 1088 

In some situations, the main focus is on the .Predicted probability of the model and 
the sign and size of the coefficients are not the focus of the inquiry. An example is 
the estimation of propensity scores, in which case a recommendation is often made to 



454 Chapter 14 Binary outcome models 

saturate the model and then to choose the best model by using the Bayesian information 
criterion (BIC). The Akaike information criterion (AIC) or the BIC are also useful for 
comparing models that are nonnested and have different numbers of parameters; see 
section 10.7.2. 

14.5.3 Additional model-specification tests 

For specific models, there are often specifi c tests of rnisspecification. Here we consider 
two variants of the logit and probit models. 

Lagrange multiplier test of generalized logit 

Stukel (1988) considered, as an alternative to the logit model, the generalized h-family 
logit model 

(14.4) 

where ha. ( x' (3) is a strictly increasing nonlinear function of x' (3 indexed by the shape 
parameters 0'1 and 0'2 that govern, respectively, the heaviness of the tails and the 
symmetry of the A( ·) function. 

Stukel proposed testing whether (14.4) is a better model by using a Lagrange mul­
tiplier (LM), or score, test; see section 12 .5 .  This test has the advantage that it requires 
estimation only of the null hypothesis logit model rather than of the more complicated 
model (14.4) . Furthermore, the LM test can be implemented by supplementing the logit 
model regressors with generated regressors that are functions of x' (3 and by testing the 
signifi.cance of these augmented regressors. 

For example, to test for departure from the logit in the direction of an asymmetric 
h-family, we add the generated regressor (x�,i3) 2  to the list of regressors, reestimate the 
logit model, and test whether the added variable significantly improves the fit of the 
model. We have 

• Stukel score or LM test for asymmetric h-family legit 
quietly legit ins retire $xlist 
predict xbhat , xb 
generate xbhatsq = xbhat-2  

quietly legit ins retire $xlist xbhatsq 
test xbhatsq 

( 1) xbhatsq = 0 

chi2( 1 )  37 .91  
Prob > chi2 = 0 . 0000 

The null hypothesis of correct model specification is strongly rej ected because the Wald 
test of zero coefficient for the added regressor (X:,i3) 2  yields a x2 ( 1 )  statistic of 38 with 
p = 0.000. 
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This test is easy to apply and so are several other score tests suggested by Stukel that 
use the variable-augmentation approach. At the same time, recall from section 3 .5.5 that 
tests have power in more than one rejection. Thus rejection in the previous example may 
be for reasons other than the need for an asymmetric h-family logit model. For example, 
perhaps it is enough to use a logit model with additional' inclusion of polynomials in the 
continuous regressors or inclusion of additional variables as regressors. 

Heteroskedastic. probit regression 

The standard pro bit and logit models assume homoskedasticity of the errors, u, in the 
latent-variable model (14.2) . This restriction can be tested. One strategy is to have as 
the null-hypothesis model 

Pr(yi = l lx) = <P (x:f3/o ) 

with the normalization u2 = 1, and as the alternative hypothesis 

Pr(y; = l lx) = <P (x:f3/ui) (14.5) 

where now u; in (14.2) is heteroskedastic with a variance of 

( 14.6) 

where the exogenous variables (z1 ,  . . .  , z,.,...) do not contain a constant, because the re­
striction 8 = 0 yields uf = 1 as in the null model. Including a constant in z would 
make the model unidentified. 

ML estimation can be based on (14.5) and (14.6) . The parameters of the probit model 
with heteroskedasticity can be estimated with ML by using Stata's hetprob command. 
The syntax for hetprob is 

hetprob depvar [ indepvars ] [ if ]  [ in ]  [ weight ] , het ( varlist) [ options ] 

The two models can be compared by using a LR test of 8 = 0 that is automatically 
implemented when the command is used. Alternatively, a Wald test could be used. 

As an illustration, we reconsider the probit model used in the preceding analysis. In 
specifying the variables in z, it seems desirable to exclude the variables already included 
in x, because in a binomial model, a variable that affects Pr(y = 1) must necessarily 
affect the variance of y. To enter a variable in the specification of both, the mean and 
the variance cause problems of interpretation. In our application, we choose the single 
variable chronic as our z, where chronic denotes the number of chronic conditions 
experienced by an individual. We obtain 

(Continued on next page) 
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. • Heteroskedastic probit model 

. hetprob ins retire $xlist, het(chronic) nolog // Heteroskedastic Probit 
Heteroskedastic. probit model 

Log likelihood = -1992. 904 

ins 
retire 

age 
hstatusg 
hhincome 
educyear 

married 
hisp 

_cons 

lnsigma2 
chronic 

Coef . Std. Err. 

. 1075926 . 0476757 
- . 0087658 .0 062107 

. 1629653 .0564771 

.0011135 . 000364 

. 0642167 . 0094184 

. 3341699 . 0563861 
- . 4344396 . 1055044 
- . 9089138 .4318121 

- . 0442144 . 0365848 

Likelihood-ratio test of lnsigma2=0: 

z 

2 . 2 6  
- 1 . 4 1  

2 . 89 
3 .06  
6 . 82 
5 . 9 3  

- 4 . 1 2  
- 2.10  

- 1 . 2 1  

c hi2(1) = 

Number of cbs 
Zero outcomes 
Nonzero outcomes 

Wald c hi2(7) 
Prob > chi2 

3206 
1965 
1241 

90.34 
0 . 0000 

P> l z l  [95/, Conf . Interval] 

0 . 024 . 0141501 . 2010352 
0 . 158 - . 0209384 . 0034069 
0 .  004 . 0522722 .2736584 
0 . 002 . 0004 . 001827 
0 .  000 . 0457569 . 0826765 
0 . 000 .2236551 .4446847 
0 . 000 - . 6412244 - . 2276548 
0 . 035 - 1 . 75525 - . 0625776 

0 . 227 - . 1159193 . 0274906 

1 . 44 Prob > chi2 = 0 . 2303 

The LR test indicates that at the 0.05 level, there is no statistically significant im­
provement in the model resulting from generalizing the homoskedastic model, because 
p = 0.23. 

As a matter of modeling strategy, however, it is better to test first whether the z 

variables are omitted explanatory variables from the conditior..al mean model because 
such a rnisspecification is also consistent with variance depending on z. That is, the 
finding that z enters the variance function is also consistent with it having been incor­
rectly omitted from the conditional mean function. Accordingly, a variable addition 
test was also applied by adding chronic to the regressors in the probit model, and the 
p-value of the test was found to be 0.23. Thus the evidence is against the inclusion of 
chronic in the probit model. 

14.5.4 Model comparison 

A question often arises: which model is better, logit or probit? As will be seen in the 
next section, in many cases the fitted probability is very similar over a large part of 
the range of x' (3. Larger differences may be evident in the tails of the distribution, but 
a large sample is required to reliably differentiate between models on the basis of tail 
behavior. 

Because logit and probit models are nonnested, a penalized likelihood criterion such 
as AIC or BIC (see section 10.7.2) is appealing for model selection. However, these two 
models have the same number of parameters, so this reduces to choosing the model 
with the higher log likelihood. The pro bit model has a log likelihood of -1,993.62 (see 
the table on page 452) , which is 1.26 higher than the -1 ,994.88 for logit. This favors 
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the probit model, but the difference is not great. For example, an LR test of a single 
restriction rejects at the 0.05 level if the LR statistic exceeds 3.84 or equivalently if the 
change in log likelihood is 3.84/2 = 1.92. 

14.6 Goodness of  fit and prediction 

The Stata output for the logit and probit regressions has a similar format. The log 
likelihood and the LR test of the joint significance of the regTessors and its p-value are 
given. However, some measures of overall goodness of fit are desirable, including those 
that are specific to the binary outcome model. 

Three approad:es to evaluating the fit of the model are pseudo-R2 measures, compar­
isons of group-average predicted probabilities with sample frequencies, and comparisons 
based on classification (Y equals zero or one). None of these is t)le most preferred mea­
sure a priori. ielow we discuss comparisons of model fit using predicted probabilities. 

14.6.1 Pseudo-R2 measure 

In linear regTession, the total sum of squared deviations from the mean can be de­
composed into explained and residual sums of squares, and R2 measures the ratio of 
explained sum of squares to total sum of squares, with 0 and 1 as the lower and up­
per limits, respectively. These properties do not carry over to nonlinear regre::;::;ion. Yet 
there are some measures of fit that attempt to mimic the R2 measure of linear regression. 
There are several R2 measures, one of which is included in the Stata output. 

McFadden's R2 is computed as 1 - L N({3)j L N(fi), where L N({3) denotes the maxi­
mized or fitted log-likelihood value, and LN(Y) denotes the value of the log likelihood 
in the intercept-only modeL When applied to models with binary and multinomial 
outcomes, the lower and upper bounds of the pseudo-R2 measure are 0 and 1 (see sec­
tion 10.7 .1) , though McFadden's R2 is not a measure of the proportion of variance of 
the dependent variable explained by the model. For the fitted logit model, R2 = 0.068. 

14.6.2 Comparing predicted probabilities with sample frequencies 

In-sample comparison of the average predicted probabilities, N-1 LPi , with the sample 
frequency, y, is not helpful for evaluating the fit of binary outcome models. In particular, 
the two are necessarily equal for logit models that include an intercept, because the logit 
MLE first-order conditions can be shown to then impose this condition. 

However, tbis comparison may be a useful thing to do for subgroups of observations. 
The Hosmer-Lemeshow specification test evaluates the goodness of fit by comparing the 
sample frequency of the dependent variable with the fitted probability within subgroups 
of observations, with the number of subgroups being specified by the investigator. The 
null hypothesis is that the two are equal. The test is similar to the Pearson chi-squared 
goodness-of-fit test. 
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Let p;; and y9 denote, respectively, the average predicted probability and sample 
frequency in group g. The test statistic is 2::;=1 (ji9 -y9 ) 2 jy9 (1-y9) ,  where g is the group 
subscript. The groups are based on q uantiles of the ordered predicted probabilities. For 
example, if G = 10 , then each group corresponds to a decile of the ordered Pi · Hosmer 
and Lemeshow established the null distribution by simulation. Under the null of correct 
specification, the statistic is distributed as x2(G - 2) .  However, two caveats should 
be noted: First, the test outcome is sensitive to the number of groups used in the 
specification. Second, much of what is known about the properties of the test is based 
on Monte Carlo evidence of the test's performance. See Hosmer and Lemeshow ( 1980 , 
2000). Simulation evidence suggests that a fixed sample size specifying a large number 
of groups in the test causes a divergence between the empirical c.d.f. and the c.d.f. of 
the x2 (G - 2) distribution. 

The goodness-of-fit test is performed by using the postestimation estat gof com­
mand, which has the syntax 

es tat gof [ if ]  [ in ] [ weight ] [ , options ] 

where the group ( # )  option specifies the number of quantiles to be used to group the 
data, with 10 being the default. 

After estimating the parameters of the logit model, we perform this test, setting the 
number of groups to four. We obtain 

• Hosmer-LemeshoY gof test Yith 4 groups 
quietly logi t ins retire $xlist 
estat gof,  group(4) // Hosmer-LemeshoY gof test 

Logistic model for ins , goodness-of-fit test 
(Table collapsed on quantiles of estimated probabilities) 

number of observations = 
number of groups = 

Hosmer-LemeshoY chi2(2) = 

Prob > chi2 = 

3206 
4 

14.04 
0 . 0009 

The outcome indicates misspecification, because the p-value is 0 .001 .  

To check i f  the same outcome occurs if  we use a larger number of groups to perform 
the test, we repeat the test for ten groups. 

quietly legit ins retire $xlist 
• Hosmer-LemeshoY gof test Yith 10 groups 
estat gof , group(lO)  // Hosmer-LemeshoY gof test 

Logist ic model for ins, goodness-of-fit test 

(Table collapsed on quantiles of estimated probabilities) 
number o f  observations 

number of groups = 
Hosmer-LemeshoY c hi2(8) = 

Prob > chi2 = 

3206 
10 
3 1 . 48 

0 .  0001 
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Again the test rejects the maintained specification, this time with an even smaller p­
value. 

14.6.3 Comparing predicted outcomes with actual outcomes 

The preceding measure is based on the fi tted probability of having private insurance. We 
may instead want to predict the outcome itself, i .e . ,  whether an individual has private 
insurance (Y. = 1) or does not have insurance (fj = 0 ) .  Strictly speaking, this depends 
upon a loss function. If we assume a symmetric loss function, then it is natural to set 
y =  1 if F(x'(3) > 0.5 and fl =  0 if F(x'(3) ::; 0 .5 .  One measure of goodness offit is the 
percentage of correctly classified observations. 

Goodness-of-fit measures based on classification can be obtained by using the postes­
timation estat classif ication command. 

For the fitted logit model, we obtain 

• Comparing fitted probability and dichotomous outcome 
quietly legit ins retire $xlist 

estat classification 
Logistic model for ins 

--- True ----

Classified 

+ 

Total 

D 

345 
896 

1241 

-D 

308 
1657 

1965 
Classified + if predicted Pr(D) >= . 5  
True D defined a s  ins ! = 0 

Sensitivity 
Specificity 
Positive predictive value 
Negative predictive value 

False + rate for true -D 
False - rate for true D 
False + rate for classified + 
False - rate for classified -

Correctly classified 

Pr( +I D) 
Pr( - 1 -D )  
P r (  D l  +) 
P r ( -D I  -) 

Pr( + I -D) 
Pr(  -1 D) 
Pr( -D I  +)  
Pr(  Dl -) 

Total 

653 
2553 

3206 

27.80% 
84 . 33% 
52. 83% 
64. 90% 

15 . 67% 
72.20% 
47. 17% 
35 .10% 

62 .45% 

The table compares fitted and actual values. The percentage of correctly specified values 
in this case is 62.45. In this example, 308 observations are misclassified as 1 when the 
correct classification is 0, and 896 values are misclassified as 0 when the correct value 
is 1. The remaining 345 + 16.57 observations are correctly specifi ed. 

The estat classification command also produces detailed output on classifica­
tion errors, using terminology that is commoniy used in biostatistics and is detailed 
in [R] logistic postestimation. The ratio 345/1241, called the sensitivity measure, 
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gives the fraction of observations with y = 1 that are correctly specified. The ratio 
1657/1965, called the specificity measure, gives the fraction of observations with y = 0 
that are correctly specified. The ratios 308/1965 and 896/1241 are referred to as the 
false positive and false negative classification error rates. 

14.6.4 The predict command for fitted probabilities 

Fitted probabilities can be computed by using the postestimation predict command, 
defined in section 10.5 .1 .  The difference between logit and probit models may be small, 
especially over the middle portion of the distribution. On the other hand, the fitted 
probabilities from the LPM estimated by OLS may be substantially different. 

We first summarize the fitted probability from the three models that include only 
the hhincome variable as a regressor. 

* Calculate and summarize fitted probabilities 
quietly legit ins hhincome 
predict plog it, pr 

quietly probit ins hhincome 
predict pprobi t ,  pr 
quietly regress ins hhincome 
predict pols,  xb 

summarize ins plogit pprobit pols 
Variable Obs Mean 

ins 3206 .3870867 
plogit 3206 .3870867 

pprobit 3206 .3855051 
pols 3206 . 3870867 

Std. Dev. 

.4871597 

.0787632 
. 061285 

. 0724975 

Min Max 

0 
.3176578 . 999738 
.3349603 .9997945 
.3360834 1 .  8 14582 

The mean and standard deviation are essentially the same in the three cases, but the 
range of the fitted values from the LPM includes six inadmissible values outside the [0, 1] 
intervaL This fact should be borne in mind in evaluating the graph given below, which 
compares the fitted probability from the three models. The deviant observations from 
OLS stand out at the extremes of the range of distribution, but the results for logit and 
probit cohere well. 

For regressions with a single regressor, plotting predicted probabilities against that 
variable can be informative, especially if that variable takes a range of values. Such a 
graph illustrates the differences in the fitted values generated by different estimators. 
The example given below plots the fitted values from logit , probit, and LPM against 
household income (hhincome). For graph readability, the j itter() option is used to 
jitter the observed zero and one values, leading to a band of outcome values that are 
around 0 and 1 rather than exactly 0 or 1 .  The divergence between the first two and the 
LPM (OLS) estimates at high values of income stands out, though this is not necessarily 
serious because the number of observations in the upper range of income is quite small. 
The fitted values are close for most of the sample. 
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* Following gives Figure mus14figl . eps 
sort hhincome 

graph twoway (scatter ins hhincom e, msize (vsmall) jitter(3) ) I• 
> •I (line plogit hhincome , clstyl e (pl ) )  I• 
> •I (line pprobit hhincome , clstyle(p2))  I• 
> •I (line pols hhincome , clstyle (p3) ) ,  I• 
> •I scale ( 1 . 2 )  plotregion (style (none ) )  I• 
> •I title( "Predicted Probabilities Across Models " )  I• 
> •I x title( "I!HINCOME (hhincome) " ,  size (medlarge ) )  xscale(titlegap(•S) ) I• 
> •I ytitle ( " Predicted probability" , size(medlarge) ) yscale (titlegap (•S ) )  I• 
> •I legend(pos(l)  ring(O) col ( l ) )  legend(size (small) )  I• 
> •I legend (label(l "Actual Data (jittered) " )  label(2 "Logi t " )  I• 
> •I label(3 "Probit" ) labe l ( 4  "OLS " ) )  

Predicted Probabilities Acrqss Models 

Actual Oot.l Ulnorod) 
--- L<>:Jit 

' 

0 

- - - - - · Problt 
............. OLS 

' ' 

500 1000 
H HINCOME (hhincome) 

1500 

Figure 14 .1 .  Predicted probabilities versus bhincome 

14.6.5 The prvalue command for fitted probabilities 

461 

The predict command provides fitted probabilities for each individual, evaluating at 
x = x.; . At times, it is useful to instead obtain predicted probabilities at a represen­
tative value, x = x* . This can be done by using the nlcom command, presented in 
section 10.5.5. It is simpler to instead use the user-written postestimation prvalue 
command (Long and Freese 2006). 

(Continued on next page) 
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The syntax of prvalue is 

prvalue [ if ] [ in ]  [ , x ( conditions) rest (mean) ] 

where we list two key options. The x ( conditions ) option specifies the conditioning values 
of the regressors, and the default rest (mean) option specifies that the unconditioned 
variables are to be set at their sample averages. Omitting x( conditions) means that 
the predictions are evaluated at x = x. 

The command generates a predicted (fitted) value for each observation, here for a 65-
year-old, married ,  retired non-Hispanic with good health status, 17 years of education, 
and an income equal to $50,000 (so the income variable equals 50). 

• Fitted probabilities for selected baseline 
. quietly logit ins retire $xlist 
. prvalue , x (age=65 retire�o hstatusg=1 hhincome=50 educyear=17 married=1 hisp=O) 

logit : Predictions for ins 
Confidence intervals by delta method 

x= 

Pr(y= i lx ) : 
Pr(y=O I x) : 

retire 
0 

95/. Conf . 
0 . 5706 [ 0 . 5226, 
0 . 4294 [ 0 . 3814,  

Interval 
0 . 6186] 
0 . 4774] 

age hstatusg hhincomc educyear married 
65 1 50 17 1 

hisp 
0 

The probability of having private insurance is 0.57 with the 95% confidence interval 
[0.52, 0.62] .  This reasonably tight confidence interval is for the probability that y = 1 
given x = x•. There is much more uncertainty in the outcome that y = 1 given x = x• . 
For example, this difficulty in predicting actual values leads to the low R2 for the logit 
model. This distinction is similar to that between predicting E(ylx) and y lx  discussed 
in sections 3.6.1 and 10.5 .2. 

14 .7 Marginal effects 

Three variants of marginal effects, previously discussed in section 10.6, are the average 
marginal effect (AME), marginal effects at a representative value (MER), and marginal 
effects at the mean (MEM). In a nonlinear model, marginal effects are more informative 
than coefficients. 

The analytical formulas for the marginal effects for the standard binary outcome 
models were given in table 14.1. For example, for the logit model, the marginal effect 
with respect to a change in a continuous regressor, Xj, evaluated at x = X:, is estimated 
by i\(x',6) {1 - i\(x',6) }jj1. An associated confidence interval can be calculated by using 
the delta method. 

14.  7 .1  Marginal effect at a representative value (MER ) 
The postestimation mfx command provides an estimate of the marginal effect at a 
particular value of x = x• ,  with the default x = X:; see section 10.6. The default is not 
necessarily the best option. For example, if the model has several binary regressors, 



14 . 7.2 Marginal effect at the mean (MEM) 463 

then these are set equal to their sample averages, which is not particularly meaningful. 
It may be better for the user to create a benchmark value�an index case-for which 
the marginal effects are calculated. 

We use as a benchmark a 75-year-old, retired, married Hispanic with good health 
status, 12 years of education, and an income equal to 35. Then 

* Marginal effects (MER) after logit 
quietly logit ins retire $xlist 

mfx, at(l 75 1 35 12 1 1) II (MER) 
Marginal effects after logit 

y Pr(ins) (predict) 
.25332793 

variable dyldx Std. Err. 

retire* . 0354151 . 0 1496 
age - . 0027608 . 00205 

hstatusg* . 0544316 .01617 
hhincome . 0004357 .00015 
educyear . 0216131 . 00368 
married* . 0935092 .0174 

hisp* - . 1794232 . 03796 

z 

2 . 37 
- 1 . 35 

3 . 37 
2 . 92 
5 . 87 
5 . 37 

-4.73 

P> l z l 95% C . I .  

0 . 018 . 006103 .. 064728 
0 . 179 - . 006783 . 001262 
0 . 001  . 022748 . 0 86115 
0 . 004 . 000143 . 000728 
0 . 000 .0 14392 . 028835 
0 . 000 .0594 . 127618 
0 .000  - . 253825 - . 105021 

(*) dyldx is for discrete change of dummy variable from 0 to 1 

X 

1 
75 

1 
35 
12 

The order of the values in the at (numlist) option is the same as the variables in the 
preceding estimation command. The conditioning values of x appear in the last column. 
A similar calculation can be done at the median of x. 

14.7.2 Marginal effect at the mean (MEM) 

For comparison, we reproduce the mfx command default calculation at the means. We 
obtain 

* Marginal effects (MEM) after logit 
quietly logit ins retire $xlist 

mfx II (MEM) 
Marginal effects after logit 

y = Pr(ins) (predict) 
.37283542 

variable dyldx Std. Err. 

retire* . 0457255 .0194 
age -. 0034129 . 00264 

hstatusg* .0716613 . 02057 
hhincome . 0005386 . 00018 
educyear . 0267179 . 0033 
married* . 1295601 . 0 1974 

hisp* - . 1677028 . 03418 

z 

2 .36  
-1 .29  
3 . 4 8  
3 . 02 
8 . 09 
6 . 5 6  

-4.91  

P> l z l  95% C . I .  

0 . 018 . 007711 . 08374 
0 . 196 - . 008585 . 001759 

· o . ooo . 031346 . 1 1 1977 
0 . 003 . 000189 .000888 
0 . 000 . 020245 .033191 
·o .ooo . 090862 . 1 68259 
0 . 000 - . 23469 - . 100715 

( *) dyldx is for discrete change of dummy variable from 0 to 1 

X 

. 624766 
66.9139 
. 704616 
45 . 2639 
1 1 . 8986 
. 733001 
. 072676 
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In this particular case, the MEM is 20-30% greater than the MER, even though the 
predicted probability at x == x is 0.373 compared with 0.253 at the preceding particular 
value of x. 

14.7.3 Average marginal effect (AME) 

The average marginal effect (AME) can be obtained by using the user-written postes­
timation margeff command (Bartus 2005) that is available for a number of standard 
models, including logit and probit models. The associated standard errors and con­
fidence L'1terval for the AME are obtained by using the delta method. For a dummy 
variable , AME is calculated as a discrete change in the dependent variable as the dummy 
variable changes from 0 to 1 .  The AMEs may also be calculated at any other point by 
specifying the at ( atlist) option. 

For the fitted logit model, we obtain 

• Marginal effects CAME) after logit 
. quietly legit ins retire $xlist 

. margeff // CAME) 
Average marginal effects on Prob(ins��1) after logit 

ins Coef . Std. Err. z P> l z l  

retire . 0426943 . 0 181787 2 .35  0 . 019 
ago - . 0031693 . 0024486 - 1 . 29 0 . 196 

hstatusg .0 675283 . 0196091 3 . 4 4  0 . 001  
bhincome .0005002 . 0001646 3 . 04 0 . 002 
oducyear . 0248111 . 0 029706 8 .35  0 . 000 
married . 1235562 . 0191419 6 .45  0 . 000 

hisp - . 1608825 . 0339246 -4.74 0 . 000 

(95% Conf. Interval] 

. 0070647 .0783239 
- . 0079685 .0016299 

. 0290951 . 1059615 

. 0001777 . 0008228 

. 0189889 . 0306334 

. 0860388 . 1610736 
-. 2273735 - . 0943914 

In this example, the AME is 5-10% less than the MEM. The difference can be larg-er in 
other samples. 

14.7 .4  The prchange command 

The marginal change in probability due to a unit change in a specified regressor, condi­
tional on specified values of other regressors, can be calculated by using the user-written 
prchange command (Long and Freese 2006). The synta.x is similar to that of prvalue , 
discussed in section 14.6.5: 

prchange varna me [ if ]  [ in ]  [ , x ( conditions ) rest (mean) ] 

where varname is the variable that changes. The default for the conditioning variables 
is the sample mean. 

The following gives the marginal effect of a change in income (bhincome) evaluated 
at the mean of regressors evaluated at x = x. 
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• Computing change in probability after legit 
quietly legit ins retire $xlist 
prchange hhincome 

legit: Changes in Probabilities for ins 

min->max 0->1 -+1/2 -+sd/2 MargEfct 
hhincome ·0 . 5679 0 . 0005 0 . 0005 0 . 0346 0 . 0005 

0 
Pr (y l x )  0 .  6272 0 . 3728 

retire age hstatusg hhincome educyear 
x= . 624766 66.9139 . 704616 45.2639 1 1 . 8986 

sd(x)� . 484259 3 . 67579 . 456286 6 4 . 3394 3 . 30461 
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married hisp 
. 733001 . 072676 
.442461 .259645 

The output supplements the marginal-effect calculation by also reporting changes in 
probability induced by several types of change in income. The output min->max gives 
the change· in probability due to income changing from the minimum to the maximum 
observed value. The output 0->1 gives the change due to income- changing from 0 to 1 .  
The output -+1/2 gives the impact o f  income changing from a half unit below to  a half 
unit above the base value. And the output -+sd/2 gives the impact of income changing 
from one-half a standard deviation below to one-half a standard deviation above the 
base value. Adding the help option to this command generates explanatory notes for 
the computer output. 

14.8 Endogenous regressors 

The probit and logit ML estimators are inconsistent if any regressor is endogenous. Two 
broad approaches are used to correct for endogeneity. 

The structural approach specifies a complete model that explicitly models both 
nonlinearity and endogeneity. The specific structural model used differs according to 
whether the endogenous regressor is discrete or continuous. ML estimation is most 
efficient, but simpler (albeit less efficient) two-step estimators are often used. 

The alternative partial model or semiparametric approach defines a residual for the 
equation of interest and uses the IV estimator based on the orthogonality of instruments 
and this residual. 

As in the linear case, a key requirement is the existence of one or more valid in­
struments that do not directly explain the binary dependent variable but are correlated 
with the endogenous regressor. Unlike the linear case, different approaches to control­
ling for endogeneity can lead to different estimators even in the limit, as the parameters 
of different models are being estimated. 

14.8.1 Example 

We again model the binary outcome ins, though we use a different set of regTessors. 
The regressors include the continuous variable line (the log of household income) that 
is potentially endogenous as purchase of supplementary health insurance and household 
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income may be subject to correlated unobserved shocks, even after controlling for a 
variety of exogenous variables. That is, for the HRS sample under consideration, the 
choice of supplementary insurance (ins), as well as household income (line) ,  may be 
considered as jointly determined. 

Regular probit regression that does not control for this potential endogeneity yields 

. • Endogenous probit usi�g inconsistent probit MLE 

. generate line = log(bhincome) 
(9 missing values generated) 
. global xlist2 female age age2 educyear married hisp white cbronic adl hstatusg 

. probit ins line $xlist2, vce (robust) nolog 

Probit regression 

Log pseudolikelihood = -1933.4275 

Robust 
ins Coef. Std.  Err. 

line . 3466893 . 0402173 
female - .0815374 .0508549 

age . 1 162879 . 1151924 
age2 - . 0009395 . 0008568 

educyear . 0464387 . 0089917 
married . 1044152 . 0636879 

hisp - . 3977334 . 1080935 
white - .0418296 .0644391 

chroni-c . 0472903 . 0 186231 
adl - . 0 945039 . 0353534 

hstatusg . 1 138708 . 0629071 
cons -5 . 744548 3 .  871615 

z 

8 . 6 2  
- 1 . 60 

1 . 01  
- 1 . 10 

5 . 1 6  
1 .  64 

-3 . 68 
-0 .65  

2 . 54 
- 2 . 6 7  

1 . 81 
- 1 . 48 

Number of obs 
Wald chi2 (11 )  
Prob > chi2 
Pseudo R2 

P> l z l  [95/. Conf . 

0 . 000 . 2678648 
0 . 109 - . 1812112 
0 . 313 - . 109485 
0 . 273 - . 0026187 
O . OOG . 0288153 
0 . 101 - . 0204108 
0 . 000 - . 6095927 
0 . 516 - . 1 68128 
0. 011  . 0107897 
0 . 008 - . 1637953 
0 . 070 - . 0094248 
0 . 138 -13 . 33277 

3197 
366.94 
o . oooo 
0 . 0946 

Interval] 

. 4255137 
. 0 181364 
.3420608 
. 0007397 
. 0640622 
. 2292412 

- . 1858741 
. 0844687 
. 0837909 

- . 0252125 
.2371664 
1. 843677 

The regressor line has coefficient 0.35 and is quite precisely estimated with a standard 
error of 0.04. The associated marginal effect at x = x, computed using the mfx com­
mand, is 0.13. This implies that a 10% increase in household income (a change of 0 .1  in 
line) is associated with an increase of 0.013 in the probability of having supplementary 
health insurance. 

14.8.2 Model assumptions 

We restrict attention to the case of a single continuous endogenous regressor in a binary 
outcome model. For a discrete endogenous regressor other methods should be used. 

We consider the following linear latent-variable model, in which Yt is the dependent 
variable in the structural equation and y2 is an endogenous regressor in this equation. 
These two endogenous vaxiables are modeled as linear in exogenous variables x1 and 
x2. That is, 

Y�i = f3Y2i + X�(Y + U; 
Y2i = x� ;1l'l + x;i7l'2 + Vi 

( 14.7) 

(14.8) 
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where i = 1, . . . , N; x1 is a K1 x 1 vector of exogenous regressors; and x2 is a K2 x 1 
vector of additional N that affect y2 but can be excluded from (14.7) as they do not 
directly affect y 1 .  Identification requires that K2 2 1. 

The variable Yi is latent and hence is not directly observed. Instead the binary 
outcome y1 is observed, with Y1 = 1 if Yi > 0, and Y1 = 0 if Yi � 0. 

Equation (14.7) might be referred to as "structural" . This structural equation is 
of main interest and the second equation, called a first-stage equation or reduced-form 
equation, only serves as a source of identifying instruments. It provides a check on the 
strength of the instruments and on the goodness of fit of the reduced form. 

The reduced-form equation (14.8) explains the variation in the endogenous variable 
in terms of strictly exogenous variables, including the IV x2 that are excluded from 
the structural equation. These excluded instruments, previously discussed in chapter 6 
withln the context of linear models, are essential for identifying the parameters of the 
structural equation. Given the specification of the structural and reduced-form equa­
tions, estimation can be simultaneous (i .e. ,  joint) or sequential. 

14.8.3 Structural-model approach 

The structural-model approach completely specifies the distributions of Yi and y2 in 
(14.7) and (14.8) .  It is assumed that (u;, v;) are jointly normally distributed, i . e . ,  
(u; , v; )  "' N(O,  :E),  where :E = (cr;j) ·  In the binary probit model, the coefficients 
are identified up to a scale factor only; hence, by scale normalization, cr1 1 = 1 .  The 
assumptions imply that u; iv; = pv;+E:;, where E(c-;lv; ) = 0. A test of the null hypothesis 
of exogeneity of y2 is equivalent to the test of H0 : p = 0, because then u, and v, are 
independent. 

This approach relies greatly on the distributional assumptions. Consistent estima­
tion requires both normality and homoskedasticity of the errors u; and v;. 

The ivprobit command 

The syntax of i vprobi t is similar to that of i vregress, discussed in chapter 6: 

i vprobi t depvar- [ var-listt ] ( var-list2=var-lisLiv) [ if ]  [ in ]  [ weight ] 
[ , mle_options ] 

where var-list2 refers to the endogenous variable Y2 and var-lisLiv refers to the instru­
ments X2 that are excluded from the equation for Yi ·  The default version of ivprobit 
delivers ML estimates, and the twostep option yields two-step estimates. 
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Maximum likelihood estimates 

For this example, we use as instruments two excluded variables, retire and sretire. 
These refer to, respectively, i:Jdividual retirement status and spouse retirement status. 
These are likely to be correlated with line, because retirement will lower household 
income. The key assumption for instrument validity is that retirement status does not 
directly affect choice of supplementary insurance. This assumption is debatable, and 
this example is best viewed as merely illustrative. 

We apply ivprobi t, obtaining ML estimates: 

* Endogenous probit using ivprobit ML estimator 
global ivlist2 retire sretire 
ivprobit ins $xlist2 (line - $ivlist2) , vce(robust) nolog 

Probit model with endogenous regressors 

Log pseudolikelihood - -5407.7151  

Robust 
Coef . Std. Err. 

line - . 5338186 .3852354 
female - . 1394069 .0494475 

ago .2862283 . 1280838 
age2 - . 0021472 .0009318 

educyear . 1 136877 .0237927 
marr ied . 705827 .2377729 

hisp -. 5094513 . 1049488 
white . 156344 . 1035713 

chronic .0061943 . 0275259 
adl - . 1347663 .03498 

hstatusg .2341782 .0709769 
_con� -10 . 00785 4 . 0 65795 

/athrho . 6745301 .3599913 
/lnsigma - . 331594 .0233799 

rho . 5879519 .2355468 
sigma . 7177787 .0167816 

Instrumented: line 

z 

- 1 . 39 
-2 . 82 

2 . 23 
-2.30 

4 . 78 
2 . 97 

-4 .85 
1 .  51  
0 . 23 

-3.85 
3 . 30 

-2 .46  

1 . 87 
-14 . 18  

Number of obs 
Wald chi2 ( 1 1 )  
Prob > chi2 

P> l z l  [95'l. Conf . 

0 . 166 - 1 . 288866 
0 . 005 - . 2363223 
0 . 025 .0351887 
0 . 021 - . 0039736 
0 . 000 . 0670549 
0 . 00 3  . 2398006 
0 . 000 - . 7 151473 
0 . 131 - . 046652 
0 . 822 - . 0477556 
0 . 000 -. 2033259 
0 . 00 1  . 0950661 
0 . 014 -17 . 97666 

0 . 06 1  - . 0 310399 
0 . 000 - . 3774178 

- . 0310299 
. 6856296 

3197 
382 .34 
0 . 0000 

Interval] 

. 221229 
- . 04249 15 

. 5372678 
- . 0003209 

. 1 603205 
1 . 171853 

- . 3037554 
.35934 

.0601441 
- . 0 662067 

.3732904 
-2. 03904 

1 . 3801 
- . 2857703 

.8809737 

. 7514352 

Instruments : female age age2 educyear married hisp white chronic adl 
hstatusg retire sretire 

Wald test of exogeneity (/athrho - 0 ) : chi2(1)  - 3 . 5 1  Prob > chi2 - 0. 0610 

The output includes a test of the null hypothesis of exogeneity, i .e. , H 0 : p = 0. The 
p-value is 0.061, so H 0 is not rejected at the 0.05 level, though it is rej ected at the 
0.10 level. That the estimated coefficient is positive indicates a positive correlation 
between u and v. Those unmeasured factors that make it more likely for an individual 
to have a higher household income also make it more likely that the individual will 
have supplementary health insurance, conditional on other regressors included in the 
equation. 
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Given the large estimated value for p (p = 0.59) ,  we should expect that the coeffi­
cients of the estimated probit and ivprobit models differ. This is indeed the case, for 
both the endogenous regressor line and for the other regressors. The coefficient of line 
actually changes signs (from 0.35 to -0.53), so that an increase in household income 
is estimated to lower the probability of having supplementary insurance. One possible 
explanation is that richer people are willing to self-insure for medical services not cov­
ered by Medicare. At the same time, IV estimation has led to much greater imprecision, 
with the standard error increasing from 0.04 to 0.39, so that the negative coefficient is 
not statisticaLly significantly different from zero at the 0.05 level. Taken at face value, 
however, the result suggests that the probi t command that neglects endogeneity leads 
to an overestimate of the effect of household income. The remaining coefficients exhibit 
the same sigrr pattern as in the ordinary probit model, and the differences in the point 
estimates ¥e within the range ofestimated standard errors. 

Two-step sequential estimates 

An alternative estimation procedure for (14.7) and (14.8) with normal errors (Newey 
1987) uses a minimum chi-squared estimator. This estimator also assumes multivariate 
normality and homoskedasticity and is therefore similar to the ML estimator. However, 
the details of the algorithm are different. The advantage of the two-step sequential 
estimator over the ML estimator is mainly computational because both methods make 
the same distributional assumptions. 

The estimator is implemented by using i vprobi t with the twostep option. 

We do so for our data, using the first option, which also provides the least-squares 
(LPM) estimates of the first stage. 

(Continued on next page) 
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* Endogenous probit using ivprobit 2-step estimator 
ivprobit ins $xlist2 (line = $ivlist2 ) ,  t�ostep first 

Checking reduced-form model. . .  
First-stage regression 

Source ss df MS Number of obs = 3197 
F( 12 ,  3184) 188.99 

Model 1173.  12053 12 97 .7600445 Prob > F = 0 . 0000 
Residua� 1647 .0 3826 3184 .517285885 R-squared 0 . 4160 

Adj R-squared = 0 . 4138 
Total 2820. 15879 3195 .882402626 Root MSE .71923 

line Coef . Std. Err. t P> l t l  [95/. Conf. Interval] 

retire - . 0909581 .0288119 -3 . 16  0 . 00 2  - .  1474499 - . 0344663 
sretire -. 0443106 . 0317252 -1 .40  0 .  163 - . 1065145 . 0 178932 
female - . 0936494 . 0297304 -3 . 15  0 . 002  - . 1 51942 - . 0353569 

ago .2669284 .0 627794 4 . 2 5  0 . 000 . 1438361 .3900206 
ago2 - . 0019065 . 0004648 -4 . 10  0 . 000 - . 0028178 - . 0009952 

educyear . 094801 . 0043535 2 1 . 78 0 .000  . 0862651 . 1033369 
married . 7918411  .0367275 21 . 56  0 . 000 . 7198291 .8638531 

hisp - . 2372014 .0523874 -4.53 0 . 000 - . 3399179 - . 134485 
�hite .2324672 .0347744 6 . 6 9  0 . 000 . 1642847 . 3006496 

chronic - . 0388345 . 0100852 -3.85 0 . 000 - . 0586086 - . 0190604 
adl - . 0739895 . 0173458 -4.27 0.000 - . 1 079995 - . 0399795 

hstatusg . 1 748137 .0338519 5 . 16 0 . 000 . 10844 . 2411875 
cons -7. 702456 2 . 1 18657 -3 .64  0 . 000 - 1 1 . 85653 -3 . 548385 

T�o-step probit �ith endogenous regressors Number of obs 3197 
Wald chi2 (11)  222.51 
Prob > chi2 0 . 0000 

Cocf. Std. Err. z P> l z l  [95/. Conf . Interval] 

line - . 6109088 . 5723054 - 1 . 0 7  0 . 286 -1 . 732607 . 5107893 
female - . 167917 .0773839 - 2 . 1 7  0 . 030 - . 3 195867 - . 0162473 

ago .3422526 . 1915485 1 .  79 0 . 074 -. 0331756 . 7 176808 
age2 - . 0025708 . 0014021 - 1 . 83 0 . 067 - . 0053188 . 0001773 

educyear . 13596 . 0543047 2 . 5 0  0 . 012 . 0295249 .2423952 
married .8351517 .441743 1 . 89 0 . 059 - .0306487 1 . 700952 

hisp - . 6184546 . 181427 -3 .41  0 . 001  - .  9740451 - . 2 628642 
�hite . 1818279 . 1528281 1 . 19 0 . 234 - . 1 177098 . 4813655 

chronic .0095837 . 0309618 0 . 3 1  0 .  757 - . 0511004 .0702678 
adl - . 1630884 . 0568288 -2.87 0 . 004 - . 2744709 - . 0517059 

hstatusg .2809463 . 1 228386 2 . 29 0 . 022 . 0401871 . 5217055 
cons -12 . 04848 5 . 928158 -2 .03 0 . 042 -23. 66746 - .  4295071 

Instrumented: line 
Instruments : female age age2 educyear married hisp �hite chronic adl 

hstatusg retire sretire 

Wald test of exogeneity :  chi2 ( 1 )  = 3 .57  Prob > chi2 = 0 . 0588 

The results of the two-step estimator are similar to those from the i vprobi t ML esti­
mation. The coefficient estimates are within 20% of each other. The standard errors are 
increased by approximately 50%, indicating a loss of precision in two-step estimation 
compared with ML estimation. The test statistic for exogeneity of line has a p"value 
of 0.059 compared with 0.061 using ML. The results for the first stage indicate that 
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one of the two excluded IV has a strong predictive value for line. Because this is a 
reduced-form equation, we do not attempt an interpretation of the results. 

14.8.4 !Vs approach 

An alternative, less structural approach is to use the IV estimation methods for the linear 
regression model, presented in chapter 6. This requires fewer distributional assumptions, 
though if linear IV is used, then the binary nature of the dependent variable y1 (ins) is 
being ignored. 

We have the standard linear formulation for the observed variables (y1 , y2) 

Yi i  = {3y2;. + x�,l + Ui 
Y2i = X�;1rJ + X;i1r2 + Vi 

where y2 is endogenous and the covariates x2 are the excluded exogenous regressors 
(instruments) . This is the model (14. 7) and ( 14.8) except that the latent-variable y� is 
replaced by the binary variable y1 . An important difference is that while ( u, v) are zero­
mean and jointly dependent they need not be multivariate normal and homoskedastic. 

Estimation is by two-stage least-squares (2SLS), using the ivregress command. 
�ecause y1 is binary, the error u is heteroskedastic. The 2SLS estimator is then still 
consistent for ([3, -y), but heteroskedasticity-robust standard errors should be used for 
inference. In chapter 6, we considered several issues, especially that of weak instruments, 
in applying the IV estimator. These issues remain relevant here also, and the reader is 
referred back to chapter 6 for a more detailed treatment of the topic. 

The ivregress command with the vce(robust) option yields 

• Endogenous probit using ivregress to get 2SLS estimator 
ivregress 2sls ins $xlist2 (line = $ivlist2) , vce (robust) noheader 

I Robust 
ins Coef . S td. Err. z P > l z l  (95% Conf . Interval] 

line - . 167901 . 1937801 -0 . 87 0 . 386 -. 547703 .2119011 
female - . 0545806 .0260643 -2.09 0 . 036 - . 1056657 - . 0034955 

age . 106631 .0624328 1 .  71 0 . 088 - .015735 .228997 
age2 - . 0008054 . 0004552 - 1 . 77 0 . 077 - . 0016977 . 0000868 

educyear . 0416443 . 0 182207 2 . 2 9  0 . 022 .0059324 . 0773562 
married . 2511613 . 1499264 1 . 68 0 . 094 -. 042689 .5450116 

hisp -. 154928 . 0546479 -2.84 0 . 005 - . 2620358 - .0478202 
white . 0513327 . 0508817 1 . 01  0 . 313 - . 0483936 . 151059 

chronic . 0048689 .0 103797 0 . 47 0 . 639 - .0 15475 . 0252128 
adl - . 0450901 . 0174479 -2 . 58 0 . 010 - . 0792874 - . 0108928 

hstatusg .0858946 . 041327 2 . 08 0 . 038 . 0048951 . 1668941 
cons -3 .303902 1. 920872 - 1 . 7 2  0 . 085 -7.068743 .4609388 

Inz.trumented : line 
Instruments :  female age age2 educyear man:ied hisp white chronic adl 

hstatusg retire sretire 
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esta t overid 
Test of overidentifying restrictions: 

Score chi2(1) = .521843 (p � 0 . 4701) 

This method yields a coefficient estimate of �0.17 of line that is statistically insignif­
icant at level 0.05, as for i vprobi t. To compare i vregress estimates to i vprobi t 
estimates, we need to rescale parameters as in section 14.4.3. Then the rescaled 2SLS 
parameter estimate is -0.17 x 2 .5  = -0.42, comparable to the estimates of -0.53 and 
-0.61 from the i vprobi t command. 

Advantages of the 2SLS estimator are its computational si�plicity and the ability to 
use tests of validity of overidentifying instruments and diagnostics for weak instruments 
that were presented in chapter 6. At the same time, the formal tests and inference 
that require normal homoskedastic errors may be inappropriate due to the intrinsic 
heteroskedasticity when the dependent variable is binary. Here the single overidentifying 
restriction is not rejected by the Hansen J test, which yields a x2 (1 )  value of 0.522. 
Whether the results are sensitive to the choice of instruments can be pursued further 
by estimating additional specifications, an advisable approach if some instruments are 
weak. 

The linear 2SLS estimator in the current example is based solely on the moment 
condition E( ulx1, x2) = 0, where u = y1 - (f3y2 + x�-y ); see section 6.2.2. For a 
binary outcome y1 modeled using the probit model, it is better to instead use the 
nonlinear 2SLS estimator based on moment condition E( ulx1 ,  x2) = 0, where the error 
term, the difference between y1 and its conditional mean function, is defined as u = 
y1 - �(f3y2 + x�7). This moment condition is not implied by (14 .7) and (14.8) ,  so 
the estimates will differ from those froi:n the i vprobi t command. There is no Stata 
command to implement the nonlinear 2SLS estimator, but the nonlinear 2SLS example 
in section ll .8 can be suitably adapted. 

14.9 Grouped data 

In some applications, only grouped or aggregate data may be available, yet individual 
behavior is felt to be best modeled by a binary choice model. For example, we may 
have a frequency average taken across a sampled population as the dependent variable 
and averages of explanatory variables for the regressors, which we will assume to be 

· exogenous. We refer to these as grouped data. 

Such grouping poses no problem when the grouping is on unique values of the regres­
sors and there are many observations per unique value of the regressors. For example, 
in the dataset of this chapter, age could be the grouping variable. This would generate 
33 groups, one for each age between 52 and 86; there are no observations for ages 84 or 
85. The number of cases in the 33 groups are as follows: 
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4 5 2 2 7 8 34 62 
67 74 524 470 488 477 286 133 
36 29 19 ll 8 l l  4 6 

72 51 6 1  
100 91  67 
.5 l l 
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Observations with no within-group variation will be dropped, and this is likely to occur 
when the group size is small. In the present sample, there are two groups with two 
observations each, and two with only one observation. These small groups are dropped, 
which reduces the sample size to 29. 

If the group size is relatively large and the grouping variable is distinct, Berkson's 
minimum chi-squared estimator is one method of estimating the parameters of the 
model. As an example, suppose the regressor vector x, , i = l ,  . . .  , N, takes only T 
distinct values, where T is much smaller than N. Then, for each value of the regressors, 
we have multiple observations on y. This type of grouping involves many observations 
per cell. Berkson's estimator (see Cameron and 1rivedi [2005, 480]) can be computed 
easily by weighted least squares (WLS). 

This method is not suitable for our data because the regressor vector X i  takes on 
a large number of values given many regressors, some of which are continuous. \Ne 
nonetheless group on age to illustrate grouped-data methods. 

14.9.1 Estimation with aggregate data 

Let p9 denote the average frequency in group g (g = 1, . . . , G, G > K), and let x9 
denote the average of x across N9 , where the latter is the number of observations in 
group g .  One possible model is OLS regression of p9 on x9. Because 0 < ]59 < l ,  it is 
common to use the logistic transformation to define the dependent variable that is now 
unbounded and to estimate the parameters of the model 

ln c �gpJ = X�{ +  u9 (14.9) 

where u9 is an error. It is essential to estimate the standard errors of the OLS coefficients 
in the above modef robustly because the average p9 is heteroskedastic, since it is given 
that N9 will vary with g. The logistic transformation may to some extent reduce 
heteroskedasticity. 

The model for aggregated data presented above will potentially yield biased esti­
mates; that is, in general the OLS estimator of '"Y is not a consistent estimator of f3 
in a nonlinear model. However, we may interpret the '"Y as an interesting aggregate 
parameter without any necessary connection with the {3. 

14.9.2 Grouped-data application 

The full individual dataset of 3,206 observations can be converted to an aggregate 
dataset by using the 'following Stata commands t·hat generate group averages and then 
saving the aggregated data into a separate file. 
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• Using mus14data . dta to generate grouped data 
sort age 
collapse av_ret=retire av_bhinc=hhincome av_educyear=educyear av_mar=married 

> av_adl=adl av_hisp=hisp av_hstatusg=hstatusg av_ins=ins, by(age) 

generate logins = log(av_ins/(1-av_ins))  
( 4  missing values generated) 

. save mus14gdata .dta, replace 
file mus14gdata . dta saved 

Here the collapse command is used to form averages by age. For example, collapse 
av ...hhincome=hhincome , by( age) creates 29 observations for the a v ...hhincome variable 
equal to the average of the hhincome variable for each of the 29 distinct values taken by 
the age variable. More generally, collapse can compute other statistics , such as the 
median specifying the median statistic, and if the by 0 option was not used then just 
a single observation would be produced. Four observations are lost because the logins 
variable cannot be computed in groups with av_ins equal to 0 or 1 .  

The aggregate regression is estimated as follows: 

. * Regressions with grouped data 
. regress logins av_ret av_hstatusg av_bhinc av_educyear av_mar av_hisp, 
> vce (robust) 

Linear regression 

Robust 
logins Coef . Std. Err. 

av_ret . 1460855 . 7168061 
av_hstatusg - . 5992984 1 . 033242 

av_hhinc .0016449 .0 163948 
av_educyear . 1851466 . 1618441 

av_mar 1 .  514133 1 . 018225 
av_hisp - .  7119637 . 6532035 

_cons -3. 679837 1 . 80997 

t P> l t l  

0 . 20 0 . 840 
-0 .58  0 . 568 
0 . 10 0 . 9 2 1  
1 . 14 0 . 265 
1 . 4 9  0 . 1 51 

- 1 . 0 9  0 . 288 
-2 .03  0 . 054 

Number of obs = 

F (  6 ,  22) = 

Prob > F 
R-squared 
Root MSE 

29 
5 . 26 

0 . 0017 
0 . 4124 
.44351 

[95/. Conf. Interval] 

- 1 . 340479 1 . 63265 
-2 . 742112 1 .  543515 
- . 0323558 . 0356456 
- . 1504974 . 5207906 
- . 5975357 3 . 625802 
-2 . 066625 . 6426975 
- 7 . 433484 . 0738104 

The above results are based on 29 grouped observations. Each estimated coefficient 
reflects the impact of a regressor on the log of the odds ratio. To convert the estimate 
to reflect the effect on the odds ratio, its coefficient should be exponentiated. The sign 
pattern of the coefficients in the aggregate regression is similar but not identical to that 
in the disaggregated logit model in section 14.4.2. Notice that the fit of the model, as 
measured by R2, has improved while the standard errors of parameter estimates have 
deteriorated. The averaged data are less noisy, so the R2 improves. But the reduction 
in variance of the regressors and the smaller sample size increase the standard errors. 

As was noted above , the parameters in the grouped model cannot be easily related 
to those in the disaggregated logit model. For example, hsta tusg had a significant 
positive coefficient in the logit equation, but av...hsta tusg has a negative coefficient. 
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14 .10 Stata resources 

The main reference for the endogenous regressor case is [R] ivprobit. The user-written 
margeff command (�art us 2005) can be used as a postestimation command after logi t 
and probit (and also after a number of other estimation commands ) , but not after 
ivprobi t. For grouped or blocked data, Stata provides the blogi t and bprobi t com­
mands for ML logit and pro bit estimation; the variants glogi t and gprobi t can be used 
to perform WLS estimation. For simultaneous-equations estimation, the user-written 
cdsimeq (K(lshk 2003) command implements a two-stage estimation method for the 
case in which one of the endogenous variables is continuous and the other endogenous 
variable is dichotomous. 

14. 1 1  Exercises 

1. Consider the example of section 14.4 with dependent variable ins and the single 
regressor educyear. Estimate the parameters of logit, probit, and OLS models 
using both default and robust standard errors. For the regressor educyear, com­
pare its coefficient across the models, compare default and robust standard errors 
of this coefficient, and compare the t statistics based on robust standard errors. 
For each model, compute the marginal effect of one more year of education for 
someone with sample mean years of education, as well as the AME. Which model 
fits the data better-logit or pro bit? 

2. Use the clog log command to estimate the parameters of the binary probability 
model for ins with the same explanatory variables used in the logi t model in this 
chapter. Estimate the average marginal effects for the regressors. Calculate the 
odds ratios of ins=l for the following values of the covariates: age= 50, retire=O, 
hstatusg=l, hhiricome=45, educyear=12, married=!, and hisp=O. 

3. Generate a graph of fi tted probabilities against years of education (educyear) or 
age ( age) using as a template the commands used for generating fi.gure 14.1 in 
this chapter. 

- .  

4. Estimate the parameters of the logit model of section 14.4.2. Now estimate the 
parameters of the pro bit model using the probi t command. Use the reported log 
likelihoods to compare the models by the AIC and BIC. 

5. Estimate the probit regression of section 14.4.3. Using the conditioning val­
ues (age=65, retire=!, hsta tusg=1, hhincome=60, educyear=17, married=l, 
hisp=O) , estimate and compare the marginal effect of age on the Pr(ins=l l x) , 
using both the mfx and prchange commands. They should give the same result. 

6. Using the hetprob command, estimate the parameters of the model of section 14.4, 
using bhincome a s  the variable determining the variance. Use the LR as a test of 
the null of homoskedastic probit. 

7. Using the example in section 14.9 as a te�nplate, estimate a grouped logistic re­
gression using educyear as the grouping variable. Comment on what you regard 
as unsatisfactory features of the grouping variable and the results. 
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15. 1 I ntroduction 

Categorical data are data on a dependent variable that can fall into one of several 
mutually exclusive categories. Examples include different ways to commute to work (by 
car, bus, ot on foot) and different categories of self-assessed health status (excellent, 
good, fair, or poor). 

The econometrics literature focuses on modeling a single outcome from categories 
that are mutually exclusive, where the dependent variable outcome must be multinomial 
distributed, just as binary data must be Bernoulli or binomial distributed. Analysis is 
not straightforward, however, because there are many different models for the proba­
bilities of the multinomial distribution. These models vary according to whether the 
categories are ordered or unordered, whether some of the individual-specific regressors 
vary across the alternative categories, and in some settings, whether the model is consis­
tent with utility maximization. Furthermore, parameter coefficients for any given model 
can be difficult to directly interpret. The marginal effects (MEs) of interest measure the 
impact on the probability of observing each of several outcomes rather than the impact 
on a single conditional mean. 

We begin with models for unordered outcomes, notably, multinomial logit, condi­
tional logit, nested logit, and multinomial probit models. We then move to models for 
ordered outcomes, such as health-status measures, and models for multivariate multi­
nomial outcomes. 

15.2 Multinomial models overv1ew 

We provide a general discussion of multinomial regTession models. Subsequent sec­
tions detail the most commonly used multinomial regression models that correspond to 
particular functional forms for the probabilities of each alternative. 

15-2.1 Probabilities and M Es 

The outcome, y; , for individual i is one of m alternatives. We set Yi = j if the outcome 
is the jth alternative, j = 1 ,  2, . . .  , m. The values 1, 2, . . .  , m are arbitrary, and the same 
regression results are obtained if, for example, we use values 3, 5, 8, . . . .  The ordering 
of the values also does not matter, unless an ordered model (presented in section 15 .9) 
is used. 

477 
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The probability that the outcome for individual i is alternative j, conditional on the 
regressors Xi , is 

Pii = Pr(y; = j) = F1(x;, 0) , j = 1 ,  . . .  , m, i = 1 ,  . . .  , N (15 .1 )  

where different functional forms, F1 ( ·) , correspond to different multinomial models. 
Only m - 1  of the probabilities can be freely speci6 ed because probabilities sum to one. 
For example, Fm (x..i , e) = 1 - I:;:�1 .Fj(x;, 8). Multinomial models therefore require a 
normalization. Some Stata multinomial commands, including asclogi t, permit differ­
ent individuals to face different choice sets so that, for example, an individual might be 
choosing only from among alternatives 1 ,  3, and 4. 

The parameters of multinomial models are generally not directly interpretable. In 
particular, a positive coefficient need not mean that an· increase in the regressor leads 
to an increase in the probability of an outcome being selected. Instead, we compute 
MEs. For individual i, the ME of a change in the kth regressor on the probability that 
alternative j is the outcome is 

oPr(y, = j) oF1 (Xi , e) 
MEijk = = --==-"-� EJx.,k OX-ik 

For each regressor, there will be m MEs corresponding to the m probabilities, and these 
m MEs sum to zero because probabilities sum to one. As for other nonlinear models, 
these marginal effects vary with the evaluation point x. 

15.2.2 Maximum likelihood estimation 

Estimation is by maximum likelihood (ML). We use a convenient form for the density 
that generalizes the method used for binary outcome models. The density for the ith 
individual is written as 

m 
!( ) Y 1 7Jlrn II y,j Yi = P;i X · · • X Pim = P;j 

j=l 

where Yil ,  . . .  , Yim are m indicator variables with y;j = 1 if y; = j and Yij = 0 otherwise. 
For each individual, exactly one of y1 , y2 , . . . , Ym will be nonzero. For example, if y; = 3, 
then y,3 = 1, the other y;1 = 0, and upon simpli6cation, f(y;) = p;3 , a:o expected. 

The likelihood function for a sample of N independent observations is the product 
of the N densities, so L = IT�1 TI;'=1 Prj' . The maximum likelihood estimator (MLE), 
6, maximizes the log-likelihood function 

N m 
JnL(O) = L L Y;1 ln Fi (x; , e) (15.2) 

i=I j=I  

and as usual B � N ( e ,  [ -E{82 lnL(O)/Beae'}r1 ) . 
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For categorical data, the distribution is necessarily multinomiaL There is generally 
no reason to use standard errors other than the default, unless there is some clus­
tering such as from repeated observations on the same individual, in which case the 
vee (cluster clustvar) option should be used. Hypothesis tests can be performed by 
using the lrtest command, though it is usually more convenient to perform Wald tests 
by using the test command. 

For multinomial models, the pseudo-R2 has a meaningful interpretation; see sec­
tion 10.7. Nonnested models can be compared by using the Akaike information criterion 
(AIC) and related measures. 

For multinomial data, the only possible misspecification is that of FJ (x., , 8) .  There 
is a wide range of models for FJ (· ) ,  with the suitability of "" particular model depending 
on the app_lication at hand. 

15.2.3 Case-specific and alternative-specific regressors 

Some regressors, such as gender, do not vary across alternatives and are called case­
specific or alternative-invariant regressors. Ot,her regressors, such as price, may vary 
across alternatives and are called ·alternative-specific or case-varying regressors. 

The commands used for multinomial model estimation can vary according to the 
form of the regressors. In the simplest case, all regressors are case specific, and for 
example, we use the mlogi t command. In more complicated applications, some or all 
the regressors are alternative specific, and for example, we use the asclogi t command. 
These commands can require data to be organized in different ways; see section 15 .5 .1 .  

15.2.4 Additive random-utility model 

For unordered multinomial outcomes that arise from individual choice, econometricians 
favor models that come from utility maximization. This leads to multinomial models 
that are used much less in other branches of applied statistics. 

For individual i and alternative j, we suppose that utility UiJ is the sum of a deter­
ministic component, Vi1 , that depends on regressors and unknown parameters, and an 
unobserved random component c;j : 

(15.3) 

This is called an additive random-utility model (ARUM) .  We observe the outcome Yi = j 
if alternative j has the highest utility of the alternatives. It follows that 

Pr(y; = j) Pr( U,i � U;k) ,  for all k 
Pr(U;k - U;1 - �  0) ,  . all k 
Pr (cik - E;j � v;j - vik), all k 

(15.4) 
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Standard multinomial models specify that V;1 = x!;1{3 + z';'Yi ' where X; are alternative­
specific regTessors and Zi are case-specific regressors. Different assumptions about the 
joint distribution of cil, . . .  , E:im lead to different multinomial models with different 
specifi cations for Fj(Xi, e) in ( 15 . 1 ) .  Because the outcome probabilities depend on the 
difference in errors, only m - 1 of the errors are free to vary, and similarly, only m - 1 
of the /j are free to vary. 

15.2.5 Stata multinomial model commands 

Table 15 .1  summarizes Stata commands for the estimation of multinomial models. 

Table 15 .1 .  Stata commands for the estimation of multinomial models 

Model 

Multinomial logit 
Conditional logit 
Nested logit 
Multinomial probit 
Rank ordered 
Ordered 
Stereotype logit 
Bivariate probit 

Command 

mlogit 
clogi t, asclogi t 
nlogit 
mprobit, asmprobit 
rologit, asroprobit 
ologi t, oprobi t 
slogit 
biprobit 

!viEs on choice probabilities evaluated at the sample mean or at specific values of the re­
gressors are computed by using the mix command after most commands or the estat mix 
command after asclogit, asmprobit, and asroprobit. Average MEs (AMEs) can be 
computed by using the user-written margeff command after mlogi t, ologi t, oprobi t, 
and bi pro bit. 

15 .3  M ultinomial example: Choice o f  fishing mode 

We analyze data on  individual choice of  whether to fish using one of four possible modes: 
!'rom the beach, the pier, a private boat, or a charter boat. One explanatory variable 
is case specific (income) and the others [price and crate (catch rate)] are alternative 
specific. 

15 .3 .1  Data description 

The data from Herriges and Kling (1999) are also analyzed in Cameron and Trivedi 
(2005). The mus15dat a . dta dataset has the following data: 



15.3.1 Data description 

* Read in dataset and describe dependent variable and regressors 
use mus15data .dta,  clear 
describe 

Contains data from mus15data . dta 
obs: 1 , 182 

vars: 16 
size: 80 ,376 (99.2/. of memory free) 

storage display value 
variable name type format label 

mode float /.9 . 0g modetype 
price float /.9 . 0g 
crate float /.9 . 0g 
dbeach float /.9 . 0g 
dpier float /.9.0g 
dprivate float /.9.0g 
dcharter float /.9.0g 
pbeach float /.9.0g 
ppier float /.9.0g 
pprivate float /.9.0g 
pcharter float /.9 .0g  
qbeach float /.9.0g 
qpier float /.9.0g 
qprivato float /.9.0g 
qcharter float /.9.0g 
income float /.9 .0g  

Sorted by :  

12  May 2008 20 :46  

variable label 

Fishing mode 
price for chosen alternative 
catch rate for chosen alternative 
1 if beach mode chosen 

if pier mode chosen 
if private boat mode chosen 
if charter boat mode chosen 

price for beach mode 
price for pier mode 
price for private boat mode 
price for charter boat mode 
catch rate for beach mode 
catch rate for pier mode 
catch rate for private boat mode 
catch rate for charter boat mode 
monthly income in thousands $ 

481 

There are 1 , 182 observations, one per individual. The first three variables are for the 
chosen fishing mode with the variables mode, price,  and crate being, respectively, the 
chosen fishing mode and the price and catch rate for that mode. The next four variables 
are mutually exclusive dummy variables for the chosen mode, taking on a value of 1 
if that alternative is chosen and a value of 0 otherwise. The next eight variables are 
alternative-specific variables that contain the price and catch rate for each of the four 
possible fi.shing modes (the prefix q stands for quality; a higher catch rate implies a 
higher quality of fishing ) . These variables are constructed from individual surveys that 
ask not only about attributes of the chosen fishing mode but also about attributes 
of alternative fishing modes such as location that allow for determination of price and 
catch rate. The final variable, income, is a case-specific variable: The summary statistics 
follow: 

(Continued on next page) 
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* Summarize dependent variable and regressors 
summarize, separator(O )  

Variable Obs Mean Std. Dev.  

mode 1182 3 . 005076 . 9936162 
price 1182 52.08197 53. 82997 
crate 1182 . 3893684 .5605964 

db each 1182 . 1 133672 .3171753 
dpier 1182 . 1505922 .3578023 

dprivate 1182 . 3536379 .4783008 
dcharter 1182 . 3824027 .4861799 

pbeach 1182 103.422 103.641 
ppier 1182 103.422 103.641 

pprivate 1182 55. 25657 62.71344 
pcharter 1182 84. 37924 63. 54465 

qbeach 1182 . 2410113 . 1907524 
qpier 1182 . 1 622237 . 1603898 

qprivate 1182 . 1712146 . 2097885 
qcharter 1182 . 6293679 . 7061142 

income 1182 4. 099337 2 . 461964 
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Min 

1 
1 . 29 

. 0002 
0 
0 
0 
0 

1 .  29 
1 . 29 
2 . 2 9  

27.29 
. 0678 
. 0014 
. 0002 
.0021 

. 4 166667 

Max 

4 
666 . 1 1  
2 . 3101 

843 . 186 
843.186 

666 . 1 1  
6 9 1 . 1 1  

. 5333 

.4522 

. 7369 
2 . 3101 

12 .5  

The variable mode takes on the values ranging from 1 to 4. O n  average, private and 
charter boat fishing are less expensive than beach and pier fishing. Beach and pier 
fishing, both close to shore with similar costs, have identical prices. The catch rate for 
charter boat fishing is substantially higher than for the other modes. 

The tabulate command gives the various values and frequencies of the mode variable. 
We have 

• Tabulate the dependent variable 
tabulate mode 

Fishing 
mode Freq. Percent Cum. 

beach 134 1 1 . 34 1 1 . 34 
pier 178 15 .06  26.40 

private 418 35.36 61 .76  
charter 452 38.24 100.00 

Total 1 , 182 100.00 

The shares are roughly one-third fish from the shore (either beach or pier) , one-third 
fish from a private boat, and one-third fish from a charter boat. These shares are the 
same as the means of dbeach, . . .  , dcharter given in the summarize table. The mode 
variable takes on a value from 1 to 4 (see the summary statistics) , but the output of 
describe has a label, modetype, that labels 1 as beach, . . . , 4 as charter.  This labeling 
can be verified by using the label list command. There is no obvious ordering of the 
fishing modes, so unordered multinomial models should be used to explain fishing-mode 
choice. 
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15.3.2 Case-specific regressors 

�efore formal modeling, it is useful to summarize the relationship between the dependent 
variable and the regressors. This is more difficult when the dependent variable is an 
unordered dependent variable. 

For the case-specific income variable, we could use the bysort mode :  summarize 
income command. More compact output is obtained by instead using the table com­
mand. We obtain 

• Table of income by f ishing mode 
table mode, contents(N income mean income sd income) 

Fishing 
mode N( income) mean(income) sd(income) 

beach 134 4 . 051617 2 . 50542 
pier 178 3 . 387172 2 . 340324 

private 418 4. 654107 2 . 777898 
charter 452 3 . 880899 2 . 050029 

On average, those fishing from the pier have the lowest income and those fi.shing from 
a private boat have the highest. 

15.3.3 Alternative-specific regressors 

The relationship between the chosen fishing mode and the alternative-specific regressor 
price is best summarized as follows: 

• Table of f ishing price by fishing mode 
table mode, contents(mean pbeach mean ppier mean pprivate mean pcharter) form 

> a t(/.6 .0f)  

Fishing 
mode _mean (p beach) mean(ppier) mean(ppri va te) mean(pcharter) 

beach 36 36 98 125 
pier 31 31 82 110 

private 138 138 42 71 
charter 121 121 45 75 

On average, individuals tend to choose the fishing mode that is the cheapest or second 
cheapest alternative available for them. For example, for those choosing private, on 
average the price of private boat fi.shing is 42, compared with 71 for charter boat fishing 
and 138 for beach or pier fishing. 
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Similarly, for the catch rate, we have 

. • Table of f i shing catch rate by fishing mode 
. table mode, contents (mean qbeach mean qpier mean qprivate mean qcharter) form 
> at(/.6 .2f )  

Fishing 
mode mean(qbeach) mean (qpier) mean(qpri va te) mean(qcharter) 

beach 0 .28  0 . 22 0 . 16 0 . 52 
pier 0 . 26 0 . 2 0  0 . 15 0 . 50  

private 0 . 21 0 . 13 0 . 18 0 . 65 
charter 0 .25 0 . 1 6  0 . 18 0 . 69 

The chosen fishing mode is not on average that with the highest catch rate. In particular, 
the catch rate is always highest on average for charter fishing, regardless of the chosen 
mode. Regression analysis can measure the effect of the catch rate after controlling for 
the price of the fishing mode. 

15.4 M ultinomial logit model 

Many multinomial studies are based on datasets that have only case-specific variables, 
because explanatory variables are typically observed only for the chosen alternative 
and not for the other alternatives. The simplest model is the multinomial logit model 
because computation is simple and parameter estimates are easier to interpret than in 
some other multinomial models. 

15.4.1 The mlogit command 

The multinornial logit (MNL) model can be used when all the regressors are case specific. 
The MNL model specifies that 

Pij = "'m 
( '/3 ) ' 6!,1 exp X; L 

J. 
= 1, . . .  , m  (15.5) 

where Xi are case-specific regressors, here an intercept and income. Clearly, this model 
ensures that 0 < Pii < 1 and I:;'=� PiJ = 1. To ensure model identification, (3i is set to 
zero for one of the categories, and coefficients are then interpreted with respect to that 
category, called the base category. 

The mlogi t command has the syntax 

mlogi t depvar [ indepvars ] [ if ]  [ in ]  [ weigh t ]  [ , options ] 

where indepvars are the case-specific regressors, and the default is to automatically 
include an intercept. The baseoutcome (#)  option specifies the value of depvar to be 
used as the base category, overriding the Stata default of setting the most frequently 
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chosen category as the base category. Other options include rrr to report exponentiated 
coefficients (efj rather than §) . 

The mlogit command requires that data b e  in wide form, with one observation per 
individual. This is the case here. 

15.4.2 Application of the mlogit command 

We regress fishing mode on an intercept and income, the only case-specific regressor 
in our dataset. There is no natural base category. The first category, beach fi.shing, is 
arbitrarily set to be the base category. We obtain 

* Multinomial logit with base outcome alternative 
mlogit mode income , baseoutcome(1 )  nolog 

Multinomial logistic regression Number of o bs 1182 
LR chi2(3) 4 1 . 14 
Prob > chi2 0 . 0000 

Log likelihood = -1477 . 1506 Pseudo R2 0 .  0137 

mode I Coef . Std. Err. z P> l z l  [95/. Conf . Interval) 

pier 
income - . 1434029 . 0532882 -2 .69  0 . 007 -. 2478459 - . 03896 

cons . 8 141503 . 2286316 3 . 5 6  0 .000 . 3660405 1 .  26226 

private 
income . 0919064 . 0406638 2 . 26 0 . 024 . 0122069 . 1716059 

cons .7389208 . 1967309 3 . 76 0 .  000 .3533352 1 . 124506 

charter 
income - . 0316399 . 0418463 -0 . 76 0 . 450 -. 1136571 . 0503774 

cons 1 .  341291 . 1945167 6 . 90 0 . 000 . 9600457 1. 722537 

(mode==beach is the base outcome) 

The model fit is poor with pseudo-R2, defined in section 10.7 .1 ,  equal to 0.014. Nonethe­
less, the regressors are jointly statistically signifi.cant at the 0.05 level, because LR 
.£hi2j3) =4 1 .)4. Three sets of regression estimates are given, corresponding here to (32, (33, and (34, because we used the normalization (31 = 0. 

Two of the three coefficient estimates of income are statistically signifi.cant at the 
0.0.5 level, but the results of such individual testing will vary with the omitted category. 
Instead, we should perform a joint test. Using a Wald test, we obtain 

. * Wald test of the joint significance of income 

. test income 
( 1 )  [pier] income = 0 
( 2) [pri va tel income = 0 
( 3) [charter] income 0 

chi2( 3) = 37 .70  
Prob > chi2 = 0 . 0000 
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Income is clearly highly statistically significant. An asymptotically equivalent alterna­
tive test procedure is to use the lrtest command (see section 12 .4 .2) ,  which requires 
additionally fitting the null hypothesis model that excludes income as a regressor. In 
this case, with just one regressor, this coincides with the overall test LR chi2 (3 )=4 1 . 14 
reported in the output header. 

15.4.3 Coefficient interpretation 

Coefficients in a multinomial model can be interpreted in the same way as binary logit 
model parameters are interpreted, with comparison being to the base category. 

This is a result of the multinomial logit model being equivalent to a series of pairwise 
logit models. For simplicity, we set the base category to be the first category. Then the 
MNL model defined in (15 .5) implies that 

. . Pr(y, = j )  Pr(yi = J IYi = J or  1 )  = p ( ') + p ( 1 )  
= 

r Yi = J r Yi = 
exp(X;,6j ) 

1 + exp(x�,6j) 

using ,61 = 0 and cancellation of I:Z:,1 exp(x�,eJ in the numerator and denominator. 

Thus �i can be viewed as parameters of a binary logit model between alternative 
J. and alternative 1. So a positive coefficient from mlogi t means that as the regressor 
increases, we are more likely to choose alternative j than alternative 1. This interpreta­
tion wiJl vary with the base category and is clearly most useful when there is a natural 
base category. 

Some researchers find it helpful to transform to odds ratios or relative-risk ratios , as 
in the binary logit case. The odds ratio or relative-risk ratio of choosing alternative J. 
rather than alternative 1 is given by 

Pr(yi = J· )  ( ' '-' ) Pr(yi = 1)  = exp X;Pj (15 .6) 

so ef3;� gives the proportionate change in the relative risk of choosing alternative J. rather 
than alternative 1 when x.,,- changes by one unit. 

The rrr option of mlogi t provides coefficient estimates transformed to relative-risk 
ratios. We have 
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. • Relative-risk option reports exp(b) rather than b 

. mlogit mode incqme, rr baseoutcom e(1 )  nolog 
Multinomial logistic regression 

Log likelihood = -1477 . 1506 

mode RRR Std. Err. 

pier 
iricome .8664049 . 0461692 

private 
income 1 . 096262 . 0445781 

charter 
income . 9688554 . 040543 

(mode==beach is the base outcome) 

z 

-2.69 

2 . 2 6  

-0 .76  

Number o f  obs 
LR chi2(3) 
Prob > chi2 
Pseudo R2 

P > l z l  [95/. Conf . 

0 . 007 .7804802 

0 . 024 1 .  012282 

0 . 450 . 8925639 

1182 
4 1 . 14 

0 .  0000 
0 .  0137 

Interval] 

. 9617892 

1 . 18721 

1 . 051668 
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Thus a one-unit increase in income, corresponding to a $1,000 monthly increase, leads 
to relative odds of choosing to fish from a pier rather than the beach that are 0.866 
times what they were before the change; so the relative odds have declined. The original 
coefficient of income for the alternative pie:L was -0. 1434 and e-0  1434 = 0.8664. 

L5.4.4 Predicted probabilities 

Af�er most estimation commands, the predict command creates one variable. Aner 
mlogi t, however, m variables are created, where m is the number of alternatives. Pre­
dicted probabilities for each alternative are obtained by using the pr option of predict. 

Here we obtain four predicted probabilities because there are four alternatives. We 
have 

• Predict probabilities of choice of each mode and compare to actual freqs 
predict pmlogit1 pmlogit2 pmlogit3 pmlogit4 , pr 
summarize pmlogit• dbeach dpier dprivate dcharter,  sep�ator (4) 

Variable Obs Mean Std. Dev. Min Max 

pmlogit 1 1182 . 1 133672 .0036716 . 0947395 . 1153659 
pmlogit2 1182 . 1505922 .0444575 .0356142 .2342903 
pmlogit3 1182 . 3536379 . 0797714 . 2396973 . 625706 
pmlogit4 1182 .3824027 . 0346281 . 2439403 .4158273 

dbeach 1182 . 1 133672 . 3171753 0 
dpier 1182 . 1505922 .357 8023 0 

dprivate 1182 .3536379 .4783008 0 
dcharter 1182 . 3824027 . 4861799 0 

Note that the sample average predicted probabilities equal the observed sample frequen­
cies. This is always the case for MNL models that include an intercept, generalizing the 
similar result for binary logit models. 
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The ideal multinomial model will predict perfectly. For example, pi ideally would 
take on a value of 1 for the 134 observations with y = 1 and would take on a value of 0 
for the remaining observations. Here pi ranges only from 0.094 7 to 0 .1154 ,  so the model 
with income as the only explanatory variable predicts beach fishing very poorly. There 
is considerably more variation in predicted probabilities for the other three alternatives. 

15.4.5 M Es 

For an unordered multinomial model, there is no single conditional mean of the depen­
dent variable, y. Instead there are m alternative:::, and we model the probabilities of 
these alternatives. Interest lies in how these probabilities change as regressors change. 

For the MNL model, the MEs can be shown to be 

where (Ji = "£1 p;,t/31 is a probability weighted average of the {31. The marginal effects 
va1y with the point of evaluation, x;, because Pij varies with x; . The signs of the 
regression coefficients do not give the signs of the MEs. For a variable x, the ME is 
positive if {3j > (3i . 

The mfx command calculates the ME  at the mean (MEM) and the ME  at represen­
tative values (MER), with separate computation for each alternative. For example, to 
obtain the ME on Pr(y = 3) of a change in income evaluated at the sample mean of 
regressors, we use 

. • Marginal effect at mean of income change for outcome 3 
. mfx, predict(pr outcome ( 3 ) )  

Marginal effects after mlogit 
y = Pr(mode==3) (predict, pr outcome (3) )  

.35220366 

variable dy/dx Std. Err. z P> l z l  95Y. C . I .  X 

income . 0325985 . 00569 5 . 73 0 . 000 . 021442 . 043755 4 . 09934 

A one-unit change in income, equivalent to a $1 ,000 increase in monthly income, in­
creases by 0.033 the probability of fishing from a private boat rather than from a beach, 
pier, or charter boat. 

The user-written margeff  command can be used after mlogi t to compute the AME. 
The margef f  command treats outcome (j) as the jth outcome after the base category, 
unlike mfx, which treats outcome (j) as the jth outcome. Here we obtain the AME on 
Pr(y = 3). �ecause this is the second alternative after the base category y = 1, we use 
the outcome (2) option. We have 



15.5.1  Creating long-form data from wide-form data 

. * Average marginal effect of income change for outcome 3 
. margeff ,  outcome (2) // Use 2 as outcome ; 3 is 2nd after baseoutcome ( 1 )  
Average marginal effects on Prob(mode) after mlogit 

mode 

income 

Coef.  Std. Err. 

.0317562 .0052582 

z P> l z l  

6 . 04 0 . 000 

[95/. Conf. Interval] 

. 0214503 . 042062 
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The AME and MEM are qu.ite similar in this example. Usually, mlogi t leads to much 
greater differences. 

15.5 Conditional logit model 

Some multinomial studies use richer datasets that include alternative-specific variables, 
such as prices and quality measures for all alternatives, not just the chosen alternative. 
Then the conditional logit model is used. 

15.5.1 Creating long-form data from wide-form data 

The parameters of conditional logit models are estimated with commands that require 
the data to be in long form, with one observation providing the data for just one 
alternative for an individual. 

Some datasets will already be in long form, but that is not the case here. Instead, 
the mus 15data . dta dataset is in wide form, with one observation containing data for 
all four alternatives for an individual. For example, 

* Data are in wide form 
list mode price pbeach ppier pprivate pcharter in 1 ,  clean 

mode price pbeach ppier pprivate pcharter 
1 .  charter 182.93 157.93 157.93 157.93 182.93 

The first observation has data for the price of all four alternatives. The chosen mode 
was charter, so pr-ice was set to equal pcharter. 

To convert data from wide form to long form, we use the reshape command, intro­
duced in section 8 . 11 .  Here the long form will have four observations for each individual 
according to whether the suffix is beach, pier, private, or charter.  These suffixes 
are strings, rather than the reshape command's default of numbers, so we use reshape 
with the string option. For completeness, we actually provide the four suffixes. We 
have 

( Continued on next page) 
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* Convert data from wide form to long form 
generate id = _n 

Chapter 15 Multinomial models 

reshape long d p q, i (id) j (fi sbmode beach pier private charter) string 
Data wide -> long 

Number of obs.  
Number of variables 
j variable (4 values) 
xij variables:  

dbeach dpier 
pbeach ppier 
qbeach qpier 

1182 
22 

dcharter 
pcharter 
qcharter 

save mus15datalong .dta,  replace 
file mus15datalong . dta saved 

-> 4728 
-> 14 
-> fishmode 

-> d 
-> p 
-> q 

There are now four observations for the first individual or case. If we had not provided 
the four suffixes, the reshape command would have erroneously created a fifth alterna· 
tive, rice, from price that like pbeach, ppier, pprivate, and pcharter also begins 
with the letter p. 

To view the resulting long,·-form data for the first individual case, we list the first 
four observations. 

• List data for the first case after reshape 
list in 1/4,  clean noobs 

id fisbmode mode price crate d p q income 
> _est_MNL pmlogi t1 pmlogi t2 pmlogit3 pmlogit4 

1 beach charter 182.93 . 5391 0 157.93 . 0678 7 . 083332 
> . 1 125092 . 0919656 .4516733 . 34 38518 

charter charter 182.93 .5391 182.93 . 5391 7 . 083332 
> . 1 125092 . 0919656 .4516733 .34:<5518 

pier charter 182.93 . 5391 0 157 .93 .0503 7 . 083332 
> . 1 125092 . 0919656 . 4516733 .3438518 

private charter 182.93 .5391 0 157 .93  .2601  7 . 083332 
> . 1 125092 .0919656 .4516733 . 34 38518 

The order is no longer pier, beach, private boat, and then charter boat. Instead, it is now 
beach, charter boat, pier, and then private boat, because the observations are sorted in 
the alphabetical order of f isbmode. For this first observation, the outcome variable, d, 
equals 1 for charter boat fishing, as expected. The four separate observations on the 
alternative-specifi.c variables, p and q, are the different values for price and quality for 
the four alternatives. 

All case-specific variables appear as a single variable that takes on the same value 
for the four outcomes. For income, this is no problem. But the mode, price, and era te 
are misleading here. The mode variable indicates that for case 1 the fi.sbing mode was 
mode=4, because in original wide form this corresponded to charter boat fishing. But 
d=l for the second observation of the first case because this corresponds to charter boat 
fishing in the reordered long form. It would be best to simply drop the misleading 
variables by typing drop mode price era te, because these variables are not needed. 
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15.5.2 The asclogit command 

When some or all regressors are alternative specific, the conditional logit ( CL) model is 
used. The CL model specifies that 

exp(x;i/3 + zb i) 
j = l ,  . . .  , m  ( 15.7) 

where Xij are alternative-specific regressors and Zi are case-specific regressors. To ensure 
model identification, one of the '"Yi is set to zero, as for the MNL model. Some authors 
call the model above a mi'<ed logit model, with conditional logit used to refer to a more 
restrictive model that has only alternative-specific regressors. 

The asclogi t command, an acronym for alternative-specific conditional logit, has 
tri e syntax · 

asclcgi t depvar [ indepvars ] [ if ]  [ in ]  [ weight ] , case ( varname) 
alternatives(varname) [ options ] 

where indepvars are the alternative-specifi c regTessors, case (varname) provides the 
identifier for each case or individual, and al terna ti ves ( varname) provides the possible 
alternatives. 

The casevars C varlist) option is used to provide the names of any case-specific re­
gressors. The baseal ternati ve()  option specifies the alternative that is to be used 
as the base category, which affects only the coefficients of case-specific regressors. The 
al twise option deletes only the data for an alternative, rather than the entire observa­
tion, if data are missing. 

The noconstant optfon overrides the Stata default of including ca.se-specific inter­
cepts. Attributes of each alternative are then explained solely by alternative-specific 
regressors if noconstant is used. The case-specifi c intercepts provided by the default 
estimator are interpreted as reflecting the desirability of each alternative because of 
unmeasured attributes of the alternative. 

The asclogi t command allows the choice set to vary across individuals and more 
than one alternative to be selected. 

15.5.3 The dogit command 

The conditional logit model can also be fitted by using the clogi t command, yielding 
the same results. The clogi t command is desigr1ed for grouped data used in matched 
case-control group studies and is similar to the xtlogi t command used for panel data 
gTouped over time for an individual. 

The clogit command does not have an option for case-specifi c variables. Instead 
a case-specific variable is interacted with dummies for m - 1 alternatives, and the 
m - 1 variables are entered as regressors. This is illustrated in section 15.8.3, where the 
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same data transformations are needed for the user-written mixlogi t command. For 
applications such as the one studied in this chapter, asclogi t is easier to use than 
clogit. 

15.5.4 App�ication of the asclogit command 

We estimate the parameters of the CL model to explain fishing-mode choice given 
alternative-specific regressors on price and quality; the case-specific regressor, income; 
and case-specific intercepts. As for the MNL model, beach fishing is set to be the base 
category. We have 

• Conditional logit with alternative-specific and case-specific regressors 
asclogit d p q,  case(id) alternatives (fishmode) casevars( income) 

> basealternative(beach) nolog 
Alternative-specific conditional logit 
Case variabl e :  id 

Number of obs 
Number of cases 

4728 
1182 

Alternative variable: fisbmode Alts per case: min � 
avg = 

max = 

4 
4 . 0  

4 

Log likelihood = -1215 . 1376 
Wald chi2 (5 )  
Prob > chi2 

252 .98 
0 . 0000 

d 

fish mode 

beach 

p 
q 

charter 
income 

_cons 

pier 
income 

_cons 

private 
income 
_cons 

Coef. Std. Err. z P> \ z l  

- . 0251166 .0017317 -14 .50 0 .000 
. 357782 . 1097733 3 . 2 6  0 . 001 

(base alternative) 

- . 0332917 . 0503409 
1 . 694366 . 2240506 

- . 1275771 .0506395 
.7779593 . 2204939 

. 0894398 .0500671 

. 5272788 .2227927 

-0 .66  0 .  508 
7 . 56 0 . 000 

-2.52 0 .  012 
3 . 53 0 . 000 

1 . 79 0 . 074 
2 . 37 0 . 018 

[95% Conf . Interval) 

- . 0285106 - . 0217225 
. 1426302 . 5729337 

- . 131958 
1. 255235 

. 0653745 
2 . 133497 

- . 2268288 - . 0283255 
. 3457992 1 . 210119 

- . 0086898 
. 0906132 

. 1 875694 
. . 9639444 

The first set of estimates are the coefficients fJ for the alternative-specific regressors 
price and quality. The next three sets of estimates are for the case-specific intercepts 
and regressors. The coefficients are, respectively, -9charter > "Ypicr > and -9private> because 
we used the normalization l'beach = 0. 

The output header does not give the pseudo-R2, but this can be computed by using 
the formula given in section 10.7.1 .  Here lnLJlt = - 1215 .1 ,  and estimation of an 
intercepts-only model yields lnL0 = -1497.7, so R2 = 1-(-1215 . 1 )/ (-1497.7) = 0.189,  
much higher than the 0.014 for the MNL model in section 15 .4 .2 .  The regressors p, q,  
and income are highly jointly statistically significant with Wald chi2(5 ) =253. The test 
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command can be used for individual Wald tests, or the lrtest command can be used 
for likelihood-ratio (LR) tests. 

The CL model in this section reduces to the MNL model in section 15.4.2 if {3p = 0 
and /3q = 0. Using either a Wald test or a LR test, this hypothesis is strongly rej ected, 
and the CL model is the preferred model. 

15.5.5 Relationship to multinomial logit model 

The MNL and CL models are essentially equivalent. The mlogi t command is designed 
for case-specific regressors and data in wide form. The asclogi t command is designed 
for alternative-specific regressors and data in long form. 

The par9-meters of the MNL model can be estimated by using asclogi t as the special 
case with no alternative-specific regressors . Thus 

. * MNL is CL with no alternative-specific regressors 
. asclogit d, case(id) alternatives (fishmode) casevars (incomc) 
> basealternativc (beach) 

(output omitted )  

yields the same estimates as  the earlier mlogi t command. When all regressors are case 
specific, it is easiest to use mlogi t with data in wide form. 

Going the other way, it is possible to estimate the parameters of a CL model us­
ing mlogi t. This is more difficult because it requires transforming alternative-specific 
regressors to deviations from the base category and then imposing parameter-equality 
constraints. For CL models, asclogi t is much easier to use than mlogi t. 

15.5.6 Coefficient interpretation 

Coefficients of alternative-specific regressors are easily interpreted. The alternative­
specific regressor can be denoted by Xr with the coefficient f3r. The effect of a change 
in Xrik , which is the value of Xr for individual i and alternative k, is 

j = k  
j f. k (1.5.8) 

If f3r > 0,  then the own-effect is positive because Pi.j ( 1 - Pij)/3r > 0, and the cross-effect 
is negative because -P;JPikf3r < 0. So a positive coefficient means that if the regressor 
increases for one category, then that category is chosen more and other categories are 
chosen less; vice versa for a negative coefficient. Here the negative price coefficient of 
-0.025 means that if the price of one mode of fishing increases, then demand for that 
mode decreases and demand for aJl other modes increases, as expected. For catch rate, 
the positive coefficient of 0.36 means a higher catch rate for one mode offi.sbing increases 
the demand for that mode and decreases the demand for the other modes. 

Coefficients of case-specific regressors are interpreted as parameters of a binary logit 
model against the base category; see section 15.4.3 for the MNL model. The income 
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coefficients of -0.033, -0.128, and 0.089 mean that, relative to the probability of beach 
fishing, an increase in income leads to a decrease in the probability of charter boat and 
pier fishing, and an increase in the probability of private boat fishing. 

15.5.  7 Predicted probabilities 

Predicted probabilities can be obtained using the predict command with the pr option. 
This provides a predicted probability for each observation, where an observation is one 
alternative for one individual because the data are in long form. 

To obtain predicted probabilities for each of the four alternatives, we need to sum­
marize by f i sbmode. We use the table command because this gives condensed output. 
Much lengthier output is obtained by instead using the bysort f i sbmode : summarize 
command. We have 

• Predicted probabilities of choice of each mode and compare to actual freqs 
predict pasclogit, pr 
table fisbmode, contents (mean d mean pasclogit sd pasclogit) cellwidth(15)  

fisbmode mean(d) mean(pasclogit) sd(pasclogit) 

beach . 1 133672 . 1133672 . 1285042 
charter .3824027 .3824027 . 1565869 

pier . 1505922 . 1505922 . 1 613722 
private .3536379 .3536379 . 1664636 

As for MNL, the sample average predicted probabilities are equal to the sample proba­
bilities. The standard deviations of the CL model predicted probabilities (all in excess 
of 0.10) are much larger than those for the MNL model, so the CL model predicts better. 
A summary is also provided by the estat alternatives command. 

A quite different predicted probability is that of a new alternative. This is possible 
for the conditional logit model if the parameters of that model are estimated using 
only alternative-specific regressors, which requires use of the no constant option so that 
case-specific intercepts 'are not included, and the values of these regressors are known 
for the new category. 

For example, we may want to predict the use of a new mode of fishing that has 
a much higher catch rate than the currently available modes but at the same time 
has a considerably higher price. The parameters, {3 ,  in (15.7) are estimated with m 
alternatives, and then predicted probabilities are computed by using ( 15. 7) with m + 1 
alternatives. 

15.5.8 M Es 

The MEM and MER are computed by using the postestimation estat mfx command, 
rather than the usual mfx command. Options for this command include varlist () to 
compute the marginal effects for a subset of the regressors. 
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vVe compute the MEM for just the regressor price .  We obtain 

* Marginal effect at mean of change in price 
. estat mfx, varlist(p) 
Pr(choice beach l 1  selected) = . 05248806 

variable dp/dx Std . Err. z P> l z l  95% c .  I .  X 

p 
beach - . 001249 . 000121 -10 .29 0 . 000 - .  001487 - . 001011 103.42 

charter . 000609 . 000061 9 . 97 0 . 000 . 000489 . 000729 84. 379 
pier .000087 . 000016 5 . 42 0 . 000 . 000055 .000118 103.42 

private . 000553 .000056 9 . 8 8  0 . 000 . 000443 . 000663 5 5 . 257 

Pr(choice charter l 1  selected) = .46206853 

variable dp/dx Std.  E= .  z P> l z  I 95/. c . I .  X 

p 
beach . 000609 . 000061 9 . 97 0 . 000 . 000489 . 000729 103.4 2 

charter - . 006243 .000441 -14 . 15  0 . 000 - . 007108 - . 005378 84. 379 
pier . 000764 . 000071 1 0 . 69 0 . 000 . 000624 . 000904 103.42 

private . 00487 . 000452 1 0 . 77 0 . 000 . 003983 . 005756 55.257 

Pr(choice = pier l 1  selected) = . 06584968 

variable dp/dx Std.  Err. z P> l z l  95/. c .  I .  X 

p 
beach . 000087 . 000016 5 . 42 0 . 000 . 000055 .000118 103 .42 

charter . 000764 .000071 1 0 . 69 0 .  000 . 000624 . 000904 84 .379 
pier - .  00154 5 . 000138 - 1 1 . 16 0 . 000 - . 001816 - . 001274 103.42 

private .000694 .000066 10 .58  0 . 000 . 000565 . 000822 5 5 . 257 

Pr(choice private r1 selected) = .41959373 

variable dp/dx Std. Err. z P> l z l  95Y. c .  I .  X 

p 
beach . 000553 . 000056 9 . 88 0 . 000 . 000443 . 000663 103.42 

charter . 00487 .000452 10 .77 0 .000  . 003983 . 005756 84 .379 
pier . 000694 . 000066 10 .58  0 . 000 .000565 .000822 103 .42 

private - . 006117 . 000444 -13 .77 0 .000  - .  006987 - . 005246 55 . 257 

There are 16 MEs in all, corresponding to probabilities of four alternatives times prices 
for each of the four alternatives. All own-effects are negative and all cross-effects are 
positive, as explained in section 15 .. 5 .6 .  The header for the first section of mfx output 
gives p11  = Pr( choice = beach lone choice is selected) = 0 .0525. Using (15.8) and the 
estimated coefficient of -0.02.51, we can estimate the own-effect as 0.0525 x 0.9475 x 
( -0.02.51) = -0.001249, which is the first ME given in the output. This means that a 
$1 increase in the price of beach fishing decreases the probability of beach fishing by 
0.001249, for a fictional observation with p, q, and income set to sample mean values. 
The second value of 0.000609 means that a $1 1ncrease in the price of charter boat 
fishing increases beach fishing probability by 0.000609, and so on. 
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The AME cannot be computed with the user-written margeff command, because 
this command does not apply to ascl ogi t. Instead, we can compute AME manually, as 
in section 10.6.9. We do so for a change of beach price only. We obtain 

* Alternative-specific example :  AME of beach price change computed manually 
preserve 

quietly summarize p 
generate delta � r (sd)/1000 
quietly replace p � p + delta if fisbmode �� "beach" 
predict pncw , pr 
generate dpdbeach � (pnew - pasclogit)/delta 

tabulate fishmode , summarize(dpdbeach) 

fisbmode 

beach 
charter 

pier 
private 

Total 

restore 

· Summary of dpdbeach 
Mean Std. Dev. Freq. 

-. 00210891 
. 00064641 
. 00090712 
. 00055537 

-9 .  295e-10 

.00195279 

. 00050529 
.00154869 
. 00047725 

.00178105 

1182 
1 182 
1 182 
1182 

4728 

Only one variable is generated, but this gives four AMEs corresponding to each of the 
alternatives, similar to the earlier discussion of predicted probabilities. As expected, in­
creasing the price of beach fishing decreases the probability of beach fishing aml increases 
the probability of using any of the other modes of fishing. The AME values compare 
with ME!'.'! values of, respectively, -0.001249, 0.000609, 0.000087, and 0 .00055:3, so the 
ME estimates differ substantially for the probability of beach fishing and the probability 
of pier fishing. 

15.6 Nested iogit model 
The MNL and CL models are the most commonly used multinomial models, especially 
in other branches of applied statistics. However, in microeconometrics applications that 
involve individual choice, the models are viewed as placing restrictions on individual 
decision-making that are unrealistic, as explained below. 

The simplest generalization is a nested logit (NL) model. Two variants of the NL 
model are used. The preferred variant is one based on the ARUM. This is the model 
we present and is the default model for Stata 10. A second variant was used by most 
packages in the past, including Stata 9. Both variants have MNL and CL as special 
cases, and both ensure that multinomial probabilities lie between 0 and 1 and sum to 
1 .  But the variant based on ARUM is preferred because it is consistent with utility 
maximization. 
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15.6.1 Relaxing the independence of irrelevant a lternatives assumption 

The MNL and CL models impose the restriction that the choice between a.ny two pairs 
of alternatives is simply a binary logit model; see ( 15 .6) .  This assumption, called 
the independence of irrelevant alternatives (IIA) assumption, can be too restrictive, as 
illustrated by the ''red bus/blue bus" problem. Suppose commute-mode alternatives 
are car, blue bus, or red bus. The riA assumption is that the probability of commuting 
by car, given commute by either car or red bus, is independent of whether commuting 
by blue bus is an option. But the introduction of a blue bus, same as a red bus in every 
aspect except color, should have little impact on car use and should halve use of red 
bus, leading to an increase in the conditional probability of car use given commute by 
car or red bus. 

This lirpitation has led to alternative richer models for unordered choice based on 
the ARUM introduced in section 15.2 .4 .  The MNL and CL models can be shown to arise 
from the ARUM if the errors, Eij, in (15.3) are independent and identically distributed as 
type I extreme value. Instead, in the red bus/blue bus example, we expect the blue bus 
error, t:;z, to be highly correlated with the red bus error, t"i3, because if we overpredict 
the red bus utility given the regressors, then we will also overpredict the blue bus utility. 

More general multinomial models, presented in this and subsequent sections, allow 
for correlated errors. The NL is the most tractable of these models. 

15.6.2 Nl model 

The NL model requires that a nesting structure be specified that splits the alternatives 
into groups, where errors in the ARUM are correlated within group but are uncorrelated 
across gToups. We spec_ify a two-level NL model, though additional levels of nesting 
can be accommodated, and assume a fundamental distinction between shore and boat 
fishing. The tree is 

/ 
Beach 

Shore 

Mode 
/ 

"\.. 
Pier 

Boat 
/ '\ 

Charter Private 

The shore/boat contrast is called Ievel l (or a limb), and the next level is called level 2 
(or a branch) .  The tree can be viewed as a decision tree-first decide whether to fish 
from shore or boat, and then decide between beach and pier (if shore) or between charter 
and private (if boat ) .  But this interpretation of the tree is not necessary. The key is 
that the NL model permits correlation of errors within each of the level-2 groupings. 
Here (c:.;,beac l1 1 C:i,pier) are a bivariate correlated pair, (c:;.priv::•t.e , t:.;.ch"rtcr-1 are a bivariate 
correlated. pair, and the two pairs are independent . The CL model is the special case 
where all errors are independent. 
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More generally, denote alternatives by subscripts (J", k) ,  where J. denotes the limb 
(level 1 )  and k denotes the branch (level 2) within the limb, and different limbs can 
have different numbers of branches, including just one branch. For example, (2, 3) 
denotes the third alternative in the second limb. The two-level random utility is defined 
to be 

Ujk + E:jk = zja + xjk/3j + E:jk• J. = 1 ,  . . .  , J, k = 1, . . . , Kj 
where Zj varies over limbs only and Xjk varies over both limbs and branches. For 
ease of exposition, we have suppressed the individual subscript i, and we consider only 
alternative-specific regressors. (If all reg1·essors are instead case specific, then we have 
z'cxi + x' {3ik + Ejk with one of the f3fk. = 0.) The NL model assumes that (c jl , . . . , E:JK )  
are distributed as Gumbel's multivariate extreme-value distribution. Then the proba­
bility that alternative (J", k) is chosen equals 

where Ij = ln { ��1 exp(xj1f3j /rJ) } is called the inclusive value or the log sum. The NL 

probabilitie::; are the product of probabilities p, and PkiJ that are essentially of CL form. 
The model produces positive probabilities that sum to one for any value of rJ , called 
dissimilarity parameters. K1t the ARUM restricts 0 :::; rJ :::; 1 ,  and values outside this 
range mean the model, while mathematically con·ect, is inconsistent with random-utility 
theory. 

15.6.3 The nlogit command 

The Stata commands for NL have complicated syntax that we briefly summarize. It  is 
simplest to look at the specific application in this section, and see [R] nlogit for further 
details. 

The first step is to specify the tree structure. The nlogitgen command has the 
synta'< 

nlogitgen newaltvar = altvar ( branchlist) [ ,  nolog ] 

The altvar variable is the original variable defining the possible alternatives, and newalt­
var is a created variable necessary for nlogi t to know what nesting structure should 
be used. Here branchlist is 

branch, branch [ ,  branch . . . ] 

and branch is 

[ label : ] alternative [ I alternative [ I alternative . . . J J 
There must be at least two branches, and each branch has one or more alternatives. 
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The nesting structure can be displayed by using the nlogi ttree command with the 
syntax 

nlogi ttree altvarlist ( if ]  [ in·] [ weight ] [ , options ] 

A useful option is choice ( depvar ) ,  which lists sample frequencies for each alternative. 

Estimation of model parameters uses the nlogi t command with the syntax 

nlogi t depvar [ indepvars ] [ if ]  [ in ]  [ weight ] [ I I levJ_equation [ I I 
lev2_equation . . .  ] ]  I I altvar : [ byaltvarlist ] case ( varna me) , [ options ] 

where indepvars are the alternative-specific regressors and case-specific regressors are 
introduced in lev#-equation. The syntax of lev#_equation is 

altvar : [ byaltvarlist] [ , base ( # J lbl) es tconst ] 

case(  varna me) provides the identifi er for each case ( individual) . 

The NL commands use data in long form, as did asclogi t . 

15.6.4 Model estimates 

We first define the nesting structure by using the nlogi tgen command. Here we define 
a variable, type, that is called shore for the pier and beach alternatives and is called 
boat for the private and charter alternatives . 

. • Define the tree for nested logit 

. nlogi tgen type = hshmode (shore: pier I beach, boat: private I charter) 
new variable type is generated with 2 groups 
label list lb_type 
lb_type :  

1 .shore 
2 boat 

The tree can be checked by using the nlogi ttree command . We have 

. • Check the tree 

. nlogittree fishmode type, choice(d) 
tree structure specified for the nested logit model 

type N fishmode N k 

shore 2364 L beach 1182 134 
p�er 1182 178 

boat 2364 L charter 1182 452 
pnvate 1182 4 18 

total 4728 1182 

k = number of times alternative i s  chosen 
N = number of observations at each level 
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The tree is as desired, so we are now ready to estimate with nlogi t. First, list 
the dependent variable and the alternative-specific regressors. Then define the Ievel-l 
equation for type, which here includes no regressors. Finally, define the level-2 equations 
that here have the regressors income and an intercept. We use the notree option, which 
suppresses the tree, because it was already output with the nlogi ttree command. We 
have 

* Nested logit model estimate 
nlogit d p q I I type : , base( shore) I I fishmode: income, case(id) notree nolog 

RUM-consistent nested logit regression 
Case variab le: id 
Alternative variable:  fishmode 

Log likelihood = -1192 . 4236 

Number of o bs 
Number of cases 
Alts per case: min � 

avg = 

max = 

Wald chi2(5) 
Prob > chi2 

4728 
1182 

4 
4 . 0  

4 

212.37 
0 . 0000 

d Coef . Std. Err . z P> l z l  [95/. Conf . Interval] 

f ishmode 
p 
q 

- . 0267625 . 0018937 -14 . 13  0 . 000 
1 . 340079 .3080329 4 . 35 0 . 000 

fishmode equations 

beach 
income 

_cons 

charter 
income 

_cons 

pier 
income 

_cons 

private 
income 

_cons 

(base) 
(base) 

-8. 40284 78. 32628 
6 9 . 96842 558. 5884 

- 9 .458698 80 . 27003 
58. 94553 500.5019 

- 1 . 634765 8 . 582879 
37 .51997 230. 7218 

dissimilarity parameters 

type 
/shore_ tau 

/boat_ tau 
83 . 467 7 1 8 . 1 173 

52. 56396 542. 6541 

- 0 . 1 1  0 . 915 
0 . 13 0 . 900 

- 0 . 1 2  0 . 906 
0 . 12 0 . 906 

-0 . 19  0 .  849 
0 . 16 0 . 87 1  

- . 030474 
. 7363451 

-161 . 9195 
-1024. 845 

-166 .7851 
-922.0203 

- 1 8.4569 
-414. 6864 

-1324 .017  
-1011 .018  

- .  023051 
1 .  943812 

14 5. 1139 
1164.782 

147. 8677 
1039 . 91 1  

15 . 18737 
4 89.7263 

149 0 . 951 
1 1 1 6 . 14 6  

LR test f o r  I I A  (tau = 1 ) : chi2(2) = 4 5.43 Prob > chi2 = 0 .  0000 

The coefficient of variable p is little changed compared with the CL model, but the other 
coefficients changed considerably. 

The NL model reduces to the CL model if the two dissimilarity parameters are both 
equal to 1. The bottom of the output includes a LR test statistic of this restriction that 
leads to strong rejection of CL in favor of NL. However, the dissimilarity parameters are 
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much greater than 1. This is not an unusual finding for NL models; it means that while 
the model is mathematically correct, with probabilities between 0 and 1 that add up to 
1 ,  the fitted model is not consistent with the ARUM. 

15.6.5 Predicted probabilities 

The predict command with the pr option provides predicted probabilities for level 1 ,  
level 2 ,  and so on. Here there are two levels. The first-level probabilities are for shore 
or boat. The second-level probabilities are for each of the four alternatives. We have 

• Predict level 1 and level 2 probabilities from NL model 
predict plevel1 p level2, pr 
tabulate fishmode, summarize (plevel2) 

Summary of Pr(fishmode 
alternatives) 

fishmode Mean Std. Dev.  Freq . 

beach . 11323509 . 13335983 1182 
charter . 38070853 . 1572426 1182 

pier . 15072742 . 16982072 1182 
private .35532896 . 16444529 1182 

Total .25 . 19690071 4728 

The average predicted probabilities for NL no longer equal the sample probabilities, but 
they are quite close. The variation in the predicted probabilities, as measured by the 
standard deviation, is essentially the same as that for the CL model predictions, given 
in section 15.5. 7. 

15.6.6 MEs 

Neither the mfx command nor the user-written margeff command is available after 
nlogit. 

Instead, we compute the AMEs manually, similar to section 15.5 .8 for the CL model. 
We obtain 

• AME of beach price change computed manually 
preserve 
quietly summarize p 
generate delta = r(sd)/1000 

quietly replace p = p + delta if fishmode == "beach" 
predict pneY1 pneY2 , pr 
generate dpdbeach = (pneY2 - pleval2)/delta 



502 

tabulate fishmode , summarize (dpdbeach) 

fishmode 

beach 
charter 

pier 
private 

Total 
restore 

Summary of dpdbeach 
Mean Std. Dev. Freq. 

- . 00053325 .0 0047922 
. 00063589 . 00054939 

- . 00065945 . 00057602 
. 0005568 .00051133 

-2. 003e-09 . 00079968 

1182 
1182 
1182 
1182 

4728 

Chapter 15 Multinomial models 

Compared with the CL model, there is little change in the ME of beach price change on 
the probability of charter and private boat fishing. But now, surprisingly, the probability 
of pier fishing falls in addition to the probability of beach fishing. 

15.6.  7 Comparison of logit models 

The following table summarizes key output from fitting the preceding MNL, CL, and NL 
models. vVe have 

* Summary statistics for the legit models 
estimates table MNL CL NL, keep(p q) stats(N 11 aic bic) equation(1) b ( %7 .30 

> stfmt (%7  .Of )  

Variable MNL 

p 
q 

N 1182 
11 -1477 

aic 2966 
bic 2997 

CL 

-0 . 025 
0 . 358 

4728 
-1215 
2446 
2498 

NL 

-0 . 027 
1 . 340 

4728 
-1192 
2405 
2469 

The information criteria, AIC and BIC, are presented in section 10.7 .2; lower values are 
preferred. MNL is least preferred, and NL is most preferred. 

In this example, the three multinomial models are actually nested, so we can choose 
between them by using LR tests. From the discussion of the CL and NL models, NL is 
again preferred to CL, which in turn is preferred to MNL. 

All three models use the same amount of data. The CL and NL model entries have 
an N that is four times that for MNL because they use data in long form, leading to 
four "observations" per individual. 
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15.7 Multinomial probit model 
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The multinomial probit (MNP) model, like the NL model, allows relaxation of the IIA 
assumption. It has the advantage of allowing a much more flexible pattern of error 
correlation and does not require the specification of a misting structure. 

15.7.1 M N P  

The MNP is obtained from the ARUM of section 15.2 .4 by assuming normally distributed 
errors. 

For the ARUM, the utility of alternative j is 

U;j = x';i3 + Z�"Yj + c:ij 
where the errors are assmned to be normally distributed, with c: � N(O, I:) where 
c = (c;t , .  · ·  , C:;m ) · 

Then from (15 .4) ,  the probability that alternative j is chosen equals 

Pij = Pr(y; = j) = Pr{ C:ik - C:ij :::; (x;j - X;k) ' (3 + z';b j - "Y d }, for all k (1 5.9) 

This i s  an (m - I)-dimensional integral for which there i s  no closed-form solution and 
computation is difficult . This problem did not arise for the preceding logit models 
because for those models the distribution of e is such that (15.9) has a closed-form 
solution. 

When there are few alternatives, say three or four, or when :E = a2I,  quadrature 
methods can be used to numerically compute the integraL Otherwise, maximum simu­
lated likelihood, discuss�d below, is used. 

Regardless of the method used, not all (m + 1 )m/2 distinct entries in the error 
variance matrix, :E, are identified. From (15 .9) ,  the model is defined for m - 1 error 
differences (c:;k - C:;j) with an (m - 1)  x (m - 1 )  variance matrix that has m(m - 1)/2 
unique terms. Because a variance term also needs to be normalized, there are only 
{ m( m - 1) /2} - 1 unique terms in :E .  In practice, further restrictions are often placed on 
:E, because otherwise :E is imprecisely estimated, which can lead to imprecise estimation 
of (3 and -y. 

15.7.2 The mprobit command 

The mprobi t command is the analog-ue of mlogi t. It applies to models with only case­
specifi c regressors and assumes that the alternative errors are independent standard 
normal so that :E = I. Here the (m - 1)7dimensional integral in (15.9) can be  shown 
to reduce to a one-dimensional integral that can·be approximated by using quadrature 
methods. 

There is little reason to use the mprobi t command because the model is qualitatively 
similar to MNL; mprobi t assumes that alternative-specifi.c errors in the ARUM are un-
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correlated, but it is much more computationally burdensome. The synta..""< for mprobi t 
is similar to that for mlogi t. For a regression with the alternative-invariant regressor 
income, the command is 

• Multinomial probit Yith independent errors and alternative-invariant regressors 
mprobit mode income, baseoutcome ( l )  

(output omitted) 

The output is qualitatively similar to that from mlogi t, though parameters estimates 
are scaled di..'ferently, as in the binary model case. The fitted log likelihood is - 1 , 477.8, 
very close to the -1 ,477.2 for MNL (see section 15.4.2) .  

15_7_3 Maximum simulated likelihood 

The multinomial log likelihood is given in (15.2) ,  where Pti = FJ (Xi ,  0) and the para!'n­
eters () are {3, ')'1 ,  . . .  , '"Ym (with one '"Y normalized to zero), and any unspecified entries 
in � -

Because there is  no closed-form solution for Fj (Xi, 0) in  ( 1 5 .9 ) ,  the log likelihood is 
approximated by a simulator, FJ (X;, ()), that is based on S draws. A simple example is 
a frequency simulator that, given the current estimate e ,  takes S draws of £.; � N(OJ-I;) 
and lets Fj (xi ,  e) be the proportion of the s draws for which Ei/,o - C:ij ::; (xi.j - X;k)1 (3 + z;,(�1 -�k) for all k. This simulator is inadequate, however, because it is very noisy for 
low-probability events, and for the MNP model, the frequency simulator is nonsmooth in 
(3 and 1 1 ,  . . . , '"Ym so that very small changes in these parameters may lead to no change 
in Fj (X,:, e ) .  Instead, the Geweke-Hajivassiliou-Keane (GHK) simulator-described, 
for example, in Train (2003)-is used. 

The maximum simulated likelihood (MSL) estimator ma-ximizes 

N m 
ln L(O) = I: L Y;J ln Fj (x, , e) ( 15 . 10)  

1.= 1 j=1 

The usual ML asymptotic theory applies, provided that both S -1- oo and N -+ oo ,  and 
JN / S -1- 0 so that the number of simulations increases at a rate faster than ffi. Even 
though default standard errors are fine for a multinomial model, robust standard errors 
are numerically better when MSL is used. 

The MSL estimator can, in principal, be applied to any estimation problem that 
entails an unknown integral. Some general results are the following: Smooth simula­
tors should be used. Even then, some simulators are much better than others, but 
this is model specific. When random draws are used, they should be based on the 
same underlying uniform seed at each iteration, because otherwise the gradient method 
may fail to converge simply because of different random draws (called chatter) .  The 
number of simulations may be greatly reduced for a given level of accuracy by using 
antithetic draws, rather than independent draws, and by using quasirandom-number se­
quences such as Halton sequences rather than pseudorandom-aniform draws to generate 
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uniform numbers. The benefits of using Halton and Hammersley rather than uniform 
draws is exposited in Drukker and Gates (2006). And to reduce the computational 
burden of gradient methods, it is best to at least use analytical first derivatives. For 
more explanation, see, for example, Train (2003) or Cameron and Trivedi (2005). The 
asmprobi t command incorporates all these considerations to obtain the MSL estimator 
for the MNP model. 

15.7 .4  The asmprobit command 

Th·e asmprobi t command requires data to be in long form, like the asclogi t command, 
and it has similar syntax: 

asmprobi t depvar [ indepvars ] . [ if ]  [ in J [ weight ] , case (varna me) 
alternatives( vamame) [ options J 

Estimation takes a long time because estimation is by MSL. 

Several of the command's options are used to specify the error variance matrix :E. 
As already noted, at most {m(m - 1 )/2}  - 1 unique terms in :E are identified. The 
default identification method is to drop the row and cohmm of :E corresponding to the 
fi.rst alternative (except that :En is normalized to 1) and to set :E22 = 1 .  These defaults 
can be changed by using the baseal ternati ve()  and scaleal ternati ve 0 options. 
The correlation()  and stddev ()  options are used to place further structnr� em th� 
remaining off-diagonal and diagonal entries of :E. The correlation (unstructured) 
option places no structure, the correla tion(exchangeable) option imposes equicor­
relation, the correlation( independent ) option sets :Ejk = 0 for all j =? k ,  and 
the correla tion(pattern) and correlation(f ixed) options allow manual specifi­
cation of the structure._ The stddev(homoskedastic) option imposes L,jj = 1, the 
stddev(heteroskedastic) option allows :Eh # 1, and the stddev(pattern) and 
stddev (fixed) options allow manual specification of any structure. 

Other options allow V'dl'iations in the MSL computations. The intpoints CS)  op­
tion sets the numher of draws S ,  where the default of S is 50m or lOOm depend­
ing on intmethod( ) .  The intmetho d()  option specifi es whether the uniform num­
bers are from pseudorandom draws (intmethod(random) ) ,  are from a Halton sequence 
( intmethod (hal ton) ) ,  or are from a Hammersley sequence ( intmethod(hammersley) ) ,  
which is the default. The anti thetics option specifies antithetic draws to be used. The 
in tseed 0 option sets the random-number-generator seed if uniform random draws are 
used. 

15. 7.5 Application of the asmpmbit command 

For simplicity, we restricted attention to a choice between three alternatives: fishing 
from a pier, private boat, or charter boat. The most general model with unstructured 
correlation and heteroskedastic errors is used. "\Ve use the structural option because 
then the variance parameter estimates are reported for the m x m error variance matrix 
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:E rather than the (m - 1) x (m - 1) variance matrix of the difference in errors. We 
have 

* Multinomial probit yuth unstructured e!Tors Yhen charter is dropped 
use mus15da talong.d ta, clear 

drop if fisbmode=="chart:er" I mode == 4 
(2533 observations deleted) 

. asmprobit d p q, ca se(id) alternatives(fishmode) casevars( income) 
> correlation(unstructured) structural vce (robust) 
not e :  variable p has 106 cases that are not alternative-specific :  there is no 

Yithin-case variability 

Iteration 0 :  log simulated-pseudolikelihood -493 . 8207 
Iteration 1 :  log simulated-pseudolikelihood = -483.41654 (backed up) 
Iteration 2 :  log s�mulated-pseudolikelihood -482. 98783 (backed up) 
Iteration 3 :  log simulated-pseudolikelihood -482 .9415 (backed up) 
Iteration 4 :  log simulated-pseudolikelihood -482 .67112 
Iteration 5 :  log simulated-pseudolikelihood -482 . 51402 
Iteration 6 :  log simulated-pseudolikelihood = -482.44493 
Iteration 7 :  log simulated-pseudolikelihood -482. 39599 
Iteration 8 :  log simulated-pseudolikelihood -482.37574 
Iteration 9 :  log simulated-pseudolikelihood -482 . 35251 
Iteration 10 :  log simulated-pseudolikelihood -482. 30752 
Iteration 1 1 :  log simulated-pseudolikelihood -482. 30473 
Iteration 12 :  log simulated-pseudolikelihood -482.30184 
Iteration 13: log simulated-pseudolikelihood -482 . 30137 
Iteration 14 :  log simulated-pseudolikelihood -482.30128 
Iteration 15 :  log simulated-pseudolikelihood -482 . 30128 

Reparamctnrizing to correlation metric and refining estimates 

Iteration 0 :  log simulated-pseudolikelihood 
Iteration 1 :  log simulated-pseudolikelihood 

Alternative-specific multinomial probit 
Case variable : id 
Alternative variable: fisbmode 

Integration sequence :  
Integration points :  
Log simulated-pseudolikelihood 

Hammersley 
150 

-482 . 30128 

= -482.30128 
= -482 . 30128 

Number of obs 
Number of cases 
Al ts per case :  min = 

avg 
max 

Wald chi2(4) 
Prob > chi2 

2190 
730 

3 
3 . 0  

3 

12 .97  
0 . 0114 

(Std.  Err. adjusted for clustering on id) 

Robust 
d Coef . Std. Err. z P> l z l  [95% Conf . Interval] 

fishmode 
p - .0233627 . 0 114346 -2.04 0.041 - .0457741 - . 0009513 
q 1 . 399925 . 5395423 2 . 59 0 . 009 . 3424418 2 . 457409 

beach (base alternative) 

pier 
income - . 097985 .0413117 -2. 37 0 . 01 8  - .  1789543 - . 0 170156 

_cons . 7549123 . 2013551 3 .  75  0 . 000 .3602636 1 . 149561 

private 
income . 0413866 .0739083 0 .  56 0 . 575 - . 103471 . 1862443 

_cons . 6602584 . 2766473 2 . 39 0 . 017 . 1 180397 1 .  202477 



15 .7.6 Predicted probabilities and MEs 

/lnsigma3 . 4051391 .5009809 0 . 81 

/atanhr3_2 . 1757361 . 2337267 0 .  75 

. sigma1 1 (base alternative) 
sigma2 1 (scale alternative) 
sigma3 1 .  499511 . 7512264 

rho3_2 . 173949 .2266545 

0 . 419 

0 . 452 

(fishmode�beach is the alternative normalizing location) 
(fishmode�pier is the alternative normalizing scale) 

- . 5767654 1 . 387044 

- . 2823598 . 6338319 

. 5617123 4 . 002998 

- . 2750878 . 5606852 

As expected, utility is decreasing in price and increasing in quality (catch rate). 
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The base mode was automatically set to the first alternative, beach, so that the first 
row and column of L: are set to 0, except I;u = 1 .  One additional variance restriction 
is needed, and here that is on the error variance of the second alternative, pier, with 
�22 = 1 (the alternative normalizing scale). With m = 3, there are (3 x 2)/2�  1 = 2 free 
entries in I:: one error variance parameter, L:33, and one correlation, p32 = Cor( E;3, £;3 ) .  
The sigma3 output is �, and the rho3_2 output is p32 . 

The estat covariance and estat correlation commands list the complete esti­
mated variance matrix, �, and the associated correlation matri..'<. vVe have 

• ShoY correlationz and covariance 
. estat correlation 

beach pier 

beach 1 . 0000 
pier 0 . 0000 1 . 0000 

private 0 . 0000 0 . 1739 

. estat covariance 

beach pier 

baach 1 
pier 0 1 

private 0 .2608385 

private 

1 .  0000 

private 

2 . 248533 

If instead the parameters of the model are estimated without the structural option, 
the same parameter. estimates are obtained, aside from estimation error, but the covari­
ances and correlation are given for the variance matrix of the bivariate distribution of 
c;2 - C';l and E:i.3 - c: n .  

15.7.6 Predicted probabilities and MEs 

The postestimation predict command with the default pr option predicts p , j ,  and MEs 
evaluated at the mean or at a representative value are obtained by using the estat mfx 
command. The commands are similar to those after asclogi t; see sections 15.5.7 and 
15.5.8. 
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15.8 Random-parameters logit 

The random-parameters log,it, or mixed logit model, rela..'Ces the ::rA assumption by allow­
ing parameters in  the OL model to be normally distributed or log,normally distributed. 
Here we estimate the parameters of the models by using individual-level data. Quite 
different estimation procedures are used if the data are grouped, such as market share 
data; see Berry ( 1994) .  

15 .8 .1  Random-parameters logit 

The random-parameters logit (RPL) model, or mixed logit model, is obtained from 
the ARUM of section 15 .2 .4 by assuming that the errors c;j are type II extreme-value 
distributed, like for the OL model, and the parameters {3 and 11, j = 2, . . .  , m, are 
normally distributed. Then the utility of alternative j is 

where {3; = {3 + v; ,  vi �  N(O, I:,B) and /ji = "Yj + Wj; ,  vi �  N(O, I: .. YJ ) .  The combined 
error (:<j v; + z;w ji + c.,j) is now correlated across alternatives, whereas the errors €;j 
alone were not. 

Then conditional on the unobservables V; and Wj;, we have a OL model with 

j = 1, . . . , m  

The MLE is based on Pij , which also requires integrating out v; and wdi '  a high­
dimensional integral. 

The MSL estimator instead maximizes ( 15 .10) ,  where Fj (X;, e) is a simulator for Pij · 

Here the frequency simulator that makes many draws of v; and the w ji from the normal 
given current estimates of 2:!3 and 2:71 is a smooth simulator. 

15.8 .2 The mixlogit command 

The user-written mixlogi t command (Hole 2007) computes the MSL estimator. The 
synta..x is 

mixlogit depva-r [ indepva-rs ] [ if ]  [ in]  [ weight ] , group (vamame) 
rand( va-rlist) [ options ] 

which is similar to that for clogi t, with group () used to identify each case or individual. 
Regressors with random coefficients are listed in rand ( ) , and regressors with nonrandom 
coefficients are listed as indepva-rs. 
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The ln(#) option permits the last # variables in rand() to be lognormally dis­
tributed rather than normally distributed. The corr option permits parameters to be 
correlated; the default is  that they are not. The estimator uses the Halton sequence 
with 50 draws after dropping the first 15 draws. The nrep (#)  and burn ( # )  options 
change these defaults, and published results should use·many more than 50 draws. 

15.8.3 Data preparation for mixlogit 

The mixlogi t command is similar to clogi t. Unlike asclogi t and asmprobi t, there 
is no option for case-specific regressors. 

Instead, we need to manually create regressors for the intercepts and income. For 
case-speci�c regressors, a normalization is needed. We set I' pier =  0 and construct three 
intercepts and interactions with income. We have 

• Data set up to include case-invariant regressors 
use mus15datalong . dta, clear 
generate dbeach � fishmode��"pier" 
generate dprivate � f icllmode== "private"  

generate dcharter = fishmode==" charter " 

generate ybeach = dbeach•income 

generate yprivate = dprivate•income 
generate ycharter = dcharter•income 

We next use mixlogi t. If instead we used clogi t with the same dependent vari­
ables and regressors, then the results would be the same as those from asclogi t in 
section 15.5 .4 .  

15.8.4 Application of the mixlogit command 

We estimate the same three-choice model as that used in section 15.7.5 for the MNP 
model, with charter fishing dropped. 

The parameters for p are specified to be random, using the rand 0 option. All 
other parameters are specified to be fixed and appear as indepvars,  though we could, 
for instance, specifY the parameters of the three income variables to also be random. 
We have 

(Continued on next page) 
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. * Mixed legit or rando� parameters legit estimation 

. drop if fisbmode�=" charter " I mode c� 4 
(2538 observations deleted) 
. mixlogit d q dbeach dprivate ybeach yprivate , group (id) rand(p) 

Iteration 0 :  log likelihood = -602 . 33584 (not concave) 
Iteration 1 :  log likelihood = -447 .46013 
Iteration 2: log likelihood � -43 5 . 29806 
Iteration 3 :  log likelihood = -434.56105 
Iteration 4 :  log likelihood = -434. 52856 
Iteration 5 :  log  likel�hood = -434. 52844 
Iteration 6 :  log likelihood = -434. 52844 

Mixed legit model 

Log likelihood = -434. 52844 

d Coef. Std. Err. 

Mean 

z 

q . 7840088 . 9 147869 0 . 8 6  
dbcach . 7742955 . 224233 3 .45  

dprivate . 5617395 .3158082 1 .  78 
ybeach - . 1 199613 . 0492249 -2.44 

yprivate . 0518098 . 0721527 0 . 72 
p - . 1069866 . 0274475 -3 .90 

SD 
p .0598364 .0191597 3 . 12 

Number of obs 
LR chi2 (1 )  
Prob > chi2 

P> l z l  [95% Conf . 

0 . 39 1  - 1 . 008941 
0 . 00 1  .3348069 
0 . 075 - . 0572331 
0 . 015 - . 2 1 64404 
0 . 473 -. 0896068 
0 . 000 - . 1 607827 

0 . 002 . 0 22284 

2190 
64 .57 

0 . 0000 

Interval) 

2 . 576958 
1 . 213784 
1 . 180712 

- . 0234822 
. 1932265 

- . 0531904 

.0 973888 

There is considerable variation across individuals in the effect of price. The random 
coefficients have a mean of -0.107 and a standard deviation of 0.060, both statistically 
significant at the 0.05 level. The random-parameters logit model has a log likelihood of 
-435, substantially higher than the -467 for the CL model. The results of the CL model 
are not shown but can be obtained by using either the asclogi t or clogi t command. 
The random-parameters model is preferred. 

If we want to constrain the effect to be negative, then we should define a variable, 
negp, equal to the negative of variable p and use ln(.1) for lognormal. The subsequent 
results are for the mean and standard deviation of In f3ncgp rather than f3ncgp or (3p . 

These can be converted by using the result that if ln(3 � N(p, ,  a2 ) ,  then (3 � { e�>+0'2 12, 
e2�>+0'2 (e0', - 1 ) } .  

15 .9  Ordered outcome models 

In some cases, categorical data are naturally ordered. An example i s  health status that 
is self-assessed as poor, fair, good, or excellent. The two standard models for such data 
are the ordered logit and ordered probit models. 
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15 .9 .1  Data summary 

We use data from the Rand Health Insurance Experiment, described in greater detail 
in section 18.3. vVe use one year of this panel, so the data are cross-section data. 

The ordered outcome we consider is health status that is, respectively, poor or fair 
(y = 1 ) ,  good (Y = 2) ,  or excellent (y = 3) . This variable needs to be constructed 
from several bin�y outcomes for each of the health statuses. The categories poor and 
fair are combined because only 1 .5% of the sample report poor health. The data are 
constructed as follows: 

* Create multinomial ordered outcome variables takes values y = 1 ,  2, 3 
use mus18data . dta,  clear 
quietly keep if year==2 
generate hlthpf = hlthp + hlthf 
generate hlthe = (1 - hlthpf - hlthg) 

quietly generate hlthstat = 1 if hlthpf 
quietly replace hlthstat = 2 if hlthg == 
quietly replace hlthstat = 3 if hlthe == 1 
label variable hlthstat "health status" 

label define hsvaluo 1 poor_or_fair 2 good 3 excellent 
label values hlthstat hsvalue 
tabulate hlthstat 

health 
status Freq. Percent Cum. 

poor_or_fair 523 9 . 38 9 . 38 
good 2 , 034 36 . 49 45.87 

excellent 3 ,017  5 4 . 1 3  100 .00  

Total 5 , 574 100.00 

Health status is  poor or fair for roughly 10% of  the sample, good for 35%, and excellent 
for 5.5%. 

The regressors considered are age in years (age), log annual family income (line), 
and number of chronic diseases (ndisease) .  Summary statistics are 

* Summarize dependent and explanatory variables 
summarize hlthstat age line ndisease 

Variable Obs Mean Std. Dev .  Min Max 

hlthstat 5574 2 . 447435 . 659524 1 3 
age 5574 25. 57613 16.73011 . 0253251 63.27515 

line 5574 8 . 696929 1 . 220592 0 10 . 28324 
ndisease 5574 1 1 . 20526 6 . 788959 0 5 8 . 6  

The sample i s  of  children and adults but not the elderly. 
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15.9 .2 Ordered outcomes 

The ordered outcomes are modeled to arise sequentially as a latent variable, y•, crosses 
progressively higher thresholds. In the current example, y• is an unobserved measure 
of healthiness. For individual i, we specify 

where a normalization is that the regressors x do not include an intercept. For very 
low y• , health status is poor; for y• > a1 , health status improves to fair; for y* > a2 , 
it improves further to good; and so on if there were additional categories. 

For an m-alternative ordered model, we define 

y, = j if Cl!j- 1  < Yt :::; D!J,  j = 1, . . . , m 

where ao = -oa and am = oa. Then 

Pr(y, = j) = Pr(aj- 1  < Yi :S D!j) 
= Pr(a1_1  < x:f3 + ui :::; D!J) 
= Pr(Ci!j- 1 - x!J3 < U; :::; Cl!j - x:m 
= F(af - x�/3) - F(aJ-1 - x;{3) 

where F is the cumulative distribution function ( c.d.f .) of Ui. The regression parameters, 
{3', and the m - 1 threshold parameters, a 1 ,  . . . , Cl!m- 1 1  are obtained by maximizing the 
log likelihood with p;1 = Pr(y; = J.) as defined above. Stata excludes an intercept from 
the regressors. If instead an intercept is estimated, then only m- 2 threshold parameters 
are identified. 

For the ordered logit model, u is logistically distributed with F(z) = e" / ( 1  + e z ) .  
For the ordered probit model, u i s  standard normally distributed with F( · )  = .P( - ) ,  the 
standard normal c.d.f. . 

The sign of the regression parameters, {3, can be immediately interpreted as deter­
mining whether the latent variable, y* ,  increases with the regressor. If f3J is positive, 
then an increase in Xij necessarily decreases the probability of being in the lowest cat­
egory (y; = 1) and increases the probability of being in the highest category (y; = m ). 

15.9.3 Application of the ologit command 

The parameters oft he ordered logit model are estimated by using the ologit command, 
which has syntax essentially the same as mlogi t: 

ologi t depvar [ indepvars ]  [ if ]  [ in ]  [ weight ] [ ,  options ] 
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Application of this command yields 

. • Ordered legit estimates 

. ologit hlthstat age line ndiseas e ,  nolog 

Ordered logistic regression 

Log likelihood = -4 769.8525 

hlthstat Coef.  Std. Err. z 

age - . 0292944 . 001681 -17.43 
line . 2836537 . 0231097 12 .27 

ndisease - . 0549905 . 0040692 -13 .51  

/cut1 - 1 . 39598 .2061293 
/cut2 . 9513097 . 2054294 

Number of obs 
LR chi2(3) 
Prob > chi2 
Pseudo R2 

P> l z l  [95/. Conf . 

0 . 000 -. 0325891 
0 . 000 . 2383594 
0 . 000 - . 062966 

- 1 . 799986 
.5486755 

5574 
740.39 
0 . 0000 
0 . 0720 

Interval] 

- . 0259996 
.328948 

- . 047015 

- . 9919736 
1 . 353944 
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The latent health-status variable is increasing in income and decreasing with age and 
number of chronic diseases, as expected. The regressors are highly statistically signif­
icant. The threshold parameters appear to be statistically significantly different from 
each other, so the three categories should not be collapsed into two categories. 

15.9.4 Predicted probabilities 

Predicted probabilities for each of the three outcomes can be obtained by using the pr 
option. For comparison, we also compute the sample frequencies of each outcome. 

* Calculate predicted probability that y =1,  2 ,  or 3 for each person 
predict p1ologit p2ologit p3ologi t ,  pr 
summarize hlthpf ·hlthg hlthe p1ologit p2ologit p3ologi t, separa tor(O) 

Variable Obs Mean Std. Dev.  Min Max 

hlthpf 5574 . 0938285 .2916161 0 
hlthg 5574 . 3649085 .4814477 0 
hlthe 5574 . 541263 .4983392 0 1 

p1ologit 5574 . 0946903 . 0843148 . 0233629 . 859022 
p2ologit 5574 . 3651672 . 0946158 . 1255265 . 5276064 
p3ologit 5574 . 5401425 . 1640575 . 0154515 . 7999009 

The average predicted probabilities are within 0.01 of the sample frequencies for each 
outcome. 

15.9.5 M Es 

The ME on the probability of choosing alternative j when regressor Xr changes is given 
by �Pl���;= j) = {F'(aj-l - x�{3) - F'(ai - x;{3)},6r 

If one coefficient is twice as big as another, then so too is the size of the ME. 
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We use the mfx command to obtain the ME evaluated at the mean, for the third 
outcome (health status excellent) .  We obtain 

. • Marginal effect at mean for 3rd outcome (health status excellent) 

. mfx, predict(outcome(3) )  
Marginal effects after ologit 

y = Pr(hlthstat==3) (predict , outcome ( 3 ) )  
.53747616 

variable dy/dx Std. Err. z P> l z l  95/. C . I .  X 

age 
line 

ndisease 

- . 0072824 
. 070515 

- . 0 136704 

.00042 -17.43 0 . 000 - . 008101 - . 006463 25 . 5761 

. 00575 1 2 . 26 0 . 000 . 05924 . 08179 8 . 69693 

.00101 -13 .50 0 . 000 - . 015655 - . 011686 1 1 . 2053 

The probability of excellent health decreases as people age or have more diseases and 
increases as income increases. 

The user-written margeff command can be used to compute the AME, using synta..x 
similar to that after the mlogi t command. 

15.9.6 Other ordered models 

The parameters of the ordered probit model are estimated by using the oprobi t com­
mand. The command syntax and output are essentially the same as for ordered logit, 
except that coefficient estimates are scaled differently. Application to the data here 
yields t statistics and log likelihoods quite close to those from ordered logit. 

The user-written gologi t command (Williams 2006) estimates a generalization of 
the ordered logit model that allows the threshold parameters Ct1 , . . .  , �m- 1 to depend 
on regressors. 

An alternative model is the MNL modeL Although the MNL model has more pa­
rameters, the ordered logit model is not nested within the MNL. Estimator efficiency is 
another way of comparing the two approaches. An ordered estimator makes more as­
sumptions than an MNL estimator. If these additional assumptions are true, the ordered 
estimator is more efficient than the MNL estimator. 

15 . 10 Multivariate outcomes 

We consider the multinomial analog of the seemingly unrelated regression (SUR) model 
(see section 5.4) ,  where two or more categorical outcomes are being modeled. 

In the simplest case, outcomes do not directly depend on each other-there is no 
simultaneity, but the errors for the outcomes may be correlated. When the errors are 
correlated, a more-efficient estimator that models the joint distribution of the errors is 
available. 
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In more complicated cases, the outcomes depend directly on each other, so there is 
simultaneity. We do ncit cover this ca.se, but analysis is much simpler if the simultaneity 
is in continuous latent variables rather than discrete outcome variables. 

15.10.1 Bivariate probit 

The bivariate probit model considers two binary outcomes. The outcomes are poten­
tially related'after conditioning on regressors. The relatedness occurs via correlation of 
the errors that appear in the index-function model formulation of the binary outcome 
model. 

Specifically, the two outcomes are determined by two unobserved latent variables, 

y� = xllf31 + £j 
y� = x;f32 + €2 

where the errors c:1 and c:2 are jointly normally distributed with means of 0, variances 
of 1 ,  and correlations of p, and we observe the two binary outcomes 

Y1 = { � if yj > 0 
ifyi ::::: 0, 

if y2 > 0 
if Y2 :::; 0 

The model collapses to two separate probit models for y1 �nd Y2 if p = 0. 

There are four mutually exclusive outcomes that we can denote by Y10 (when Yl = 
1 and Y2 = 0), Yo1, YJ!, and Yoo. The log-likelihood function is derived using the 
expressions for these probabilities and the parameters are estimated by ML. There are 
two complications. First·, there is no analytical expression for the probabilities, because 
they depend on a one-dimensional integral with no closed-form solution, but this is 
easily solved with numerical quadrature methods for integration. Second, the resulting 
expressions for Pr(y1 = lJx) and Pr(y2 = lJx) differ from those for binary probit and 
pro bit . 

The simplest form of the bivariate command has the syntax 

biprobi t depvarl depvar2 [ varlist ] [ if ]  [ in ]  [ weight ] [ ,  options ] 

This version assumes that the same regressors are used for both outcomes. A 1nore 
general version allows the list of regressors to differ for the two outcomes. 

We consider two binary outcomes using the. same dataset as that for ordered out­
comes models analyzed in section 15.9. The first outcome is the hlthe variable, which 
takes on a value of 1 if self-assessed health is excellent and 0 otherwise. The second 
outcome is the dmdu variable, which equals 1 if t"he individual has visited the doctor in 
the past year and 0 otherwise. A data summary _is 
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• TYo binary dependent variabl es: hlthe and dmdu 
tabulate hlthe dmdu 

any MD visit = if 
mdu > 0 

hlthe 0 

0 826 1 ,731 
1 1 , 006 2 , 0 1 1  

Total 1 , 832 3, 742 

correlate hlthe dmdu 
(obs=5574) 

hlthe dmdu 

hlthe 1 . 0000 
dmdu -0.0110 1 . 0000 

Total 

2 , 557 
3 , 0 1 7  

5 , 574 

The outcomes are very weakly negatively correlated, so in this case, there may be little 
need to model the two jointly. 

Bivariate pro bit model estimation yields the following estimates: 

. * Bivariate probit estimates 

. biprobit hlthe dmdu age line ndisease, nolog 

Bivariate probit regression 

Log likelihood -6958.0751 

Coef . Std. Err. z 

hlthe 
age - . 0178246 . 0010827 -16 .46 

line . 1 32468 .0149632 8 . 85 
ndisease - . 0326656 . 0027589 -11 .84 

_cons - .  2297079 . 1334526 -1.72 

d.mdu 
age . 0020038 . 0010927 1 . 83 

line. . 1212519 . 0 142512 8 . 5 1  
ndisease .034 7111 . 0028908 1 2 . 0 1  

_cons - 1 . 032527 . 1290517 -8.00 

/athrho .0282258 . 022827 1 .  24 

rho . 0282183 . 0228088 

Likelihood-ratio test of rho=O: chi2 ( 1 )  = 

Number of obs 
Wald chi2(6) 
Prob > chi2 

P> l z l  [95% Conf. 

0 . 0 0 0  - . 0199466 
0 . 000 . 1031406 
0 . 000 - . 0380729 
0 . 085 - . 4912703 

0 .067 - . 0001379 
0 . 000 . 09332 
0 . 000 . 0290452 
0 . 000 - 1 . 285464 

0 .. 216 - .0165142 

- . 0165127 

1 . 5295 Prob > chi2 

5574 
770 , 0 0  
0 . 0000 

Interval] 

- . 0157025 
. 1 617953 

- . 0272583 
. 0318545 

. 0041455 
. 1491838 
.0403771 

- . 7795907 

.0729658 

. 0728366 

= 0 . 2162 

The hypothesis that p = 0 is not rejected, so in this case, bivariate probit was not 
necessary. As might be expected, separate probit estimation for each outcome (output 
not given) yields very similar coefficients to those given above. 
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Predicted probabilities can be obtained. For example, the marginal probability that 
y1 = 1 can be obtain.ed with the pmargl option, whereas the joint probability that 
(yr, yz) = (1 ,  1) is obtained with the pll  option. We obtain 

* Predicted probabilities 
predict biprob1 ,  pmarg1 

predict biprob2, pmarg2 

predict biprob11, p11 

predict biprob1 0 ,  p10 

predict biprob01 ,  p01 

predict biprobO O ,  pOO 

summarize hlthe dmdu biprob1 biprob2 biprob1 1  biprob10 biprob01 biprobOO 

Variable Obs Mean 

hlthe 5574 . 541263 
dmdu 5574 . 6713312 

biprob1 5574 .5414237 
biprob2 5574 .6716857 

biprob11 5574 .3610553 

biprob10 5574 . 1803685 
biprob01 5574 .3106305 
biprobOO 5574 . 1479458 

Std. Dev. Min Max 

. 4983392 0 

.4697715 0 

. 1577588 .0156161 .7853771 

.0976294 . 1589158 . 9834746 

. 0989285 . 0090629 . 5492701 

. 0765047 .0006476 .3680022 

. 1434517 . 1090853 .9385432 
.064902 . 0 158778 . 6909308 

The marginal probabilities that y1 = 1 and y2 = 1 are, respectively, 0.541 and 0.671, 
very close to the sample frequencies. 

15.10.2 Nonlinear SUR 

A n  alternative model is t o  use the nlsur connand for nonlinear SUR, where the condi­
tional mean of Y1 is <P(x�/31) and of Yz is <P(x;/32) .  This estimator does not control for 
the intrinsic heteroskedasticity of binary outcome data, so we use the vee (robust) op­
tion to obtain standard errors that control for both heteroskedasticity and correlation. 
We have 

* Nonlinear seemingly unrelated regressions estimator 
nlsur (hlthe = normal ({a1}*age+{a2}*1inc+{a3}*ndisease+{a4})) 

> (dmdu = normal({bl}*age+{b2}*linc+{b3}*ndisease+{b4}) ) ,  vce(robust) nolog 
(obs = 5574) 
Calculating NLS estimates . , .  
Calculating FGNLS estimates . . .  

FGNLS regression 

Equation Obs Farms RMSE 

2 
hlthe 

dmdu 
5574 
5574 

4 .4727309 
4 . 4595438 

R-sq 

0 . 5871* 
0 . 6854* 

Constant 

(none) 
(none) 
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* Uncentered R-sq 

Robust 
Coef . Std. Err . z P> l z l  [95% Coni . Interval] 

/a1 - . 0173125 .00 10624 -16.30 0 . 000 - . 0193948 - . 0 152302 
/a2 . 1486604 .0 184521 8.06 0.000 . 1124949 . 1848259 
/a3 - . 0333346 . 0028682 - 1 1 .62 0 . 000 - . 0389562 -. 027713 
/a4 - . 3790899 . 1638203 -2.31 0 . 021 -. 7001719 -. 0580079 
/b1 .00 18343 .0010776 1.70 0 . 089 - . 0002778 . 0039464 
/b2 . 1270039 . 0 165602 7 . 67 0 . 000 . 0945465 . 1594614 
/b3 .0345088 . 0030258 1 1 . 40 0 . 000 .0285783 . 0404393 
/b4 - 1 . 081392 . 1496894 -7.22 0 . 000 - 1 . 374778 - . 788006 

For this example, the regression coefficients and standard errors are quite similar to 
those from biprobi t. 

1 5 . 1 1  Stata resources 

The key models for initial understanding are the MNL and CL models. In practice, these 
models are often too restrictive. Stata commands cover most multinomial models, the 
most notable exception being the random-parameters logit or mixed logit model, which 
can be estimated with the user-written mixlogi t command. Train (2003) is an excellent 
source, especially for models that need to be fitted by MSL or �ayesian methods. 

1 5 . 1 2  Exercises 

L Consider the health-status multinomial example of section 15.9. Refit this as a 
multinomial logit model using the mlogi t command. Comment on the statistical 
significance of regressors. Obtain the marginal effects of changes in the regressors 
on the probability of excellent health for the MNL model, and compare these to 
those given in section 15.9.5 for the ordered logit modeL Using BIC, which model 
do you prefer for these data-multinomial logit or ordered logit? 

2. Consider the conditional logit example of section 15 .5 .  Use mus15datalong. dta, 
if necessary to create this file as in section 15.5 .1 .  Drop the charter boat option 
as in section 15.7.5, using drop if fisbmode=="charter" I mode==4 command, 
so we have a three choice-modeL Estimate the parameters of a conditional logit 
model with regressors p and q and income, using the asclogi t command. What 
are the MES on the probability of private boat fishing of a $10 increase in the 
price of private boat fishing, a one-unit change in the catch rate from private boat 
fishing, and a $1 ,000 increase in monthly income? Which model fits these data 
better-the conditional logit model of this question or the multinomial probit 
model of section 15. 7? 
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3. Continue the previous question, a three-choice model for fishing mode. Estimate 
the parameters o

.
f the model by nested logit, with errors for the utility of pier and 

beach fishing correlated with each other and uncorrelated with the error for the 
utility of private boat fishing. Obtain the ME of a. change in the price of private 
boat fishing, adapting the example of section 15.6.6. 

4. Consider the health-status multinomial example of section 15.9. Estimate the 
parameters of this model as an ordered pro bit model using the oprobi t connand. 
Comment on the statistical significance of regressors. Obtain the MEs for the 
predicted probability of excellent health for the MNL model and compare these to 
those given in section 15.9.5 for the ordered logit model. Which model do you 
prefer for these data-ordered pro bit or ordered logit? 





16 Tobit a n d  selection m odels 

16.1  I ntroduction 

The to bit model is relevant when the dependent variable of a linear regression is observed 
only over some interval of its support. Consider the annual household expenditure 
on a durahle item such as a new automobile. A cross-section survey would almost 
certainly reveal a significant proportion of households with zero· expenditure and the 
rest with a positive level of eJ,:penditure. In other words, the sample will be a mixture 
of observations with zero and positive values. Regression analyses of such data raise 
new modeling issues that will be considered in this chapter. 

Estimating a linear regre9sion in the presence of censoring involves additional compu­
tational complications. Ordinary least-squares (oLs) regression will not yield consistent 
parameter estimates because the censored sample is not representative of the popu­
lation. For the same reason, statistical inference on the estimated parameters of the 
model also involves significant extensions of the standard theory. 

In this chapter, we will consider two basic approaches to the estimation and inference 
regarding the tobit model. The first approach is parametric and is based on strong 
assumptions about the conditional data distribution and functional forms. The second 
(semiparametric) approach maintains the functional form asstunptions but partially 
rela-"<es the distributional assumptions. 

16.2 Tobit model 

Suppose that our data consists of (y.,, x1) ,  i = 1 ,  . . .  , N. Assume that x; i s  fully observed, 
but Yi is not always observed. Specifically, some Yi are zero. We first consider the 
interpretation of zero observed values of y wh�n the corresponding x is observed. 

16.2.1 Regression with censored data 

One interpretation is that zero is a censored observation. Suppose the household has 
a latent (unobserved) demand for goods,. denoted by y*, that is not expressed as a 
purchase until some known constant threshold, denoted by L, is passed. We observe 
y* only when y• > L. Then the zero expenditure can be interpreted as a left-censored 
variable that equals zero when y* ::; L. Thus the' observed sample consists of censored 
and uncensored observations. 

521 
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Observations can be left-censored or . right-censored. The latter means that the 
actual value of y• is not observed when y• > U, where U denotes the upper censoring 
point. For example, consider the draws y,, i = 1 ,  . . . , N, from a N(O, 1) distribution, 
that are observed only in the interval [L, Uj, where L and U are known constants. The 
distlibution has full support over the range ( -oo, +oo ), but we only observe values in 
the range [L, U]. The observations are then said to be censored, and L is the lower (or 
left) cutoff or censoring point, and U is the upper (or right) cut-off point. 

Suppose we are in a regression setting with the observations (y;, x,) ,  i = 1, . . .  , N, 
where Xi are always completely observed. Censoring is then akin to having missing 
observations on y. That is, censoring implies a loss of information. In some common 
cases, L = 0, but in other cases, L = "(, 'Y > 0, and furthermore 'Y may be unknown. 
For example, the survey may record expenditure on an expense category only when it 
exceeds, say, $10. An example of right-censored data occurs when y is top-coded such 
that one only knows whether y > U, but not the precise value itself. 

16.2.2 Tobit model setup 

The regTession of interest is specified as an unobserved latent variable, y•, 

y; = x'J3 + Ei. , i = 1 ,  . . . , N (16.1) 

where € ;  � N(O, o-2), and x., denotes the (K x 1) vector of exogenous and fully observed 
regressors. If y* were observed, we would estimate (/3, o-2) by OLS in the usual way. 

The observed variable y; is related to the latent variable y.7 through the observation 
rule { 1 * y =  i if y* > L 

if y• S: L 

The probability of an observation being censored is Pr(y• $; L) = Pr(x',{3 + € S: L) = 
<T? {(L - x';{3)/o-}, where <T? (·) is the standard normal cumulative distribution flmction. 

The truncated mean, or e..'<.pected value, of y for the noncensored observations can 
be shown to be 

E( I L) '{3 
¢{ (x',{3 - L)/o-} 

) y, x;,y, > = x; + o-
<T? {(L - X;{3)jo-} 

(16.2 

where ¢ {·) is the standard normal density. The conditional mean in (16.2) differs from 
x!;f3 because of the censoring, a difference that leads to OLS being inconsistent. The 
exact formula in (16.2) relies crucially on the assumption that € � N(O, o-2 ) . 

A sample may instead include right-censored observations. Then we observe that { y* if y* < u 
y = u if y* 2': u 

The leading case of censoring is that in which the data are left-censored only and 
L = 0. A variant of the tobit model, the two-limit tobit, allows for both left and 
right censoring. Another variant, considered here, is that in which the data are only 
left-censored but L is unknown. 
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16.2.3 Unknown censoring point 

As Carson and Sun (2007), and others, have pointed out, the censoring point may be 
unknown. Suppose that the data are left-censored, and there is a constant but unknown 
threshold, f. The assumption that the unknown 1 can qe set to zero as a "normaliza­
tion" is not innocuous. Instead, Pr(y* < 1) is <I> { (I - x!,6)ja }, where (I - x',6)/u is 
interpreted as a "threshold". In this case, we can set ;y = min(uncensored y) and pro­
ceed as if 1 is known. Estimates of the to bit model based on this procedure have been 
shown to be c.onsistent; see Carson and Sun (2007). In Stata, this only requires that the 
value of 1 should be used in defining 11 .  So we can again use the to bit command with 
the 11 (#) option. It is simplest to set # equal to ;:y. This will treat the observation 
or observations with y = ;y as censored, however, and a better alternative is to set # 
equal to ;y - il. for some small value, il., such as I0-6 . 

16.2.4 Tobit estimation 

The foregoing analysis leads to two estimators-maximum likelihood (ML) and two-step 
regression. 'vVe first consider ML estimation under the assumptions that the regression 
error is homoskedastic and normally distributed. 

For the case of left-censored data with the censoring point 1 (so L = 1 ) , the density 
ftmction has two components that correspond, respectively, to uncensored and censored 
observations. Let d = 1 denote the censoring indicator for the outcome that the ol.J�er­
vation is not censored, and let d = 0 indicate a censored observation. The density can 
be written as 

(16.3) 

The second term in (16.3) reflects the contribution to the likelihood of the censored 
observation. ML estimates of ({3, a2) solve the first-order conditions from maximization 
of the log likelihood based on (16.3). These equations are nonlinear in parameters, so 
an iterative algorithm is required. 

The tobit IYIL estimator (MLE) is consistent under the stated assumptions. However, 
it is inconsistent if the errors are not normally distributed or if they are heteroskedastic. 
These strong assumptions are likely to be violated in applications, and this makes the 
tobit MLE a nonrobust estimator. It is desirable to test the assumptions of normality 
and heteroskedasticity. 

Estimation can be based on weaker assumptions than those for the MLE. Equa­
tion (16.2) suggests why the OI.S regression of y., on X; yields an inconsistent estimate­
there will be omitted-variable bias due to the "missing variable" ¢;/<I>; in (16.2). This 
missing variable can be generated by a pro bit mqdel that models the probability of the 
outcome that Yi > 0. Let d; = 1 denote the outcome that Yi > 0, and let d., = 0 
otherwise. The probit estimator can provide a consistent estimate of .-\, = ¢;/'P;. A 
linear regression of y., on x and ¢:}ii will provide an estimate of {3. 
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16.2.5 ML estimation in Stata 

The estimation command for to bit regression in Stata has the following basic syntax: 

to bit depvar [ indepvars ] [ if ]  [ in ]  [ weight ] , 11 [ ( #) ] ul [ ( #) ] [ options ] 

The specifications 11 [ (#) ] and ul [ C # ) ] refer to the lower limit (!eft-censoring point) 
and the upper limit (right-censoring point), respectively. If the data are subject to left 
censoring at zero, for example, then only 11 (0) is required. Similarly, only ul( lOOOO) 
is required for right-censored data at the censoring point 10,000. Both are required 
if the data are both right-censored and left-censored and if one wants to estimate the 
parameters of the two-limit tobit modeL The postestimation tools for tobit will be 
discussed later in this chapter. 

1 6 . 3  Tobit model example 

The illustration we consider, ambulatory expenditures, has the very common complica­
tion that the data are highly right-skewed. This is best treated by taking the natural 
lOgarithm, complicating the analysis of these complications. We present these complica­
tions in detail in sections 16.4-16.7, and model diagnostics are deferred to section 16.4.5. 
In the current section, we instead present the simpler tobit model in levels. 

16.3.1 Data summary 

The data on the dependent variable for ambulatory expenditure (ambexp) and the re­
gTessors (age, female, educ, blhisp, totchr, and ins) are taken from the 2001 Medical 
Expenditure Panel Survey. In this sample of 3,328 observations, there are 526 (15.8%) 
zero values of ambexp. 

Descriptive statistics for all the variables follow: 

* RaY data summary 
use mus16dat a . dta, clear 

summarize ambexp age female educ blhisp totchr ins 

Variable Obs Mean Std. De v. 

ambexp 3328 1386 .519 2530.406 
age 3328 4 . 056881 1 . 121212 

female 3328 . 5084135 . 5000043 
educ 3328 1 3 .40565 2 . 574199 

blhisp 3328 .3085938 .4619824 

totchr 3328 .4831731 .7720426 
ins 3328 . 3650841 . 4815261 

Min Max 

0 49960 
2 . 1  6 . 4  

0 
0 17 
0 1 

0 5 
0 

A detailed summary of ambexp provides insight into the potential problems in esti­
mating the parameters of the to bit model with a linear conditional mean function. 
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* Detailed summary to show skewness and kurtosis 
summarize ambexP J detail 

ambexp 

Percentiles Smallest 
1% 0 0 
5% 0 0 

10% 0 0 Obs 3328 
25% 113 0 Sum of Hgt. 3328 

SO% 534.5 MeaD. 1386.519 
Largest Std. Dev. 2530.406 

75% 1618 28269 
90% 3585 30920 Variance 6402953 
95% 5451 34964 Skewness 6 . 059491 
99% 11985 49960 Kurtosis 72. 06738 

The ambexp variable is very heavily skewed and has considerable nonnormal kurtosis. 
This feature of the dependent variable should alert us to the possibility that the to bit 
MLE may be a flawed estimator for the model. 

To see if these characteristics persist if the zero observations are ignored, we examine 
the sample distribution of only positive values. 

* Summary for positives only 
summarize ambexp if ambexp > 0 ,  detail 

ambexp 

Percentiles Smallest 
1% 22 1 
5% 67 2 

10% 107 2 Obs 2802 
25% 275 4 Sum of Wgt. 2802 

50% 779 Mean 1646 .8 
Largest Std. Dev. 2678.914 

75% 1913 28269 
90'l, 3967 30920 Variance 7176579 
95% 6027 34964 Skewne ss 5. 799312 
99% 12467 49960 Kurtosis 65. 81969 

The skewness and nonnormal kurtosis are reduced only a little if the zeros are ignored. 

In principle, the skewness and nonnormal kurtosis of ambexp could be due to re­
gressors that are skewed. But, from output not listed, an OLS regression of ambexp on 
age, female, educ, blhisp, totchr, and ins explains little of the variation (R2 = 0.16) 
and the OLS residuals have a skewness statistic of 6.6 and a kurtosis statistic of 92.2. 
Even after conditioning on regressors, the dependent variable is very nmmormal, and a 
lognormal model may be more appropriate. 

16.3.2 Tobit analysis 

As an initial exploratory step, we will run the linear tobit model without any trans­
formation of the dependent variable, even though it appears that the data distribution 
may be nonnormal. 

· 
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* Tobit analysis for ambexp using all expenditures 
global xlist age female educ blhisp totchr ins //Define regressor list $xlist 

tobit ambexp $xlist, ll(O) 

Tobit regression 

Log likelihood � -26359.424 

ambexp Coef . 

age 314. 1479 
female 684.9918 

educ 70 . 8656 
blhisp -530 .311 
totchr 1244.578 

ins -16 7.4714 
_cons -1882 .591 

/sigma 2575 . 907 

Obs. summary: 526 
2802 

Std. Err. t 

42.63358 7 . 37 
92. 85445 7 . 38 
18 .57361 3.82 
104. 2667 - 5 . 0 9  
60. 51364 20.57 
9 6 .46068 - 1 . 7 4  
317. 4299 - 5 . 9 3  

34.79296 

Number of obs 
LR chi2(6) 
Prob > chi2 
Pseudo R2 

P> l t l  [95� Conf. 

0 . 000 230. 5572 
0 . 000 502.9341 
0 . 000 34. 44873 
0 . 000 -734.7443 
0 . 000 1125.93 
0 . 083 -356. 5998 
0 . 000 -2504 .969 

2507.689 

left-censored observations at ambexp<=O 
uncensored a bserva tions 

0 right-censored observations 

3328 
694.07 
0 . 0000 
0 . 0130 

Interval] 

397. 7387 
867. 0495 
107. 2825 

-325. 8776 
1363.226 
2 1 . 65696 

-1260 .214 

2644 . 125 

All regressors aside from ins are statistically significant at the 0.05 level. The interpre­
tation of the coefficients is as a partial derivative of the latent variable, y* , with respect 
to x. Marginal effects for the observed variable, y, are presented in section 16.3.4. 

It is standard to use the default estimate of the variance-covariance matrix of the 
estimator (YCE) for the tobit MLE, because if the model is misspecified so that a robust 
estimate of the VCE is needed, it is also likely that the tobit !viLE is inconsistent. 

16.3.3 Prediction after tobit 

The predict command is summarized in section 3.6. The command can be used after 
tobi t to predict a range of quantities. We begin with the default linear prediction, xb, 
that produces in-sample fitted values of the latent variable, y* , for all observations . 

. * Tobit prediction and summary 

. predict yhatlin 
(option xb assumed; fitted values) 

summarize y ha tlin 

Variable Obs 

yhatlin I 3328 

Mean 

1066.683 

Std. Dev. Min Max 

1257. 455 -1564.703 8027 .957 

A more detailed comparison of the sample statistics for yhatlin with those for ambexp 
shows that the tobit model fits especially poorly in the upper tail of the distribution. 

This fact notwithstanding, we will use the model to illustrate other prediction options 
for the observed variable, y, that can be used in combination with the computation of 
marginal effects. 
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16.3.4 Marginal effects 

In a censored regressi01'l, there are a variety of marginal effects (ME) that are of potential 
interest; see [R] tobit postestimation: The ME is the effect on the conditional mean 
of the dependent variable of changes in the regressors. · This effect varies according to 
whether interest lies in the latent variable mean, or in.th� truncated or censored means. 
Omitting derivations given in Cameron and Trivedi (2005, ch. 16), these lv·fEs are as 
follows: 

8E(y"lx)j8x = {3 Latent variable 
Left-truncated (at 0) 
Left-censored (at 0) 

8E(ylx, y > O)j8x = {1 - w.).(w) - A(w)2}{3 
8E(ylx)j8x = <I>(w)f3 

where w = x'{3/17 and ).(w) = ¢(w)/<I>(w). The first of these has already been discussed 
above. 

left-truncated, left-censored, and right-truncated examples 

For illustration, we compute MEs for three conditional mean specifications: E(ylx. y > 
0) ,  E(ylx), and E(ylx, O < y < 535), where b = 535 is the median value of y. In each 
case, the estimated conditional mean is followed by the estimated 1\lEs. 

The predict () option of mfx is used to obtain MEs with respect to the desired 
quantity. Evaluation is at the default x = x, so the MJ:C at the mean is computed. 

We begin with the ME for the left-truncated mean, E(yix, y > 0) . 

. • (1)  ME on censored expected value E(y\x,y>O) 

. mfx compute ,  predict ( e (O , . ) )  

Marginal effects after tobit 
y = E(ambexp \ ambexp>O) (predict, e (O , . ) )  

2494.4777 

variable I dy/dx Std. Err. z P> \ z \  
age -145 .524 19 : 781 7.36 0 . 000 

female* 317.1037 42.961 7 . 38 0 . 000 
educ 32.82'734 8 . 60107 3 . 82 0 . 000 

blhisp• -240.2953 46.215 -5.20 0 . 000 
totchr 576. 5307 28.505 20.23 0 . 000 

ins* -77. 19554 44.262 - 1 . 74 0 . 081 

95% C . I .  

106.754 184.294 
232.902 4 0 1.305 
1 5 . 9696 49. 6851 

-330 . 875 -149.715 
520 .662 632.399 

-163. 947 9 . 55632 

(•) dy/dx is for discrete cha�e of dummy variable from 0 to 1 

X 

4 . 05688 
. 508413 
1 3 . 4056 
.308594 
. 483173 
. 365084 

For these data, the MEs are roughly one-half of the coefficient estimates, jj, given in 
section 16.3.2. 

The MEs for the censored mean, E(ylx), are computed next. 
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· * (2) ME without censoring on E(y lxl  
. mfx compute ,  predict(ystar (O , . ) )  

Marginal effects after tobit 
y Q E (ambexp• l ambexp>O) (predict, ystar(O , . ) )  

164 7.8507 

variable dyldx Std. Err. z P> l z \  95% 

age 207.526 28. 205 7 . 36 0 . 000 152.245 
female* 451 . 6399 6 1 . 029 7 . 40 0 . 000 332.026 

educ 46.8 1378 12. 265 3 . 82 0 . 000 22.7739 
blhisp* -342. 4803 65.756 -5.21 0 . 000 -47 1 . 36 1  
totchr 822. 1678 40.61 20.25 0 . 000 742 . 573 

ins* - 1 1 0 . 0883 63.117 - 1 . 74 0 . 081 -233 .795 

(•) dyldx is for discrete change of dummy variable from 0 to 

C . I .  X 

262. 807 4 . 05688 
571. 254 . 508413 
70.8537 13.4056 

-213 . 6  . 308594 
901 . 763 . 483173 
13. 6185 . 365084 

These MEs are larger in absolute value than those for the left-�runcated mean and are 
roughly 70% of the original coefficient estimates. 

In the third example, we consider MEs when additionally there is right censoring at 
the median value of y . 

. * (3) ME when E(yi O<y<535) 

. mfx comput e ,  predict ( e ( 0 , 535)) 

Marginal effects after tobit 
y = E (ambexp i O<ambexp<535) (predict, e (0 , 535)) 

= 270. 36852 

variable dyldx Std. Err. z P> \ z \  95% 

age 1 . 12742 . 15543 7 . 25 0 . 000 . 822789 
female* 2 .458287 .33661 7 . 30 o . ooo 1. 7985<; 

educ .2543238 . 06681 3 . 81 0 . 00 0  . 123373 

c. I .  

1 . 43205 
3 . 11803 
.385274 

blhisp* - 1 . 903269 . 37623 -5.06 0 . 00 0  -2. 64067 - 1 . 16587 
totchr 4 . 466566 . 24387 18.32 0 . 00 0  3 . 98858 4 .  94455 

ins* -. 601031 . 34677 -1.73 0 . 083 - 1 . 28069 . 078624 

(•)  dyldx is for discrete change of dummy variable from 0 to 

X 

4 . 05688 
. 508413 
1 3 .4056 
. 308594 
. 483173 
.365084 

The output shows that E(ylx, 0 < y < 535) equals 270.369 when evaluated at x = x. 
The MEs here are small relative to those in the previous two cases, as expected given 
the relatively small variation in the range of y being considered. 

Left-censored case computed directly 

Next we illustrate direct computation of the MEs for the left-censored mean. From the 
table, this is <I!(x'f3/a)7JJ for the jth regressor. This example also illustrates how to 
retrieve to bit model coefficients. 

* Direct computation of marginal effects for E(y \x) 
predict xb1, x b  I I xb1 is estimate o f  x"b 

matrix .btobit = e(b) 

scalar sigma = btobit [ 1 , e (df_m)+2] II sigma is estimate of sigma 

matrix bcoeff = btobit [ 1 , 1  . .  e (df_m)] II bcoeff is betas excl. constant 
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quietly summarizG xbl 

scalar meanxb = r(mean) // mean of x'b equals (mean of x) 'b 

scalar PHI = normal(meanxb/sigma) 

matrix deriv = PHI*bcoeff 

matrix list deriv 

deriv[1,6]  
model: model: model: model: 

age female educ blhisp 
y1 207. 52598 452 . 50523 46. 813781 -350 .32317 

* The following gives nicer looking results 
ereturn post deri v 

ereturn display 

Coef. 

model 
age 207.526 

female 452. 5052 
educ 46.81378 

blhisp -350. 3232 
totchr 822 . 1 678 

ins - 1 1 0 . 6315 

model: 
totchr 

822. 16778 

529 

model: 
ins 

- 1 1 0 . 63154 

As expected, the MEs for continuous· regressors are identical to those obtained above 
with mix. For binary regressors, there is some difference because mfx uses the finite­
difference method rather than calculus methods; see section 10.6.6. 

Marginal impact on probabilities 

The impact of a change in a regressor on the probability that y is in a specified interval 
may be· of interest. For illustration, consider the ME on Pr(5000 < ambexp < 10000). 

* Compute mfx o n  Pr(5000<ambexp<10000) 
. quietly tobit ambexp $xlist, vee (robust) 11(0) 

mix compute ,- ·predict (pr(5000, 10000)) 

Marginal effects after tobit 
y Pr(5000<ambexp<10000) (predict , pr(5000, 10000)) 

. 06312282 

vari.able dy/dx Std. Err . z P> l z l  95% c .  I .  

age . 0 150449 . 0028 5 . 37 0 . 000 .009555 .0 20535 
female* . 0328152 . 0068 4 . 82 0 . 000 . 019481 .046149 

educ . 0033938 . 00099 3.42 0 . 00 1  .00 1448 . 00534 
blhisp• - . 0239676 . 00491 -4.88 0 . 000 - . 033586 - . 0 14349 
totchr . 0596042 . 00904 6 . 59 0 . 000 .041887 . 077321 

ins* - .  0079162 .00433 - 1 . 83 0 . 067 - . 016399 . 000567 

(•) dy/dx is for discrete change of dummy variable from 0 to 

The effects are very small; only 5% of the sample fall into this range. 

X 

4 . 05688 
.508413 
13.4056 
. 308594 
. 483173 
.365084 
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16.3.5 The ivtobit command 

The preceding analysis applies when the regressors in the tobit model are exogenous. 
The exogeneity assumption may be thought of as specifying a reduced-form equation. 
When the equation of interest is "structural" , i .e. ,  it involves one or more endogenous 
variables, so that this exogeneity condition fails, another estimator that controls for 
the endogeneity of one or more regTessors is required. As for binary outcome models 
(see section 14.8), there are two main estimation approaches available. One is fully 
parametric and the other is partially parametric (two-step) . These are implemented 
with variants of the i vtobi t command. 

The theoretical framework underlying the ivtobit procedure is explained in [R] iv­
tobit and in Newey (1987). If there is only one endogenous regTe::;sor, then the setup 
involves two equations-the structural equation of interest a::1d the reduced form for 
the endogenous regressor. The framework assumes that the endogenous regressor is 
continuous, so the method should not be used for a discrete endogenous variable. The 
reduced-form equation for this variable must contain exogenous instrumental variables 
that affect the outcome variable only through the endogenous regressor. That is, these 
instrumental variables are excluded from the structural equation. The parametric (MLE) 
estimation method assumes that the structural and reduced-form equation errors are 
jointly normally distributed. The semiparametric method drops the joint normality 
assumption and uses a minimum chi-squared criterion proposed by Newey. ML is the 
default. 

The i vtobi t command has similar syntax to i vregress and has options for marginal 
effects, prediction, and variance estimation similar to those for tobi t. We do not provide 
a data example, but one can be found in [R] ivtobit. 

16.3.6 Additional commands for censored regression 

The censored least absolute-deviations estimator of Powell (1984) provides consistent 
estimates for left-censored or right-censored data under the weaker assumption that 
the error, E, in (16.1) is independent and identically distributed and symmetrically dis­
tributed. This is implemented with the user-written clad command (Jolliffe, Krushel­
nytskyy, and Semykina 2000). For these data, the method is best implemented for the 
data in logs. 

The intreg command is a generalization of tobit for data observed in intervals. 
For example, expenditures might be observed in the ranges y c:; 0, 0 < y c:; 1000, 
1000 < y c:; 10000, and y 2: 10000. 

A quite different type of right-censored data is duration data on length of unem­
ployment spell or survival data on time until death. The standard approach for such 
data is to model the conditional hazard of the spell ending rather than the conditional 
mean. This approach has the advantage of permitting the use of the Cox proportional 
hazards model that allows semi parametric estimation without strong distributional as­
sumptions such as an exponential or Weibull distribution for durations. For details, 
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see [ST] Survival Analysis and Epidemiological Tables Reference Manual, especially the 
entries [ST] stset, [ST] sts, [sT] stcox, and [ST] streg. 

16.4 Tobit for lognormal data 

The tobit model relies crucially on normality, but expenditure data are often better 
modeled as lognormal. A tobit regression model for lognormal data introduces two 
complication�: a nonzero threshold and lognormal y. 

Now introduce lognormality by specifying 

where we observe that 

y• = exp{x' f3 + €) , € � N(O, a-2 ) 

{ y* 
y =  0 

if lny* > 1 
if !n y· � �  

Here it is known that y = 0 when data are censored, and in general 1 of 0. The 
parameters of this model can be estimated by using the tobi t command with the 
ll(#) option, where the dependent variable is lny rather than y, and the threshold # 
equals the minimum uncensored value of In y. The censored values of lny must be set 
to a value equal to or less than the minimum uncensored value of In y. 

In this model, interest lies in the prediction of e::q)enditures in levels rather than 
log-s. The issues are similar to those considered in chapter 3 for the lognormal model. 
Some algebra yields the censored mean 

E(y lx) = exp ( x' f3 + �2) { 1 - \P ( � - x': -
(T2 ) }  (16 .4) 

The truncated mean E (y lx, y > 0) equals E (y lx)/[1 - \P{('y - x'/3)/(T}]. 

16.4.1 Data example 

The illustrative application of the tobit model considered here uses the same data as 
in section 16.3. We remind the reader that in this sample of 3,328 observations, there 
are 526 (15.8%) zero values of ambexp. A detailed summary of ln(ambexp) , denoted by 
lambexp, follows. 

* Summary of log(expenditures) for positives only 
. summarize lambexp, detail 

lambexp 

Percentiles Smallest 
1% 3 . 091043 0 
5% 4 . 204693 . 6931472 

10% 4 . 672829 . 6931472 Obs 
25% 5 . 616771 1 . 386294 Sum of Wgt . 

SO% 6 . 65801 Mean 

2802 
2802 

6 . 555066 
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75% 
90% 
95% 
99% 

7 . 556428 
8. 285766 
8 . 704004 

9 . 43084 

Largest 
1 0 . 24952 
10 . 33916 
1 0 . 46207 
1 0 .81898 
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Std. Dev. 

Variance 
Skewness 
Kurtosis 

1 .41073 

1 . 990161 
- . 3421614 

3 . 1 27747 

The summary shows that ln(ambexp) is almost symmetrically distributed and has neg­
ligible nonnormal kurtosis. This is in stark contrast to ambexp even after conditioning 
on regressors; see section 16.3.1. We anticipate that the tobit model is better suited to 
modeling lambexp than ambexp. 

16.4.2 Setting the censoring point for data in logs 

It may be preferred at times to apply a transformation to the dependent variable to make 
it more suitable for a to bit application. In the present instance, we work with ln(ambexp) 
as the dependent variable. This variable is originally set to missing if ambexp = 0, but 
to use the to bit corrunand, it needs to be set to a nonmissing value, the lower limit. 

A complication here is that the smallest positive value of ambexp is 1, in which case 
ln(ambexp) equals 0. Then Stata's ll or ll(O) option mistakenly treats this observation 
as censored rather than as zero, leading to shrinkage in the sample size for noncensored 
observations. In our sample, one observation would be thus "lost" . To avoid this loss, 
we "trick" Stata by setting all censored observations of lny to an amount slightly smaller 
than the minimum noncensored value of In y, as follows: 

* 11Tricking'1 Sta ta to handle log transformation 
genera tc y = am.bexp 

generate dy = ambexp > 0 

generate lny = ln(y) II Zero values will become missing 
(526 missing values generated) 

quietly summarize lny 
. scalar gamma = r (min) II This could be negative 
. display 11gamma ::;r '1 gamma 
gamma = 0 

• replace lny = gamma - 0 . 0000001 if lny == • 

(526 real changes made) 

tabulate y if y < 0 . 02 II .02 is arbitrary small value 
y Freq. Percent Cum. 

---

0 526 100.00  100.00 

Total 526 1 0 0 . 0 0  

tabula�e lny i f  l n y  < gamma + 0 . 0 2  

lny Freq. Percent Cum. 

- L OOe-07 
0 

Total 

526 

527 
* Label the variables 
label variable y 11ambexp11 

9 9 .8 1  
0 . 19 

100.00 

99.81 
100.00 
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label variable iny 11lnambexp'1 

label variable dy 11dambexp'1 
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Note that the dependent variables have be� relabeled. This makes the Stata code 
given later easier to adapt for other applications. In what follows, y is the ambexp 
variable and In y is the lny variable. 

16.4.3 Results 

We first obtain the tobit MLE, where now log expenditures is the dependent variable . 

All 

. • Now do tobit on lny and calculate threshold and lambda 

. tobit lny $xlist, 11 
Tobit regression 

Log likelihood = -7494.29 

lny Coef. Std. Err. 

age .3630699 . 0453222 
female 1 . 341809 . 0986074 

educ .1 38446 .0 196568 
blhisp - . 8731611 . 1102504 
totchr 1 . 161268 .0 649655 

ins .2612202 . 102613 
_cons .9237178 .3350343 

/sigma 2. 781234 . 0392269 

t 

8 . 0 1  
1 3 . 6 1  

7 . 04 
-7.92 
17.88 

2 . 5 5  
2 . 7 6  

Number of o.bs 
LR chi2(6) 
Prob > chi2 
Pseudo R2 

P> l t l  [95% Conf . 

0 . 000 . 2742077 
0 . 000 1 . 148471 
0 . 000 .0999054 
0 . 0 0 0  - 1 . 089327 
0 . 000 1 . 033891 
0 . 0 1 1  . 0600292 
0 . 006 . 2668234 

2 .  704323 

3328 
831.03 
0 . 0000 
0 . 0525 

Interval] 

.4519321 
1 . 535146 
. 1769866 

- . 6569955 
1 .  288644 
.4624112 
1 .  580612 

2 . 858146 

Obs. summary: 526 left-censored observations at lny<=-1 . 000e-07 
2802 unce::nsored observations 

0 right-censored observations 

estimated coefficients are statistically significant at the 0.05 level and have the 
expected signs. 

To assess the impact of using the censored regression framework instead of treating 
the zeros like observations from the same data-generating process as the positives, let 
us compare the results with those from the OLS regression of lny on the regressors. 

* OLSJ not tobit 
regress lny $xlistJ noheader 

lny Coef. Std. E= . t P> l t l  [95% Conf . Interval] 

age . 3247317 . 038348 8.47 0 . 000 . 2495436 .3999199 
female 1 . 144695 .0833418 13.73 0 . 000 .9812886 1 .  308102 

educ . 1 14108 . 0 165414 6 . 9 0  0 . 0 0 0  .0816757 . 1465403 
blhisp - . 7341754 . 0928854 -7.90 0.000 - . 9162938 - . 5520571 
totchr 1 . 059395 . 0553699 1 9 . 13 0 . 000 . 9508324 1 . 167958 

ins .2078343 .0869061 2 . 3·9 0 . 017 . 0374394 . 3782293 
cons 1 .  728764 .2812597 6 . 15 0 . 000 1 . 177304 2. 280224 
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All the OLS slope coefficients are in absolute terms smaller than those for the ML to bit, 
the reduction being 10-15%, but the OLS intercept is larger. The impact of censoring 
(zeros) on the OLS results depends on the proportion of censored observations, which in 
our case is around 15%. 

16.4.4 Two-limit tobit 

In less than 1.5% of the sample ( 48 observations) ambexp exceeds $10,000. Suppose 
that we want to exclude these high values that contribute to the nonnormal kurtosis. 
Or suppose that the data above an upper cutoff point are reported as falling in an 
interval. Choosing $10,000 as the upper censoring point, we estimate a two-limit tobit 
version of the to bit model. We see that the impact of dropping the 48 observations is 
relatively small. This is not too surprising because a small proportion of the sample 
size is right-censored. 

* Now do two-limit tobit 
scalar upper = log(10000) 

display upper 
9 .  2103404 

. tobit 1ny $xlist , 11 ul(9.2103404) 

Tobit regression 

Log likelihood = -745 1 . 7623 

lny Coef. Std. Err. 

age .3711061 . 0459354 
female 1 . 348768 .0999154 

educ . 1402643 .0199113 
blhisp - . 8759505 . 11 16504 
totchr 1 . 20494 . 0664951 

ins .2466838 . 1039194 
cons .8638458 .3394729 

/sigma 2 . 812304 . 0401377 

t 

8.08 
13.50 

7 . 04 
-7.85 
1 8 . 12 

2 . 37 
2 . 54 

Number of obs 
LR chi2 (6) 
Prob > chi2 
Pseudo R2 

P> l t l  [95% Conf . 

0 . 000 .2810416 
{) . 000 1 . 152866 
0 . 000 . 1012246 
0 . 000 - 1 . 094861 
0 . 000 1 . 074565 
0 . 018 . 0429313 
0 . 0 1 1  . 1982487 

2 .  733607 

3328 
840.33 
0 . 0000 
0 . 0534 

Interval) 

.4611706 
1 . 54467 

. 1793039 
- . 65704 

1 . 335316 
.4504363 
1 . 529443 

2 . 891001 

Obs. summary : 526 left-censored observations at lny< =-l. OOOe-07 
2754 uncensored observations 

48 right-censored observations at lny>=9. 2103404 

16.4.5 Model diagnostics 

To test the validity of the key tobit assumptions of normality and homoskedasticity, 
we need to apply some diagnostic checks. For the ordinary linear regression model, the 
sktest and hettest commands are available to test for normality and homoskedasticity. 
These tests are based on the OLS residuals. These postestimation tests are invalid for 
censored data because the fitted values and residuals from a censored model do not 
share the properties of their ordinary regression counterparts. Generalized residuals 
for censored regression, as discussed in Cameron and Trivedi (2005, ch. 18.7.2) and in 
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Verbeek (2008, 238-240), provide the key component for generating test statistics for 
testing the null hypotheses of homoskedasticity and normality. 

In linear regression, tests of homoskedasticity typically use squared residuals, and 
tests of normality use residuals raised to a power of 3 or 4. The first step is then to 
construct analogous g_uantities for the censored regression·. For uncensored observations, 
we use E; = (y , - x'J3)j'O- raised to the relevant powers, where y.1 is a generic notation 
for the dependent variable, which here is ln(ambexp). For observations left-censored at 
"f, we use the. quantities listed in table 16.1, evaluated at 'h and '8. 

Table 16.1. Quantities for observations left-censored at "Y 

Moments 

E(dd.; = O) 

E(erld, = o) 
E(efid. = 0) 
E(e:i ld; = 0) 

Expression 

A h A ,P(x�{J/a) - ;, w ere , = 1 <D(x;r:;/,.J 
1 - ZiA;, where Zi = ("Y - x;f3)/a 
-(2 + z;')Ai 

3 - (3z; + z.t)A; 

The components ¢(.) and <l'(-) can be evaluated by using Stata's normaldenO and 
normal ()  ftmctions. Given these and predicted values from the ML regression, the four 
"generalized" components given in the table can be readily computed. 

16.4.6 Tests of normality and homoskedasticity 

Lagrange multiplier (LM), or score, tests of heteroskedasticity and nonnormality are 
appeaiing because they only require estimation of the models under the hypothesis of 
normality and homoskedasticity. The test statistics are quadratic forms that can be 
calculated in several different ways. One way is by using an auxiliary regression; see 
section 12.5.3 and Cameron and Trivedi (2005, ch. 8). 

Conditional mo-ment tests can also be performed by using a similar approach; see 
section 12.7.1, Newey (1985), and Pagan and Vella (1989). Such regression-based tests 
have been developed with generalized residuals. Although they are not currently avail­
able as a part of the official Stata package, they can be constructed from Stata output, 
as illustrated below. The key component of the auxiliary regression is the uncentered 
R2, denoted by R�, from the auxiliary regression of 1 on generated regressors that are 
themselves functions of generalized residuals. The specific regressors depend upon the 
alternative to the nulL 

Generalized residuals and scores 

To implement the test, we first compute and store various components of the test 
statistic. The inverse of the Mills' ratio, A;, and: related variables are calculated first, 
including the generalized residuals. 
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* Mills· ratio 
quietly tobit lny $xlist , ll 

predict xb, xb II xb is estimate of x " b  

matrix btobit = e(b) 
scalar sigma = btobit [1 , e (df_m)+2] II sigma is estimate of sigma 

generate threshold = (gamma-xb ) lsigma II gamma: lower censoring point 
generate lambda = normalden(threshold)lnormal(threshold) 

Next we calculate generalized residuals and functions of them. For example, gres3 
equals { (Y; - �,6)j0'}3 for an uncensored observation and equals �(2 + zr)�;, where 
z; and >.., are defined in the table. The generalized residuals gresl and gres2 can be 
shown to be the contributions to the score for, respectively, the intercept {31 and a, so 
they must sum to zero over the sample. The generalized residuals gres3 and gres4 
satisfy the same zero-mean property only if the model is correctly specifi.ed. 

The generalized residuals are computed as follows: 

* Generalized residuals 
* gres1 and gres2 should have mean zero by the first-order conditions 
* gres3 and gres4 have mean zero if model correctly specified 
* Residual (scaled by sigma) for positive values 
quietly generate uifdyeq1 = (lny - xb) lsigma if dy == 1 
* First-sample moment 
quietly generate double gres1 = uifdyeq1 

quietly replace gres1 = -l�bda if dy �� 0 

summarize gres1 

Variable Obs 

gres1 3328 

Mean 

4 . 49e-09 

Std. Dev. Min Max 

.9877495 -3. 129662 2 . 245604 

The zero-mean property of gresl is thus verified. The remaining three variables are 
computed next. 

* Second- to fourth-sample moments 
quietly generate double gres2 = uifdyeq1-2 -

quietly replace gres2 = -threshold•lambda if dy == 0 

quietly generate double gres3 = uifdyeq1-3 

replace gres3 = - ( 2  + threshold-2)•lambda if dy == 0 
(526 real cha.nges made) 

quietly generate double gres4 = uifdyeq1-4 - 3 

quietly replace gres4 = - (3•threshold + threshold-3)•lambda if dy = =  0 

Test of normality 

To apply the LM test for normality, we need the likelihood scores. The components of 
the scores with respect to {3 are :\; times the relevant component of x, i.e., :\;x;. These 
can be computed by using the foreach command: 
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. * Generate the scores to use in the LM test 
• foreach var in $xlist { 

2. generate score'var· = gresl*'var· 
3. } 

global scores score* gresl gres2 

Recall that gresl is the score with respect to the intercept /31 , and gres2 is the score 
with respect to the intercept a. 

To execut� the regression-based test of normality, we regress 1 on scores and com­
pute the N R2 statistic. 

* Test of normality in tobit regression 
* NR�2 from the uncentered regression has chi-squared distribution 
generate one = 1 

. quietly regress one gres3 gres4 $scores, noconstant 

. display "N R-2 = " e(N)• e(r2) " uith p-value = " chi2tail(2·, e (N)•e(r2)) 
N R-2 = 1832. 1279 uith p-value = 0 

The outcome of the test is a very strong rejection of the. normality hypothesis, even 
though the expenditure variable was transformed to logarithms. 

The properties of the conditional moment approach implemented here have been in­
vestigated by Skeels and Vella (1999), who found that using the asymptotic distribution 
of this test produces severe size distortions, even in moderately large samples. This is 
an important limitation of the test. Drukker (2002) developed a parametric bootstrap 
to correct the size distortion by using bootstrap critical values. His Monte Carlo results 
show that the test based on bootstrap critical values has reasonable power for samples 
larger than 500. 

The user-written tob_cm command (Drukker 2002) implements this better variant of 
the test. The command only works after tobi t, and with the left-censoring point 0 and 
no right censoring. To compare the above outcome of the normality test with that from 
the improved bootstrap version, the interested reader can perform the tobcm command 
quite easily. 

Test of homoskedasticity 

For testing homoskedasticity, the alternative hypothesis is that the variance is of the 
form <72 exp(w;a} This leads to an auxiliary regression of 1 on :>:;, :>:;x;, and z;:>:.,w;. 
The auxiliary regressors, z;:>:;, can be generated after specifying w. Often w is specified 
to be the same as x. If dim(:x;) = K and dim(w;) = J, then NR� "' x2 (K + J + 1 )  under 
the null hypothesis. The following additional commands that follow on from those for 
the normality test generate the additional need�d components, z;:5:;w;, for the test of 
homoskedasticity. 
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* Test of homoskedasticity in tobit regression 
foreach var in $xlist { 
2. generate score2'var# = gres2*'var · 

3 .  } 

global scores2 score* score2* gresl gres2 
* summarize $scorcs2 
quietly regress one gres3 gres4 $scores2, noconstaot 

display "N R-2 = " e(N)•e (r2) " with p-value = " chi2tail (2 , e (N)•e(r2)) 
N R-2 = 2585. 9089 with p-value = 0 

The redundant regressors (scores) are dropped from the auxiliary regression. This 
outcome also leads to a strong rejection of the null hypotLesis of homoskedasticity 
against the alternative that the variance is of the form specified. If an investigator 
wants to specify different components of w, then the required modifications to the 
above commands are trivial. 

16.4.7 Next step? 

Despite the apparently satisfactory estimation results for the to bit model, the diagnostic 
tests reveal weaknesses. The failure of normality and homoskedasticity assumptions 
have serious consequences for censored-data regression that do not arise in the case 
of linear regression. A natural question that arises concerns the direction in which 
additional modeling effort might be directed to arrive at a more general model. 

Two approaches to such generalization will be considered. The two-part model, 
given in the next section, specifies one model for the censoring mechanism and a sec­
ond distinct model for the outcome conditional on the outcome being observed. The 
sample-selection model, presented in the subsequent section, instead specifies a joint 
distribution for the censoring mechanism and outcome, and then finds the implied dis­
tribution conditional on the outcome observed. 

16.5  Two-part model i n  logs 

The tobit regression makes a strong assumption that the same probability mechanism 
generates both the zeros and the positives. It is more flexible to allow for the possibility 
that the zero and positive values are generated by different mechanisms. Many appli­
cations have shown that an alternative model, the two-part model or the hurdle model, 
can provide a better fit by relaxing the to bit model assumptions. 

This model is the natural next step in our modeling strategy. Again we apply it to 
a model in logs rather than levels. 

16.5.1 Model structure 

The first part of the two-part model is a binary outcome equation that models 
Pr(ambexp > 0), using any of the binary outcome models considered in chapter 11 (usu-
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ally probit) . The second part uses linear regression to model E(ln ambexplambexp > 0) .  
The two parts are assumed to be independent and are usually estimated separately. 

Let y denote ambexp. Define a binary indicator, d, of positive expenditure such that 
d = 1 if y > 0 and d = 0 if y = 0. When y = 0, we observe only Pr(d = 0). For those 
with y > 0, let f(yld  = 1 )  be the conditional density of y. The two-part model for y is 
then given by { Pr(d = Oix) if y = O  

f (yix) = Pr(d = 1 lx)j(yld = 1 ,x) if Y > 0 (16.5) 

The same regressors often appear in both parts of the model, but this can and should 
be rela:xed if there are obvious exclusion restrictions. 

The probit or the logit is an obvious choice for the first part. If a probit model is 
used, then Pr(d = 1lx) = <I> (x�,B1 ) . If a lognormal model for YIY > 0 is given, then 
(In y id = 1, x) � N(x�,62, a�). Combining these, we have for the model in logs 

E(ylx1, x2) = <I> (x�.Bil exp(x;,B2 + a�/2) 

where the second term uses the result that iflny � N(J.£, o 2) then E(y) = exp(J.£+a2/2). 

ML estimation of (16.5) is straightforward because it separates the estimation of a 
discrete choice model using all observations and the estimation of the parameters of the 
density f(y id = 1, x) using only the observations with y > 0. 

16.5.2 Part 1 specification 

In the example considered here, x1 = x2, but there is no reason why this should always 
be so. It is an advantage of the two-part model that it provides the fiexibility to have 
different regressors in th� two parts. In this example, the first part is modeled through 
a probit regression, and again one has the fiexibility to change this to logit or cloglog. 
Comparing the results from the to bit, two-part, and selection models is a little easier if 
we use the probit form . 

. * Part 1 of .the tuo-part model 
• probit dy $xlist, nolog 

Pro bit regression 

Log likelihood = -1197. 6644 

dy Coef. Std. Err. 

age . 097315 .0270155 
female . 6442089 . 0601499 

educ .0701674 . 0 1 13435 
blhisp - . 3744867 . 0617541 
totchr . 7935208 .0711156 

ins . 1812415 . 0625916 
_cons - .  7 177087 . 1924667 

scalar llprobit = e(ll) 

z 

3 . 6 0  
1 0 . 7-1 

6 . 19 
-6.06 
1 1 . 16 

2.90 
-3 . 73 

Number of obs 
LR chi2(6) 
Prob > chi2 
Pseudo R2 

P> l z l  [95% Conf. 

0.000 . 0443656 
0 . 000 . 5263172 
0 . 000 . 0479345 
0 . 000 - . 4955224 
0 . 00 0  . 6541367 
0 . 004 . 0585642 
0 . 000 - 1 . 094937 

3328 
509.53 
0 . 0000 
0 . 1754 

Interval] 

. 1502645 

. 7621006 
.0924003 

- . 2534509 
. 9329048 
.3039187 

- . 3404809 
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The probit regression indicates that all cova.riates are statistically significant determi­
nants of the probability of positive expenditure. The standard marginal effects calcula­
tions can be done for the first part, as illustrated in chapter 14. 

16.5.3 Part 2 of the two-part model 

The second part is a linear regression of lny, here ln(ambexp) , on the regressors in the 
global macro xlist. 

• Part 2 of the tuo-part model 
regress lny $xlist if dy=�1 

Source SS df MS 

Model 1069. 37332 6 178. 228887 
Residual 4505. 06629 2795 1 . 6 1 183051 

Total 5574.43961 2801 1 . 99016052 

lny Coef. Std. Err. t 

age . 2172327 .0222225 9.78 
female . 3793756 . 0485772 7 . 8 1  

educ . 0222388 . 0097615 2 . 28 
blhisp - .  2385321 .0551952 -4.32 
totchr . 5618171 . 0305078 18.42 

ins - . 020827 . 0500062 -0 . 42 
cons 4 . 907825 . 16!il512 29.19  

scalar lllognormal = e(ll)  

predict rlambexp, residuals 

P> l t l  

0 . 000 
0.000 
0 . 023 
0 . 000 
0 . 000 
0 . 677 
0 . 000 

Number of obs = 2802 
F( 6 ,  2795) 1 10 . 58 
Prob > F 0 . 0000 
R-squared 0 . 1918 
Adj R-squared = 0 . 1901 
Root MSE � 1 . 2696 

[95% Conf . Interva�] 

. 1736585 

. 2841247 

. 0030983 
- . 3467597 

.501997 
- . 1 188797 

4 . 578112 

.2608069 

.4746265 

. 0413793 
- . 1303046 

. 6216372 

. 0772258 
5 . 237538 

The coefficients of regressors in the second part have the same sign as those in the first 
part, aside from the ins variable, which is highly statistically insignificant in the second 
part. 

Given the assumption that the two parts are independent, the joint likelihood for 
the two parts is the sum of two log likelihoods, i.e., �5,838.8. The computation is shown 
below. 

* Create tuo-part model log likelihood 
scalar lltuopart = llprobit + lllognormal //tuo-part model log likelihood 
display 11lltuopart = 11 lltuopart 

lltuopart = -5838.8218 

By comparison, the log likelihood for the tobit model is -7,494.29. The two-part model 
fits the data considerably better, even if AIC or BIC is used to penalize the two-part 
model for its additional parameters. 

Does the two-part model eliminate the twin problems of heteroskedasticity and non­
normality? This is easily checked using the hettest and sktest commands. 
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. * hettest and sktest commands 
• quietly regress lny $xlist if dy==l 

. hettest 

Breusch-Pagan I Cook-Weisberg test for heteroskedasticity 
Ho: ConstaD.t variance 
Variables: fitted values of lny 

chi2 ( 1 )  19 . 25 
Prob > chi2 = 0 . 0000 

sktest rlambexp 

Skeuness/Kurtosis tests for Normality 
-.-- joint --

Variable Pr(Skeuness) Pr(Kurtosis) adj chi2(2) Prob>chi2 

rlambexp 0 . 000 0 .059 0 . 0000 
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The tests unambiguously reject the homoskedasticity and normality hypotheses. 
However, unlike the tobit model, neither condition is necessary for consistency of the 
estimator. The key assumption needed is that E(ln y[d = 1, x) is linear in x. On the 
other hand, it is known that· the OLS estimate of the residual variance will be biased in 
the presence of heteroskedasticity. This deficiency will extend to those predictors of y 
that involve the residual variance. This point is pursued further in section 16.8. 

From the viewpoint of interpretation, the two-part model is Hexible and attractive 
because it allows different covariates to have a different impact on the two parts of the 
modeL For example, it allows a variable to make its impact entirely by changing the 
probability of a positive outcome, with no impact on the size of the outcome conditional 
on it being positive. In our example, the coefficient of ins in the conditional regression 
has a small and statistically insignificant coefficient but has a positive and significant 
coefficient in the probit equation. 

16.6 Selection model 

The two-part model attains some of its· .flexibility and computational simplicity by as­
suming that the two parts-the decision to spend and the amount spent-are inde­
pendent. This is a· potential restriction on the model. If it is conceivable that, after 
controlling for regressors, those with positive expenditure levels are not randomly se­
lected from the population, then the results of the second-stage regression suffer from 
selection bias. The selection model used in this section considers the possibility of such 
bias by allowing for possible dependence in the two parts of the modeL This new model 
is an example of a bivariate sample-selection model, also known as the type-2 tobit 
model. 

The application in this section uses expenditures in logs. The same methods can be 
applied without modification to expenditures in levels. 

16.6.1 Model structure and assumptions 

Throughout this section, an asterisk will denote ·a latent variable. Let Y2 denote the 
outcome of interest, here expenditure. In the standard tobit model, this outcome is 
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observed if Y2 > 0. A more general model introduces a second latent variable, yi, and 
the outcome y:;, is observed if Yi > 0. In the present case, Yi determines whether an 
individual has any ambulatory expenditure, y!; determines the level of expenditure, and 
Yi oF Y!i· 

The two-equation model comprises a selection equation for y1 1 where 

_ { 1 if Yi > 0 Yl - 0 if Yi :S 0 

and a resultant outcome ec.uation for Y2, where 

if y� > 0 
if Yi :S 0 

Here Y2 i� observed only when Yi > 0, possibly taking a negative value, whereas y2 
need not take on any meaningful value when Yi ::; 0. The classic version of the model 
is linear with additive errors, so 

Yi = x�{:Jl + E1 
Y2 = x�fJ2 + c:2 

with E1 and £2 possibly correlated. The to bit model is a special case where Yi = Y2 .  
It i s  assumed that the correlated errors are jointly normally distributed and ho­

moskedastic, i.e., 

where the normalization err = 1 is used because only the sign of Yi is observed. Esti­
mation by ML is straightforward. 

The likelihood function for this model is 

n 

L = IT {Pr(yii :S 0)}1-y" {f(Y2i I Yii > 0) X Pr(y1/> O) f'" 
i=l 

where the fi.rst term is the contribution when Yi; ::; 0, because then Yli = 0, and 
the second term is the contribution when Yi; > 0. This likelihood function can be 
specialized to models other than the linear model considered here. In the case of linear 
models with jointly normal errors, the bivariate density, r(yi, Y2 ) , is normal, and hence 
the conditional density in the second term is univariate normal. 

The essential structure of the model and the ML estimation procedure are not affected 
by the decision to model positive expenditure on the log (rather than the linear) scale, 
although this does affect the conditional prediction of the level of expenditure. This 
step is taken here even though tests implemented in the previous two sections show that 
the normality and homoskedasticity assumptions are both questionable. 
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16.6.3 Estimation without exclusion restrictions 

16.6.2 Ml estimation of the sample-selection model 
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ML estimation of the bivariate sample-selection model with the heckman command is 
straightforward. The basic synta."X for this command is 

heckman depvar [ indepvars ] [ if ]  [ in ]  [ weight ] , select ( [ depvar _s = ]  varlist_s 
[ , noconstan t ] ) [ options ] 

where select 0 is the option for specifying the selection equation. One needs to specify 
variable lists for both the selection equation and for the outcome equation. In many 
cases, the investigator might use the same set of regressors in both equations. vVhen 
this is done, it is often referred to as the case in which model identification is based 
solely upon the nonlinearity in the functional form. Because the selection equation is 
nonlinear, it potentially allows the higher powers of regressors to affect the selection 
variable. In the linear outcome equation, of course, the higher ·powers do not appear. 
Therefore, the nonlinearity of the selection regression automatically generates exclusion 
restrictions. That is, it allows for independent source of variation in the probability of 
a positive outcome; hence the term "identification through nonlinear functional form" . 

The specification of the selection equation involves delicate identifi.catior: issues. For 
example, if the nonlinearity implied by the pro bit model is slight, then the identifi.cation 
will be fragile. For this reason, it is common in applied work to look for exclusion 
restrictions. The investigator seeks a variable(s) that can generate nontrivial variation 
in the selection variable but does not affect the outcome variable directly. This is exactly 
the same argument as was encotmtered in earlier chapters in the context of instrumental 
variables. A valid exclusion restriction arises if a suitable instrument is available and 
this may vary from case to case. We will illustrate the practical importance of these 
ideas in the examples that follow. 

16.6.3 Estimation without exclusion restrictions 

We first estimate-the parameters of the selection model without exclusion restrictions. 

(Continued on next page) 
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* Heckman MLE without exclusion restrictions 
" heckman lny $xlist, select (dy = $xlist) nolog 

Heckman selection model 
(regression model with sample selection) 

Log likelihood = -5838 . 39 7  

lny 

dy 

age 
female 

educ 
blhisp 
totchr 

ins 
cons 

age 
female 

educ 
blhisp 
totchr 

ins 
�cons 

/athrho 
/lnsigma 

rho 
sigma 

lambda 

Coef . 

.2122921 
. 349728 

.01 88724 
- . 2 196042 

.5409537 
- . 0295368 

5 . 037418 

. 0984482 

. 6436686 

.0702483 
- . 3726284 

.7946708 

. 1821233 
- . 7244413 

- . 124847 
. 2395983 

Std. Err. 

.022958 
.0596734 
. 0 105254 
.0594788 
.0390624 

. 051042 
.2261901 

.0269881 

. 0601399 

. 0 1 13404 

.0 617336 

.0710278 

. 0625485 
. 192427 

. 1466391 
. 0143319 

- . 1242024 .1443771 
1 .  270739 . 0 18212 

- . 1578287 . 1842973 

Number of obs 
Censored o bs 
Uncensored obs 

Wald chi2(6) 
Prob > chi2 

3328 
526 

2802 

294.42 
0 .  0000 

z P> l z l  [95% Conf. Interval] 

9 .  25 0. 000 
5 .86 0 . 000 
1 .  79 0 .073 

- 3 . 6 9  0 .  000 
13 . 85 0 . 000 
-0.58 0 . 563 
22.27 0 . 000 

3 . 6 5  0 . 000 
1 0 . 7 0  0 . 000 

6 . 19 0 . 000 
- 6 .04 0 . 000 
1 1 . 19 0 . 0 0 0  

2 . 91 0 . 004 
-3.76 0 . 000 

- 0 . 85 0 . 395 
1 6 . 7 2  0 . 000 

. 1672952 

.2327704 
- . 0017569 
- . 3361804 

.4643929 
- . 1295772 

4 . 594094 

. 0455526 

. 5257966 

. 0480216 
- . 4936241 

. 6554588 

. 0595305 
- 1 . 101591 

- . 4 1 22544 
. 2115084 

- . 3903852 
1 .  23554 

- .  5190448 

. 257289 
.4666856 
. 0395017 
- . 103028 
. 6175145 
. 0705037 
5 . 480743 

. 1513439 

. 7615407 
. 092475 

- .  2516328 
.9338827 
.304 7161 

- . 3472913 

. 1 625604 
. 2676882 

. 1 6 1 1435 
1 . 30694 

. 2033874 

LR test of indep. eqns . (rho = 0 ) : chi2 (1) 0 . 85 Prob > chi2 = 0 . 3569 

The log likelihood for this model is very slightly higher than that for the two-part 
model- �5,838.4 compared with �5,838.8 (see section 16 .5.3) . Consistent with this 
small difference is the finding that p = �0.124 with the 95% confidence interval [ �0.390, 
0.161] .  The likelihood-ratio test has a p-value of 0.36. Thus the estimated correlation 
between the errors is not significantly different from zero, and the hypothesis that the 
two parts are independent cannot be rejected. 

The foregoing conclusion should be treated with caution because the model is based 
on a bivariate normality assumption that is itself suspect. The two-step estimation, 
considered next, relies on a univariate normality assumption and is expected to be 
relatively more robust. 
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16.6.4 Two-step estimation 

The two-step method is based on the conditional expectation 

E(y2lx, y; > 0) = x;f32 + <T12.\(x�,(31) 
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(16.6) 

where .\(·) = ¢( ·)/iJ>(·) . The motivation is that because y� = x�,(32 + t:2, E(Y2 1x, Yi > 
0) = x�,(32+E(dyi > 0) and, given normality of the errors, E(dyi > 0) = o 12.\(xif31) . 

The second term in (16.6) can be estimated by ..\(xii31) ,  where ,i31 is obtained by 
pro bit re&:ession of Yl on x1.  The OLS regTession of y2 on x2 and the generated regres­
sor, .\(xif31), called the inverse of the Mills' ratio or the nonselection hazard, yields a 
semiparametric estimate of (,(32, 0"12). The calculation of the standard errors, however, 
is complicated by the presence in the regression of the generated regressor, .\(xi,i31). 

The addition of the twostep option to heckman yields the two-step estimator. 
* Heckman 2-step without exclusion restrictions 

. heckman lny $xlist, select(dy = $xlist) twostep 

Hec�n selection model -- two-step estimates Number of obs 3328 
(regression model with sample selection) Censored obs 526 

Uncensored obs 2802 

Wald chi2(6) 189.46 
Prob > chi2 0 . 0000 

Coef. Std. Err. z P> l z l  [95% Conf . Interval] 

lny 
ago . 202124 . 0242974 8.32 0 . 000 . 1545019 . 2497462 

female . 2891575 .073694 3 . 92 0 . 000 . 1447199 . 4335951 
educ .0119928 .011 6839 1 . 0 3  0 . 305 - . 0109072 . 0348928 

blhisp - . 1810582 .0 658522 -2.75 0 . 006 - . 3101261 - .  0519904 
totcl:Jr .4983315 . 0494699 10.07 0.000 .4013724 . 5952907 

ins - . 0474019 . 0531541 - 0 .89 0 . 373 - . 151582 . 0567782 
cons 5 . 302572 .2941363 18.03 0 . 000 4 .  726076 5 . 879069 

dy 
age . 097315 . 0270155 3 . 6 0  0 . 000 . 0443656 . 1502645 

female . 6442089 . 0601499 1 0 . 7 1  0 . 000 .5263172 . 7621006 
educ .0701674 . 0 1 13435 6 . 19 0 . 000 . 0479345 .0 924003 

blhisp - . 3744867 . 0617541 - 6 .06 0 . 000 - . 4955224 - . 2534509 
totchr . 7935208 .0711156 1 1 . 16 0 . 000 .6541367 .9329048 

ins . 1812415 . 0625916 2 . 9 0  0 . 004 .0585642 . 3039187 
cons - . 7 177087 . 1 924667 -3.73 0 . 000 - 1 . 094937 - . 3404809 

mills 
la.mbda - . 4801696 .2906565 -1 . 65 0 . 099 - 1 . 049846 . 0895067 

rho - 0 . 37130 
sigma 1 . 2932083 

lambda - . 4801696 .2906565 

The standard errors for the regTession coefficients, ,i32 , are computed, allowing for the 
estimation error of .\(xi,i31); see [R] heckman. · These standard errors are in general 
larger than those from the ML estimation. Although no standard error is provided for 
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rho= lambda/ sigma, the hypothesis of independence of .::1 and .::2 can be tested directly 
by using the coefficient of lambda, because from (16.6), this is the error covariance a-12 . 
The coefficient of lambda has a larger z statistic, -1.135, than in the ML case, and it 
is significantly different from zero at any p-value higher than 0.099. Thus the two-step 
estimator produces somewhat stronger evidence of selection than does the ML estimator. 

The standard errors of the two-step estimator are larger than those of the ML esti­
mator in part because the variable .A(x�,61) can be collinear with the other regressors in 
the outcome equation (xz). This is highly likely if x1 = xz , as would be the case when 
there are no exclusion restrictions. Having exclusion restrictions, so that x1 f xz, may 
reduce the collinearity problem, especially in small samples. 

16.6.5 Estimation with exclusion restrictions 

For more robust identification, it is usually recommended, as has been explained above, 
that exclusion restrictions be imposed. This requires that the selection equation have an 
exogenous variable that is excluded from the outcome equation. Moreover, the excluded 
variable should have a substantial (nontrivial) impact on the probability of selection. 
Because it is often hard to come up with an excluded variable that does not directly 
affect the outcome and does affect the selection, the investigator should have strong 
justification for imposing the exclusion restriction. 

We repf'at the computation of the two-step Heckman model with an additional 
regressor, income, in the selection equation. 

* Heckman MLE uith exclusion restriction 
. heckman lny $xlist, select(dy = $xlist income) nolog 

Heckman sel-ection model Number of obs 3328 
(regression model uith sample selection) Censored o bs 526 

Uncensored obs 2802 

Wald chi2(6) 288.88 
Log likelihood = -5836 .219 Prob > chi2 0 . 0000 

Coef. Std. Err. z P> l z l  [95% Conf . Interval] 

lny 
age . 2 1 1 9749 . 0230072 9 . 21 0 . 000 . 1668816 . 2570682 

:female .3481441 . 0601142 5.79 0.000 .2303223 .4659658 
educ . 0 18716 . 0 105473 1 .  77 0 . 076 - . 0019563 . 0393883 

blhisp - . 2185714 . 0596687 - 3 .66 0 . 000 - . 3355199 - . 101623 
totchr . 53992 . 0393324 13.73 0 . 000 .4628299 . 61701 

ins - . 0299871 . 0510882 -0. 59 0 . 557 - . 1301182 . 0701439 
cons 5 . 044056 . 2281259 2 2 . 1 1  0 . 000 4 . 596938 5 . 49 1 175 

dy 
age .0879359 . 027421 3 . 2 1  0 . 00 1  . 0341917 . 14168 

female .6626649 . 0609384 1 0 .87 0.000 . 5432278 .7821021 
educ .0619485 .0120295 5 . 15 0.000 . 0383711 . 0855258 

blhisp - .  3639377 .06 18734 -5.88 0 . 000 - . 4852073 - . 2426682 
totchr . 7969518 . 0711306 1 1 .2 0  0 . 000 . . 6575383 .9363653 

ins . 1701367 . 0628711 2. 71 0 . 007 .0469117 .2933618 
income .0027078 . 0013168 2 . 0 6  0 . 040 . 000127 . 0052886 

cons -. 6760546 . 1 940288 -3.48 0 . 000 - 1 . 056344 - . 2957652 
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/athrho - .1313456 . 1496292 - 0 .88 
/lnsigma . 2398173 . 0144598 1 6 .59 

rho - . 1305955 . 1470772 
sigma 1 . 271017 .0183786 

lambda - . 1659891 . 1 878698 

LR test of indep . eqns . (rho = 0) : chi2 ( 1 )  

0 .380 - .4246134 . 1 6 19222 
0 . 000 . 2 1 14767 . 268158 

- . 4008098 . 1605217 
1 .  235501 1 . 307554 

- . 5342072 .2022291 

0 . 9 1  Prob > chi2 = 0 . 3406 
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The results are only slightly different from those reported above, although income ap­
pears to have signifi.cant additional explanatory power. Furthermore, the use of this e.-<­
clusion restriction is debatable because there are reasons to expect that income should 
appear in the outcome equation also. 

16.7 Prediction from models with outcome 1n logs 

For the models considered in this chapter, conditional prediction is an important ap­
plication of the estimated parameters of the model. Such an exercise may be of the 
within-sample type, or it may involve comparison of fitted values under alternative sce­
narios, as illustrated in section 3.6. Whether a model predicts well within the sample 
is obviously an important consideration in model comparison and selection. 

Calculation and comparison of predicted values is relatively simpler in the levels form 
of the model because there is no retransformation involved. In the current analysis, the 
dependent variable is log transformed but one wants predictions in levels, and hence the 
retransformation problem, first mentioned in chapter 3, must be confronted. 

Table 16.2 provides expressions for the conditional and unconditional means for 
the three models with outcome in logs rather than levels, presented in sections 16.4-
16.6. The predictors are functions that depend upon the linear-index function, x'(3, 
and variance and covariance parameters, o-2, o-�, and O"J2. These formulas are derived 
under the twin assumptions of normality and homoskedasticity. The dependence of 
the predictor on vaiiances estimated under the assumption of homoskedastic errors is 
potentially problematic for all three models because if that asstunption is incorrect, then 
the usual estimators of variance and covariance parameters will be biased. 

(Continued on next page) 
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Table 16.2. Expressions for conditional and unconditional means 

Moment Model Prediction function 

E(yix,y > 0) Tobit exp(x'/3 + � /2) [1 - \'!?{ (/ - x' !3)/ cr} ]- 1  
{ 1 - \1>(/ - x'/3 - a-2)/cr} 

E(yix) Tobit exp(x' !3 + a-2 /2){1 - \'!?(/ - x' f3 - a-2)/a-} 

E(y2ix, Y2 > 0) Two-part exp(x�/32 + a-�/2) 

E(y2ix) Two-pa.rt exp(�/32 + o-�/2)\i?(xi/31) 

E(y2ix, Y2 > 0) Selection exp(x2,62 + a-�/2) { 1 - \'!?( -x�/31)}-
1 

{1 - \'!?( -xi/31 - a-?2) } 

E(y2 ix) Selection exp(xi/32 + cr�/2){1 - \1> (-�!31 - a-?2) } 

16.7 .1 Predictions from tobit 

We begin by estimating E(ylx) and E(yix,y > 0) for the tobit model in logs . 

. * Prediction from tobit on lny 
• generate yhat � exp(xb+0 .5•sigma-2 ) • ( 1-normal ( ( gamma-xb-sigma-2)/sigma) ) 

. generate ytrunchat � yhat I (1 - normal (threshold)) if dy��l 
(526 missing values generated) 

summarize y yhat 

Variable 

y 
yhat 

Obs Mean 

3328 1386 .519 
3328 45805 . 9 1  

summarize y yhat ytrunchat i f  dy��l 

Variable Obs Mean 

y 2802 1646.8 
yhat 2802 5327 1 . 5  

ytrunchat 2802 53536 .84 

Std. Dev. Min Max 

2530.406 0 49960 
273444 . 6  133.9767 1 . 09e+07 

Std. Dev.  Min Max 

2678 .914 1 49960 
297386 . 3  283.4537 1 . 09e+07 
297376 . 5  383. 6245 1 .09e+07 

The estimates, denoted by yhat and ytrunchat, confirm that these predictors are very 
poor. Mean expenditure is overpredicted in both cases and more so in the censored 
case. The reported results reflect the high sensitivity of the estimator to estimates of 
a2 . 

16.7.2 P redictions from two-part model 

Predictions of E(y2ix) and E(y2ix, Y2 > 0) from the two-part model are considerably 
better but still biased. We first transform the fitted log values from the conditional part 
of the two-part model, assuming normality. 
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* Two-part model predictions 
quietly probit dy $xlist 

predict dyhat , pr 

quietly regress lny $xlist if dy��1 

predict xbpos J  xb 

generate yhatpos � exp(xbpoz+0 .5•e (rmse)-2) 
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Next we generate an estimate of the unconditional values, denoted by yhat2step, by 
multiplying by the fitted probability of the positive expenditure dyhat from the probit 
regression. 

* Unconditional prediction from tuo-part model 
generate yhat2step � dyhat•yhatpos 

summarize yhat2step y 

Variable Obs Mean Std. Dev . 

yhat2step 3328 1680 . 978 2012. 084 
y 3328 1386 .519  2530.406 

summarize yha tpos y if dy��1 

Variable Obs Mean Std. Dev. 

yhatpos 2802 1995.981 2087 .072 
y 2802 1646 . 8  2678.914 

Min Max 

87. 29432 40289 .03 
0 49960 

Min Max 

430. 8354 40289 .03 
49960 

The mean of the predicted values is considerably clo�er to the sample average than to 
the corresponding tobit estimator, confi.rming the greater robustness of the two-part 
model. 

16.7.3 Predictions from selection model 

Finally, we predict E(y2 lx) and E(y2lx, y2 > 0) for the selection model. 

* Heckman model predictions 
quietly heckman lny $xlist, select(dy $xlist) 

predict probp osJ psel 

predict x1b 1 ,  xbsel 

predict x2b2, xb 

scalar sig2sq � e(sigma) -2 

scalar sig12sq = e(rho)•e( sigma) - 2  

display 11sigma1sq = P " sigma12sq � , .  sig12sq , .  sigma2sq = . .  sig2sq 
sigma1sq � 1 sigma12sq � - . 20055906 sigma2sq � 1. 6147766 

generate yhatheck � exp(x2b2 + 0 . 5 • ( s ig2sq) ) • ( l  - normal (-x1b1-sig12sq)) 

generate yhatposheck � yhatheck/probpos 

summarize yhatheck y probpos dy 

Variable Obs Mean Std . . Dev. Min Max 

yhatheck 3328 1659 . 802 1937. 095 74.32413 37130 . 18 
y 3328 1386 .519 2530:406 0 49960 

probpos 3328 .84 15738 . 1411497 .2029135 
dy 3328 . 8419471 .3648454 0 
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summarize yhatposheck probpos dy y if dy==1 

Variable Obs Mean Std. Dev. Min Max 

yhatposheck 2802 1970. 923 2003.406 389.4755 37130 . 18 
probpos 2802 . 8661997 . 1237323 . 2867923 1 

dy 2802 0 1 
y 2802 1646.8 2678.914 49960 

Qualitatively, the predictions from the se:lection model, denoted by yhatheck, are closer 
to those from the two-part model than to the to bit, as expected. The main difference 
from the two-part model comes from the dependence of the conditional mean on the 
covariance, which is unrestricted. The larger the covariance, the more likely is a greater 
difference between the two models. Although its predictions exhibit a positive bias, the 
selection model avoids the extremely large errors of prediction of the to bit model. 

The poor prediction performance of the to bit model confirms the earlier conclusions 
about its unsuitability for modeling the current dataset. 

1 6 . 8  Stata resources 

For tobit estimation, the relevant entries are [R] tobit, [R] tobit postestimation, 
[R] ivtobit, and [R] intreg. Useful user-written commands are clad and tobcm. Various 
marginal effects can be computed by using mfx with several different predict options. 
For to bit panel estimation, the relevant command is [XT] xttobit, whose application is 
covered in chapter 18. 

16.9  Exercises 

1. Consider the "linear version" of the to bit model used in this chapter. Using tests 
of homoskedasticity and normality, compare the outcome of the tests with those 
for the log version of the model. 

2. Using the linear form of the to bit model in the preceding exercise, compare average 
predicted expenditure levels for those with insurance and those without insurance 
(ins=O) .  Compare these results with those from the tobit model for log(ambexp) . 

3. Suppose we want to study the sensitivity of the predicted expenditure from the 
log form of the to bit model to neglected homoskedasticity. Observe from the table 
in section 16.7 that the prediction formula involves the variance parameter, J 2 , 
that will be replaced by its estimate. Using the censoring threshold 0, draw a 
simulated heteroskedastic sample from a lognormal regression model with a single 
exogenous variable. Consider two levels of heteroskedasticity, low and high. By 
considering variations in the estimated J2 , show how the resulting biases in the 
estimate of J2 from the homoskedastic tobit model lead to biases in the mean 
prediction. 
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4 .  Repeat the simulation exercise using regression errors that are drawn from a x2(5) 
distribution. Recenter the simulated draws by subtracting the mean so that the 
recentered errors have a zero mean. Summarize the results of the prediction 
exercise for this case. 

5. A conditional predictor for levels· E(yix, y > 0) mentioned in section 3.6, given pa­
rameters of a model estimated in logs, is exp(x'/3)N-l. I:i exp(£.; ) .  This expression 
is based on the assumption that c:i are independent and identically distributed but 
normality is not assumed. Apply this conditional predictor to both the parameters 
of the two-part and selection models estimated by tbe two-step procedure, and 
obtain estimates of E(yix, y > 0) and E(ylx). Compare the results with those 
given in section 16.7. 

6. Repeat the calculations of scores, gres1, and gres2 reported in section 1G.4.6. 
Test that the calculations are done correctly; all the score components should 
have a zero-mean property. 
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17.1 Introduction 

In many contexts, the outcome of interest is a nonnegative integer, or a count, denoted 
by y, y E No = {0, 1, 2, . . .  }. Examples can be found in demography, economics, 
ecology, environmental studies, insurance, and finance, to mention just a few of the 
areas of application. 

The objective is to analyze y in a regression setting, given a vector of K covariates, 
x. �ecause the response variable is discrete, its distribution places probability mass at 
nonnegative integer values only. Fully parametric formulations of count models accom­
modate this property of the distribution. Some semi parametric regression models only 
accommodate y 2: 0 but not discreteness. Count regressions are nonlinear; E(y ix) is 
usually a nonlinear function, most commonly a single-index function like exp(x' {3) .  Sev­
eral special features of count regression models are intimately connected to discreteness 
and nonlinearity. 

;lome of the standard compEcations in analyzing count data include the following: 
presence of tmobserved heterogeneity akin to omitted variables; the small-mean property 
of y as manifested in the presence of many zeros, sometimes an "excess" of zeros; 
truncation in the observed distribution of y; and endogenous regressors. To deal with 
these topics, it is necessary to go beyond the basic commands in Stata. 

The chapter begins with the basic Poisson and negative binomial models, using the 
poisson and nbreg commands, and then details some standard extensions includjng 
the hurdle, finite-mixture, and zero-inflated models. The last part of the chapter deals 
with complications arising from endogenous regressors. 

17.2 Features of count data 

The natural starting point for analyses of counts is the Poisson distribution and the 
Poisson model. The univariate Poisson distribution, denoted by Poisson(Yifl-), for the 
number of occurrences of the event y over a fixed exposure period has the probability 
mass function 

e-l'fl-?J 
Pr(Y = y) = -­

y!  
, 
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· y = 0, 1 , 2, . . .  (17.1 )  
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where p. is the intensity r ,neter. The first two moments are 

E(Y) = p. 

Var(Y) = �t (17.2) 

This shows the well-known ,1ality of mean and variance property, also called the 
equidispersion property of the Poisson distribution. 

The standard mean parameterization is p. = exp(x'/3) to ensure that ,u > 0. This 
implies, based on (17.2), that the model is intrinsically heteroskedastic. 

17.2.1 Generated Poisson data 

To illustrate some features of Poisson-distributed data, we use the rpoissonO func­
tion, introduced in an update to Stata 10, to make draws from the Poisson(yl�� = 1)  
distribution. 

* Poisson (mu�1) generated data 
quietly set obs 10000 

set seed 10101 II set the seed 

generate xpois= rpoisson( 1 ) II draw from Poisson(mu�1) 

summarize xpois 

Variable Obs ·Mean Std. Dev. M�n Max 

xpois 10000 . 9933 1 . 001077 0 6 

tabulate xpois 

xpois Freq. Percent Cum .  

0 3,721 3 7 . 2 1  37.21  
3 , 653 3 6 . 5 3  73.74 

2 1 , 834 18.34 92 . 08 
3 607 6 . 0 7  9 8 . 1 5  
4 142 1 . 42 99 . 57 
5 35 0 . 35 99.92 
6 8 0 . 0 8  100.00 

Total 1 0 , 00 0  100.00 

The expected frequency of zeros from (17.1) is Pr(Y = OIJ..t = 1)  = e- 1 
= 0.368. The 

simulated sample has 37.2% zeros. Clearly, the larger is p., and the smaller will be the 
proportion of zeros; e.g., for J.! = 5, say, the expected proportion of zeros will be just 
0.0067%. For data with a small mean, as for example in the case of number of children 
born in a family (or annual number of accidents or hospitalizations), zero observations 
are an important feature of the data. Further, when the mean is small, a high proportion 
of the sample will cluster on a relatively few distinct values. In this example, about 
98% of the observations cluster on just four distinct values. The generated data also 
reflect the equidispersion property, i.e., equality of mean and variance of Y,  because the 
standard deviation and hence variance are close to 1 .  
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The equidispersion property is commonly violated in applied work, because overdis­
persion is common. Then the (conditional) variance exceeds the (conditional) mean. 
Such additional dispersion can be accounted for in many· ways, of which the presence of 
unobserved heterogeneity is one of the most common. 

Unobserved heterogeneity, which generates additional variability in y, can be gen­
erated by int_roducing multiplicative randomness. We replace fL with �!V, where v is a 
random variable, hence y � Poisson(yjpv). Suppose we specify I-' such that E(v) = 1 
and Var(v) = (72 Then it is straightforward to show that v preserves the mean but 
increases dispersion. Specifically, E(y) = J.l and Var(y) = �1(1 + fL[72 ) > E(y) = .fL. 
The term "overdispersion" describes the feature Var(y) > E(y), or more precisely 
Var(yjx) >E(yjx),  in a regression model. 

In the well-known special case that v � Gamma(l, a) ,  where a 'is the variance param­
eter of the gamma distribution, the marginal distribution of y is a Poisson-gamma mix­
ture with a closed form-the negative binomial (NB) distribution denoted by NB(JL, a)­
whose probability mass function is 

r(a-1 + y) ( a-1 ) "'_, ( fL ) ll Pr(Y = Y IJ.l, a) = r(a_1 )f(y + l )  a-1 + J.l fL + a-1 
(17.3) 

where f(·) denotes the gamma integral that �pecializes to a factorial for an integer argu­
ment. The NB model is more general than the Poisson model, because it accommodates 
overdispersion and it reduces to the Poisson model as a -• 0. The moments of the NB2 
are E(yj}.l, a) = �� and Var(yjp, a) = ft(l + a�1). Empirically, the quadratic variance 
function is a versatile approximation in a wide variety of cases of overdispersed data. 

The NB regression model lets J.l = exp(x' /3) and leaves a as a constant. The default 
option for the NB regTession in Stata is the version with a quadratic variance (NB2). 
Another variant of NB in the literature has a linear variance function, Var(yiJ.l, a) = 
(1 + a)�1, and is called the NBl model. See Cameron and Trivedi (2005, ch. 20.4). 

Using the mixture interpretation of the NB model, we simulate a sample from the 
NB(p = 1, a = 1) distribution. We first use the rgamma (1 ,  1) function to obtain the 
gamma draw, v, with a mean of 1 x 1 = 1 and a variance of a = 1 x 12 = 1; see 
section 4.2.4. We then obtain Poisson draws with J.LV = 1 x v = v ,  using the rpoissonO 
function with the argument 7}. 

* Negative binomial (mu=l var=2) generated data 
set seed 10101 // set the seed ! 
generate :<g = rgamma (1 , 1) 

generate xnegbin = rpoisson(xg) I I . NB generated as a Poisson-gamma mixture 

summarize xnegbin 

Variable Obs Mean Std. Dev. Min 

xnegbin I 10000 1 .  0059 1 . 453092 0 17 
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tabulate :cc.egbin 

xnegbin Freq. 

0 5, 048 
1 2,436 
2 1 , 264 
3 607 
4 324 
5. 151 
6 78 
7 46 
8 19 
9 1 1  

1 0  9 
1 1  3 
1 2  
1 4  
1 6  
17 

Total 1 0 ,000 
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Percent Cum. 

50.48 50 .48 
24.36 74.84 
1 2 . 64 87.48 

6 . 07 93.55 
3 . 24 96.79 
1 . 5 1  98.30 
0.78 9 9 . 08 
0 . 46 9 9 . 54 
0 . 1 9  9 9 . 7 3  
0 . 1 1  99 .84 
0 . 0 9  9 9 . 9 3  
0 . 03 9 9 . 9 6  
0 . 01 99.97 
0 . 01 99 .98 
0 . 01 9 9 . 9 9  
0 . 0 1  1 0 0 . 0 0  

1 0 0 . 0 0  

As expected, the mean is close to 1 and the variance of 1.452 = 2 .10 is close to (1+1) x 1 = 
2. Relative to the Poisson(1)  pseudorandom draws, this sample has more zeros, a longer 
right tail, and a variance-to-mean ratio in excess of 1 .  These features are a consequence 
of introducing the multiplicative heterogeneity term. 

The rnbinomial O function can instead be used to make direct draws from the NB 
distribution, but because it uses an alternative parameterization of the NB distribution, 
it is easier to use the above Poisson�gamma mixture. 

17 .2 .3 Modeling strategies 

Given (17.1), Jt = exp(x'/3), and the assumption that the observations (Yi lxi) are in­
dependent, Poisson maximum likelihood (ML) is often the starting point of a modeling 
exercise, especially if the entire distribution and not just the conditional mean is the 
object of interest. 

Count data are often overdispersed. One approach is to maintain the conditional 
mean assumption E(ylx) = exp(x' j3). Then one can continue to use the Poisson maxi­
mum likelihood estimator (MLE), which retains its consistency, but relax the equivari­
ance assumption to obtain a robust estimate of the variance�covariance matrix of the 
estimator (VCE). Alternatively, the NB model, which explicitly models overdispersion, 
can be used with estimation by ML. 

A quite different approach is still parametric but broader, in the sense that both the 
conditional mean and variance functions are allowed to be more flexible than the Poisson 
modeL In particular, now E(ylx) i= exp(x' /3). The empirical examples in sections 17.3 
and 17.4 illustrate several alternatives to the Poisson modeL 
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17 .2.4 Estimation methods 

ML is the basic estimation method for a variety of count models that will be covered 
in the rest of this chapter. Nonlinear estimation based only on the exponential condi­
tional mean moment condition is also feasible, using nonlinear regression or generalized 
method of moments (GMM), covered in chapters 10 and 11 .  Although chapters 10 and 11 
explicitly covered only the Poisson and NB models, the programs provided there can be 
extended to other count models. Wbereas ML is widely used, the GMM estimators are of 
special interest when the relationship of interest includes endogenous regressors. Stata 
also provides inference methods for count models within the generalized linear models 
(GLM) class. These models may differ in their parameterizations, but the estimation 
methods used are either ML or nonlinear generalized least squares (GLS). 

17.3 Empirical exa mple 1 
In this section, we will estimate several parameters of count-data models for the annual 
number of doctor visits (docvis). The models are Poisson, NB2, and richer extensions 
of these models. The example in section 17.4 also considers the complication of excess 
zeros. 

17.3.1 Data summary 

The data are a cross-section sample from the U.S. Medical Expenditure Panel Survey 
for 2003. We model the annual number of doctor visits (docvis) using a sample of the 
Medicare population aged 65 and higher. 

The covariates in the regressions are age (age), squared age (age2), years of educa­
tion (educyr), presence .of activity limitation (actlim), number of chronic conditions 
(totchr), having private insurance that supplements Medicare (private), and hav­
ing public Medicaid insurance for low-income individuals that supplements Medicare 
(medicaid). 

Summary statistics for the dependent variable and regressors are as follows: 

* Summary statistics for doctor visits data 
use musl7dat a.dta 

global xlist private medicaid age age2 educyr actlim totchr 

summarize docvis $xlist 

Variable Obs Mean Std. Dev. Min Max 

docvis 3677 6 . 822682 7. 39.4937 0 144 
private . 3677 .4966005 .5000564 0 1 

medicaid 3677 . 166712 .3727692 0 1 
age 3677 74. 24476 6 . 376638 65 90 

age2 3677 5552.936 958.9996 4225 8100 

educyr 3677 1 1 . 18031 3 . 827676 0 17 
act lim 3677 .333152 .4714045 0 1 
totchr 3677 1 . 843351 1 . 350026 0 8 
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The sampled individuals are aged 65-90 years, and a considerable portion have an 
activity limitation or chronic condition. The sample mean of docvis is 6.82, and the 
sample variance is 7.392 = 54.61, so there is great overdispersion. 

For count data, one should always obtain a frequency distribution or histogram. To 
reduce output, we create a variable, dvrange, with counts of 11-40 recoded as 40 and 
counts of 41-143 recoded as 143. We have 

. • Tabulate docvis after receding values > 10 to ranges 11-40 or 41-143 
_ generate dvrange = docvis 

. recade dvrange (11/40 = 40) (41/143 = 143) 
(dvrang e: 786 changes made) 

tabulate dvrange 

dvrange Freq. Percent Cum. 

0 401 1 0 . 9 1  1 0 . 9 1  
1 314 8.54 19.45 
2 358 9.74 29 . 18 
3 334 9 . 08 38.26 
4 339 9.22 47.48 
5 266 7.23 54.72 
6 231 6 . 28 6 1 . 00 
7 202 5 . 49 66.49 
8 179 4.87 7 1 . 36 
9 154 4 . 19 75 . 55 

10 108 2.94 78.49 
40 774 2 1 . 05 99.54 

143 1 6  0 . 44 99 . 97 
144 0 . 03 1 0 0 . 0 0  

Total 3 , 677 100.00 

The distribution has a long right tail. Twenty-two percent of observations exceed 10, and 
the maximum is 144. More than 99% of the values are under 40. The proportion of zeros 
is 10.9%. This is relatively low for this type of data, partly because the data pertain to 
the elderly population. Samples of the younger and usually healthier population often 
have as many as 90% zero observations for some health outcomes. 

17.3.2 Poisson model 

For the Poisson model, the probability mass function is the Poisson distribution given 
in (17 .1) ,  and the default is the exponential mean parameterization 

J.ti = exp(x_;/3), i = 1, . . . , N (17.4) 

where by assumption there are K linearly independent covariates, usually including a 
constant. This specification restricts the conditional mean to be positive. 

The Poisson MLE, denoted by {3p, is the solution to K nonlinear equations corre­
sponding to the ML first-order conditions 

(17.5) 
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If Xi includes a constant term, then the residuals y, - exp(x;/3) sum to zero based on 
(17 .5). Because the log-likelihood function is globally concave, the iterative solution 
algorithm, usually the Newton-Raphson (see section 11 .2) ,  converges fast to a unique 
global maximum. 

By standard ML theory, if the Poisson model is parametrically correctly specified, 
the estimator /3 p is consistent for {3, with a covariance matrix estimated by 

V(/3p) = (�;Lix;x:) -l (17.6) 

where /l;. = exp(x',/3p). We show below that it is usually very misleading to use (17.6) 
to estimate the VCE of /3 p, and we present better alternative methods. 

The Poisson MLE is implemented with the poisson command, and the default esti­
mate of the VCE is that in (17.6). The syntax for poisson, similar to that for regress, 
is 

poisson depvar [ indepvars J [ if J [ in ]  [ weight ] [ , options ] 

The vee (robust) option yields a robust estimate of the VCE. 

Two commonly used options are offset () and exposure( ) .  Suppose regressor z 
is an exposure variable, such as time. Then, as z doubles, we expect the count, y, to 
double. Then E(ylz, x2) = z exp(xif3) = exp(lnz  + xif3). If the variable z appears in 
the regressor list, this constraint is imposed by using the offset (z) option. If instead 
the variable lnz = ln(z) appears in the regressor list, this constraint is imposed by using 
the exposure (l=l option. 

Poisson model results 

We first obtain and discuss the results for Poisson ML estimation. 

. * Poisson u:i:th default ML standard errors 

. poisson docvis $xlistJ nolog 

Poisson regression 

Log -likelihood = -15019 . 64 

docvis Coef. Std. Err. z 

private . 1422324 . 0 143311 9 . 92 
medicaid . 0970005 . 0189307 5 . 12 

ago . 2936722 . 0259563 1 1 . 31 
age2 - . 0019311 .0001724 - 1 1 .20 

educyr . 0295562 . 001882 1 5 . 7 0  
actlim . 1 864213 . 014566 1 2 .80 
totchr .2483898 . 0046447 53.48 

cons - 1 0 . 18221 .9720115 -10.48 -

Number of obs 
LR chi2(7) 
Prob > chi2 
Pseudo R2 

P > l z l  [95% Conf. 

0 . 000 . 1 14144 
0 . 000 . 0598969 
0 . 000 . 2427988 
0 . 000 - . 0022691 
0 . 000 . 0258676 
0 . 000 . 1578726 
0 . 000 .2392864 
0 . 000 -12. 08732 

3677 
4477 .98 

0 . 0000 
0 . 1297 

I�terval] 

. 1 703208 
. 134104 

.3445457 
- . 0015931 

.0332449 

.2 149701 

.2574933 
-8. 277101 
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The top part of the output lists sample size, the likelihood-ratio (LR) test for the joint 
significance of the seven regressors, the p-value associated with the test, and the pseudo­
R2 statistic that is intended to serve as a measure of the goodness of fit of the model 
(see section 10.7.1). On average, docvis in increasing in age, education, number of 
chronic conditions, being limited in activity, and having either type of supplementary 
health insurance. These results are also consistent with a priori expectations. 

Another measure of the fit of the model is the squared coefficient of correlation 
between the fitted and observed values of the dependent variable. This is not provided 
by poisson but is easily computed as follows: 

. * Squared correlation betueen y and yhat 

. drop yphat 

. predict yphat , n 

. quietly correlate docvis yphat 

. display 11Squared correlation betueen y and yhat = " r(rho) .... 2 
Squared correlation betYeen y and yhat = . 1530784 

The squared correlation coefficient is low but reasonable for cross-section data. 

The variables in the Poisson model appear to be highly statistically significant, but 
this is partly due to gTeat underestimation of the standard errors, as we explain next. 

Robust estimate of VCE for Poisson M LE 

As explained in section 10.3.1, the Poisson MLE retains consistency if the cmmt is not 
actually Poisson distributed, provided that the conditional mean function in (17.4) is 
correctly specified. 

When the count is not Poisson distributed, but the conditional mean function is 
specified by (17.4), we can use the pseudo-ML or quasi-ML approach, which maximizes 
the Poisson MLE but uses the robust estimate of the VCE, 

where /l; = exp(x�,Bp).  That is, we use the Poisson MLE to obtain our point estimates, 
but we obtain robust estimates of the VCE. With overdispersion, the variances will be 
larger using (17.7) than (17.6) because (17.7) reduces to (17.6),  but with overdispersion, 
(y; -/li)2 > jh, on average. In the rare case of underdispersion, this ordering is reversed. 

This preferred estimate of the VCE is obtained by using the vee (robust) option of 
poisson. We obtain 
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. * Poisson ui th robust standard errors 

. poisson docvis $xlist, vce (robust) nolog II Poisson robust SEs 
Poisson regression 

Log pseudolikelihood = -15019.64 

Robust 
docvis Coef. Std. Err. 

private . 1422324 . 036356 
medicaid . 0970005 . 0568264 

age .2936722 . 0629776 
age2 - . 0019311 .0004166 

educyr .0295562 . 0048454 
act lim . 1864213 . 0396569 
totchr .2483898 . 0 125786 

_cons -10. 18221 2 . 369212 

z 

3 . 91 
1 .  7 1  
4 . 66 

-4.64 
6 . 1 0  
4.70 

19.75 
-4.30 

Number of obs 
Wald chi2(7) 
Prob > chi2 
Pseudo R2 

P> l z l  [95% Conf. 

0 . 000 . 070976 
0 . 088 - . 0 143773 
0 . 000 . 1702383 
0 . 000 - . 0027475 
0 . 000 .0200594 
0 . 000 . 1086953 
0.000 . 2237361 
0 . 000 -14.82578 

3677 
720.43 
0 . 0000 
0 . 1297 

Interval] 

. 2 134889 

.2083783 

.4171061 
- . 00 1 1 147 

. 039053 
. 2641474 
.2730435 

-5. 538638 

Compared with the Poisson MLE, the robust standard errors are 2-3 times larger. This 
is a very common feature of results for Poisson regression applied to overdispersed data. 

Test of overdispersion 

A formal test of the null hypothesis of equidispersion, Var(ylx) = E(ylx). against the 
alternative of overdispersion can be based on the equation 

Var(ylx) = E(yix) + a? E(yix) 

which is the variance function for the NB2 model. We test Ho : a =  0 against H1 : a > 0. 

The test can be implemented by an auxiliary regression of the generated dependent 
variable, { (y - /1)2 - y }  //1 on /1, without an intercept term, and performing a t test of 
whether the coefficient of /1 is zero; see Cameron and Trivedi (2005, 670-671) for details 
of this and other specifications of overdispersion. 

* Overdispersion test against V(ylx)  = E(ylx)  + a•{E( ylx) -2} 
quietly poisson docvis $xlist, vce (robust) 

predict muhat , n 

quietly generate ystar = ( (docvis-muhat) - 2  - docvis) /muhat 

regress ystar muhat , noconstant noheader 

ystar Coef. Std. Err. t P> l t l  [95% Conf . Interval] 

muhat . 7047319 . 1 035926 6.80 0 . 000 .5016273 .9 078365 

The outcome indicates the presence of significant overdispersion. One way to model 
this feature of the data is to use the NB model. But this commonly chosen alterna­
tive is by no means the only one. For exan1ple, we can simply use poisson with the 
vce (robust) option. 
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Coefficient interpretation and marginal effects 

Section 1 0.6 discusses coefficient interpretation and marginal effects (MEs) estimation, 
both in general and for the exponential conditional mean, exp(x' {3). From section 10.6.4, 
for the exponential conditional mean, the coefficients can be interpreted as a semielas­
ticity. Thus the coefficient of educyr of 0.030 can be interpreted as one more year of 
education being associated with a 3.0% increase in the number of doctor visits. The 
irr option of poisson produces exponentiated coefficients, ejj, that can be given a· mul­
tiplicative interpretation. Thus one more year of education is associated with doctor 
visits increasing by the multiple e0·030 �1.030. 

The ME of a unit change in a continuous regressor, Xj, equals 8E(ylx)/8xj = 
/3j exp(x'{3), which depends on the evaluation point, x. From section 10.6.2, there 
are three standard ME measures. It can be shown that for the Poisson model with an 
intercept, the average marginal effect (AME) equals {Jj'y. For example, one more year 
of education is associated with 0.02956 x 6.823 = 0.2017 additional doctor visits. The 
same result, along with a confidence interval, can be obtained by using the user-written 
margeff command. We obtain 

. * Average marginal effect for Poisson 
quietly poisson docvis $xlist, vce (robust) 

. estimates stor0 Poisson 

. margeff 

II Poisson default SEs 

Average marginal effects on E(docvis) after poisson 

docvis Coef . Std. Err. z P> l z l  [95% Conf . Interval] 

private . 9701905 . 2473149 3 . 92 0 . 000 . 4854621 1 . 454919 
medicaid . 6830661 .4153252 1 . 64 0 . 100 - . 1309564 1 . 497088 

age 2 .003632 .4303318 4.66 0 . 000 1 . 1 60197 2 . 847067 
age2 - . 0 131753 .0028388 -4.64 0 . 000 - . 0187392 - .  0076114 

educyr . 2016526 . 0337844 5 . 97 0 . 000 . 1354364 .2678689 
actlim 1 . 295942 .2850588 4 . 55 0 . 000 . 7372371 1 . 854647 
totchr 1 .694685 .0910122 18.62 0 . 000 1 . 5 16304 1 . 873065 

For example, one more year of education is associated with 0.202 additional doctor 
visits. The output also provides confidence intervals for the ME. The ME at the mean 
(MEM) is the default option for the postestimation mfx command. The mfx command 
can also be used to compute the ME at a representative value (MER). 

17.3.3 NB2 model 

The NB2 model with a quadratic variance function is consistent with overdispersion gen­
erated by a Poisson-gamma mixture (see sectioi1 17.2.2), but it can also be considered 
simply as a more fi.exible functional form for overdispersed count data. 

The NB2 model MLE, denoted by ;3N82 , maximizes the log likelihood based on the 
probability mass function {17.3), where again f.t = exp(x'/3), whereas a is simply a 



1 7.3.3 NB2 model 563 

constant parameter. The estimators ,BNBZ and ONB2 are the solution to the K + 1 
nonlinear equations corresponding to the ML first-order conditions 

N y; � p,; L·i=l 1 + O.J.Li 
X;; = 0 

"\:"'N [ 1 { ( ) "\:"'1f, - l  1 } Yi - fl.; ] L-i=l aZ ln 1 + O.f.l.; - L-j=O (j + a l) + a (1 + ap,;) = 0 

(17.8) 

The K-element {3 equations, the first line in (17.8), are in general different from (17.5) 
and are sometimes harder to solve using the iterative algorithms. Very large or small 
values of a can generate numerical instability, and convergence of the algorithm is not 
guaranteed. · 

Unlike the Poisson MLE, the NB2 MLE is not consistent if the variance specification 
Var(yl,u, a) = J.t(1 + a�-t) is incorrect. However, this quadratic. specification is often 
a very good approximation to a more general variance function, a feature that might 
explain why this model usually works well in practice. The variance function parameter, 
a, enters the probability equation (17.3). This means that the probability distribution 
over the counts depends upon a, even though the conditional mean does not. It follows 
that the fitted probability distribution of the NB can be quite different from that of the 
Poisson, even though the conditional mean is similarly specified in both. If the data 
are indeed overdispersed, then the NB model is preferred if the goal is to model the 
probability distribution and not just the conditional mean. 

The NB model is not a panacea. There are other reasons foroverdispersion, including 
misspecification due to restriction to an exponential conditional mean. Alternative 
models are presented in sections 17.3.5 and 17.3.6. 

The partial syntax fqr the MLE for the NB model is similar to that for the poisson 
command: 

nbreg depvar [ indepvars ] [ if ]  [ in ]  [ weight ] [ , options ] 

The vee (robust)-option. can be used if the variance specification is suspect, but in 
practice, the default is used and nsually differs little from vee (robust) . The default 
fits an NB2 model, and the dispersion(constant) option fits an NBl modeL 

N B2 model results 

Given the presence of considerable overdjspersion in our data, the NB2 model should be 
considered. We obtain 

(Continued on next page) 
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. * Standard negative binomial (NB2) llith default SEs 

. nbreg docvis $xlist, nolog 

Negative binomial regression 

Dispersion = mean 
Log likelihood = -10589.339 

docvis Coef. 

private . 1640928 
medicaid . 100337 

age . 2941294 
age2 - . 0019282 

educyr . 0286947 
act lim . 1895376 
totchr . 2776441 

cons - 1 0 . 29749 

/lnalpha - . 4452773 

alpha . 6406466 

Std. Err. z 
. 0332186 4 . 9 4  
. 0454209 2 . 2 1  
. 0601588 4.89 
. 0004004 -4.82 
. 0042241 6 .  79 
. 0347601 5 . 45 
. 0121463 . . , 22.86 
2 .  247436 -4.58 

. 0306758 

.0196523 

Likelihood-ratio test of alpha= O:  chibar2 (01) 

Number of obs 
LR chi2 (7) 
Prob > chi2 
Pseudo R2 

P> l z l  [95% Conf . 

0 . 000 . 0989856 
0 . 027 . 0 1 13137 
0 . 000 . 1762203 
0 . 000 - . 0027129 
0 . 000 . 0204157 
0 . 0 0 0  . 121409 
0 . 000 .2538378 
0 . 000 -14.70238 

- . 5054007 

. 6032638 

3677 
773.44 
0 . 0000 
0 . 0352 

Interval] 

. 2292001 

. 1893603 

. 4120384 
- . 00 1 1434 

. 0369737 

. 2576662 

.3014505 
- 5 . 892595 

- . 3851539 

. 6803459 

886 0 . 6 0  Prob>;chibar2 = 0 . 000 

The parameter estimates are all within 15% of those for the.Poisson MLE and are often 
much closer than this. The standard errors are 5%-20%. smaller, indicating .efficiency 
gains due to using a more appropriate parametric model. The parameters and MEs are 
interpreted in the same way as for a Poisson model, because both models have the same 
conditional meaa . .  

The NB2 estimate of the over dispersion parameter of 0.64 is similar to the 0.70 from 
the auxiliary regression used in testing for overdispersion. The computer output also 
includes a LR test of Ho: a = 0, and l:iere it is conclusively rejected. The improvement 
in log likelihood is { -10589.3 - ( -15019.6)} = 4430.3, at the cost of one additional 
overdispersion parameter, a. The LR statistic is simply twice this value, leading to a 
highly significant LR test statistic. Recall that a may be interpreted as a measure of 
the variance of heterogeneity; it is significantly different from zero-a result that is 
consistent with large improvement in the fit of the model. 

The pseudo-R2 is 0.035 compared with the 0.130 for the Poisson model. This dif­
ference, a seemingly worse fit for the Poisson model, is because the pseudo-R2 is not 
directly comparable across classes of models, here NB2 and P6iss6n . 

More directly comparable is the squared correlation between fitted and actual counts. 
We obtain 

* Squared correlation betYeen y and yhat 
predict ynbha t, n 

quietly correlate docvis ynbhat 

display 11Squared correlation betYeen y and yhat = " r(rho ) � 2  
Squared correlation bet-ween y and yhat = . 14979846 
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This is similar to the 0.153 for the Poisson model, so the two models provide a similar fit 
for the conditional mean. The real advantage of the NB2 model is in fitting probabilities, 
considered next. 

Fitted probabilities for Poisson and NB2 models 

To get more insight into the improvement in the fit, we should compare what the pa­
rameter estimates from the Poisson and the NB2 models imply for the fi tted probability 
distribution of docvis. 

Using the fitted models, we can compare actual and fi.tted cell frequencies of docvis. 
The fitted cell frequencies are calculated by using P( i, y ), i = 1 ,  2, . . . , N and y = 
0 , 1 ,  2, . . . , which denote the fitted probability that individual i experiences y events. 
These are calculated for each i by plugging in the estimated {3 in (17.1) for the Poisson 
model, and the estimated {3 and a in (17 .3) for the NB2 model. The-n the fi.tted frequency 
in cell y is calculated as Np(y), where 

1 N 
p(y) = N Lid p(i,y) , y = 0, 1 , 2 ,  . . .  (17.9) 

A large deviation betweenp(y) and the observed sample frequency for a given y indicates 
a lack of fit. 

Alternatively, we can evaluate the probabilities at a particular value, x = x• , where 
often x· = x, the sample mean. Then we use 

P(ylx = x*) = p(y lx = x*) , y = 0, 1 , 2 , . . .  (17.10) 

where x is the J{ -element. vector of the sample averages of the regressors. The difference 
between p(y) and p (y lx = x*) is that the former averages over N sample values of x;, 
whereas the latter is conditional on x and has less variability. 

Several user-written postestimation commands following count regression are de­
tailed in Long and .. Freese (2006). Here we illustrate the countfi t and prvalue com­
mands, which compute the quantities defi.ned, respectively, in (17.9) and (17.10). The 
prcounts command, which also computes the quantity defined in (17 .9), is illustrated 
in section 17.4.3. 

The countfit command 

The user-written countfi t command (Long and Freese 2006) computes the average pre­
dicted probabilities, p(y), defi.ned in (17.9). The prm option fi.ts the Poisson model and 
the nbreg option fi.ts the NB2 model. Additional options control the amount of output 
produced by the command. In particular, the maxcount (#) option sets the maximum 
count for which predicted probabilities are evaluated; the default is maxcount (9) . For 
the Poisson model, we obtain 
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. * Poisson: Sample vs avg predicted probabilities of y = 0 ,  1 ,  . • .  , 5 
. countfit docvis $xlist, maxcount (S) prm nograph noestimates nofit 
Comparison of Mean Observed and Predicted Count 

Model 

PRM 

Maximum 
Difference 

0 . 102 

At 
Value 

0 

Mean 
I Diifl  

0 . 045 

PRM: Predicted and actual probabilities 

Count Actual Predicted I Diff I Pearson 
�-���-----------------�-------------�--�-------� 

0 0 . 109 0 . 007 0 . 102 5168.233 
1 0. 085 0 . 030 0 . 056 387. 868 
2 0 . 097 0 . 063 0 . 034 69.000 
3 0 . 091 0 . 095 0 . 005 0 . 789 
4 0 . 092 0 . 116 0 . 024 17.861 
5 0 . 072 0 . 121 0 . 049 72.441 

Sum 0 . 547 0 . 432 0 .  269 5716.192 

The Poisson model seriously underestimates the probability mass at low counts. In par­
ticular, the predicted probabilities at 0 and 1 counts are 0.007 and 0.030 compared with 
sample frequencies of 0.109 and 0.085. For the NB2 model that allows for overdispersion, 
we obtain 

. * NB2: Sample vs average predicted probabilities of y = 0 ,  1 ,  • • .  , 5 

. countfit docvis $xlist, maxcount (S) nbreg nograph noestimates nofit 
Comparison of Mean Observed and Predicted Count 

Model 

NBRM 

Maximum 
Difference 

-0.023 

At 
Value 

Mean 
I Diifl  

0 . 010 

NBRM: Predicted and actual probabilities 

Count Actual Predicted I Diff I Pearson 
------------------------------------------------

0 0 . 109 0 . 09 1  0 . 0 1 8  12.708 
1 0 . 085 0 . 108 0 . 023 1 7 . 288 
2 0 . 097 0 . 105 0 . 008 2 . 270 
3 0 . 091 0 . 096 0 . 005 1 . 086 
4 0 . 092 0 . 085 0 . 007 2 . 333 
5 0 . 072 0 . 074 0 . 00 1  0 . 072 
-------------�--------------------------�-------

Sum 0 . 547 0 . 559 0 . 062 35.757 

The fit is now much better. The greatest discrepancy is for y = 1, with a predicted 
probability of 0.108, which exceeds the sample frequency of 0.085. The final column, 
marked Pearson, gives N times (Diff)2 /Predicted, where Diff is the difference be­
tween average fitted and empirical frequencies, for each value of docvis up to that 
given by the maxcount O option. Although these values are a good rough indicator of 
goodness of fit, caution should be exercised in using these numbers as the basis of a 
Pearson chi-squared goodness-of-fit test because the fitted probabilities are functions of 
estimated coefficients; see Cameron and Trivedi (2005, 266). 
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The comparison confirms that the NB2 model provides a much better fit of the 
probabilities than the ·Poisson model (even though for the conditional mean, the MEs 
are similar for the two models) . 

The prvalue command 

The user-written prvalue command (Long and Freese 2006) predicts probabilities for 
given values of the regressors, computed using (17.10). As an exainple, we obtain 
predicted probabilities for a person with private insurance and access to Medicaid, with 
other regressors set to their sample means. The prvalue command, with options used 
to minimize the length of output, following the nbreg command, yields 

. • NB2: Predicted NB2 probabilities at x = x• of y = 0 ,  1 ,  . . .  , 5 

. quietly nbreg docvis $xlist 

. prvalue, x(private�1 medicaid= ! )  max(5) brief 

nbre g:  Predictions for docvis 

95% Conf . Interval 
Rate: 7 . 34 [ 6 . 6477, 8. 0322] 
Pr(y=O i x ) :  0 . 0660 [ 0 . 0580, 0 .0741] 
Pr(y=1 1x) : 0 . 0850 [ 0 . 0761,  0 .  0939] 
Pr(y=2 1x) : 0 . 0898 [ 0 . 0818, 0 .  0977] 
Pr(y�3 lx) : 0 . 0379 [ 0.0816,  0 . 0942] 
Pr(y=4 1x) : 0 . 0826 [ 0 . 0781, 0 .  0872] 
Pr(y= 5 1 x ) : 0 . 0758 [ 0 . 0728, 0 . 0787] 

These predicted probabilities at a specific value of the regressors are Vlitbjn 30% of the 
average predicted probabilities for the NB2 model previously computed by using the 
countfit command. 

Discussion 

The assumption of gamma heterogeneity underlying the mi.'Cture interpretation of the 
NB2 model is very convenient, but there are other alternatives. For example, one could 
assume that heterogeneity is lognormally distributed. Unfortunately, this specification 
does not lead to arr analytical expression for the mi.'Cture distribution and will therefore 
require an estimation method involving one-dimensional numerical integration, e.g., 
simulation-based or quadrature-based estimation. The official version of Stata does not 
currently support this option. 

Generalized N B  model 

The generalized NB model is an extension of the NB2 model that permits additional 
parameterization of the overdispersion parameter, a, in (17 .3), whereas it is simply a 
positive constant in the NB2 model. The overdispersion parameter can then vary across 
individuals, and the same variable can affect both the location and the scale parameters 
of the distribution, complicating the computation of MEs. Alternatively, the model may 
be specified such that different variables may separately affect the location and scale of 
the distribution. 
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Even though in principle fl.exibility is desirable, such models are currently not widely 
used. The parameters of the model can be estimated by using the gnbreg command 
that has a syntax similar to that of nbreg, with the addition of the lnalphaO option 
to specify the variables in the model for ln(a). 

We parameterize ln(a) for the dummy variables female and bh (black/Hispanic) .  

* Generalized negative binomial uith alpha parameterized 
gnbreg docvis $xlist, lnalpha(female bh) nolog 

Generalized negative binomial regression Number of obs 3677 
LR chi2(7) 759 .49 
Prob > chi2 0 . 0000 

Log likelihood = -10576.261 Pseudo R2 0 . 0347 

Coef.  Std. Err. z P > l z l  [95� Co nf .  Interval] 

docvis 
private . 1571795 . 0329147 4.78 0 . 000 .0926678 .2216912 

medicaid .0860199 .0462092 1 . 86 0 . 063 - . 0045486 . 1 765883 
age .30188 . 0598412 5 . 04 0 . 000 . 1845934 .419 1665 

age2 - . 0019838 . 0003981 -4.98 0 . 000 - . 0027641 - . 0012036 
educyr . 0 284782 . 0043246 6 . 59 0 . 000 .0200021 .0369544 
actlim . 1 875403 . 0346287 5 .42 0 . 000 . 1 196693 . 2554112 
totchr .2761519 . 0120868 22 . 85 0 . 000 . 2524623 .2998415 

_cons -10. 54756 2 . 23684 -4.72 0 . 000 - 1 4.93169 - 6 . 163434 

lnalpha 
female - . 1871933 . 0634878 -2.95 0 . 003 - . 3 1 1627 - . 0 627595 

bh . 3103148 .0706505 4.39 0 . 000 .17 18423 .4487873 
cons - .  4119142 . 0512708 -8.03 0 . 000 - . 512403 - . 3114253 

There is some improvement in the log likelihood relative to the NB2 model. The dis­
persion is greater for blacks and Hispanics and smaller for females. However, these 
two variables could also have been introduced into the conditional mean function. The 
decision to let a variable affect a rather than J1. can be difficult to justify. 

17.3 .4 Nonlinear least-squares estimation 

Suppose one wants to avoid any parametric specification of the conditional variance 
function. Instead, one may fit the exponential mean model by nonlinear least squares 
(NLS) and use a robust estimate of the VCE. For count data, this estimator is likely to 
be less efficient than the Poisson MLE, because the Poisson MLE explicitly models the 
intrinsic heteroskedasticity of count data, whereas the NLS is based on homoskedastic 
errors. 

The NLS objective function is 

Section 10.3.5 provides a NLS application, using the nl command, for doctor visits in a 
related dataset. 
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A practical complication not mentioned in section 10.3.5 is that if most observations 
are 0, then the NLS estimator can encounter numerical problems. The NLS estimator 
can be shown to solve 

�N 
( r I 

L..,i=l {y; - exp :x;,B)} exp(X;,B)x; = 0 

Compared with (17.5) for the Poisson MLE, there is an extra multiple, exp(x�,B), which 
can lead to numerical problems if most counts are 0. NLS estimation using the nl 
command yields 

, * Nonlinear least squares 
. nl (docvis = exp({xb: $xlist one}) ) ,  vce (robust) nolog 
(obs = 3677) 

Nonlinear regression 

Robust 
docvis Coef . Std. Err. t 

/xb_private .1 235144 . 0395179 3 . 13 
/xb_medicaid . 0856747 . 0649936 1 . 32 

/xb_age .2951153 .0720509 4 . 10 
/xb_age2 - . 0019481 . 0004771 -4.08 

/xb_educyr . 0309924 . 0051192 6 . 05 
/xb_actlim . 1 9 1 6735 .0413705 4 . 63 
/xb_totchr .219 1967 .0151021 1 4 . 5 1  

/xb_one -10. 12438 2 .  713159 -3.73 

Number of obs = 
R-squared 

3677 
0 . 5436 
0 . 5426 Adj R-squared = 

Root MSE 6 . 804007 
= 24528 .25 Res . dev. 

P> l t l  [95�/, Conf. Interval] 

0 . 002 . 0460351 .2009937 
0 . 188 - .  0417525 .2131018 
0 . 0 0 0  . 1538516 .4363789 
0 . 000 - . 0028836 - .  0010127 
0 . 000 . 0209557 .0410291 
0 . 000 . 1 10562 .2727851 
0 . 000 . 1895874 . 248806 
0 . 000 - 1 5 . 44383 -4. 804931 

The NLS coefficient estimates a.re within 20% of the Poisson and NB2 ML estimates, with 
similar differences for the implled MEs. The robust standard errors for the NLS estimates 
are about 20% higher than those for the Poisson MLE, confirming the expected efficiency 
loss. 

Unless there is gciod reason to do otherwise, for count data it is better to use Poisson 
or NB2 MLEs than to use the NLS estimator. 

17.3.5 Hurdle model 

We now consider the first of two types of mixture models that involve new specifications 
of both the conditional mean and variance of the distributions. 

The hurdle model, or two-part model, relaxes the assumption that the zeros and the 
positives come from the same data-generating process. The zeros are determined by the 
density /J ( . ) , so that Pr(y = 0) = !J.(O) and Pr(y ·> 0) = 1 - fl (O). The positive counts 
come from the truncated density h (YIY > 0) = h(y)/{1 - h(O)} ,  which is multiplied 
by Pr(y > 0) to ensure that probabilities sum tv 1 .  Thus suppressing regressors for 
notational simplicity, 
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f(y) = { fl(O) 
1 - /1(0) 
1 - h(O)

h(y) 
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if y = 0, 

if y 2: 1 

This specializes to the standard model only if !1(·)  = 12(·). Although the motivation 
for this model is to handle excess zeros, it is also capable of modeling too few zeros. 

A hurdle model has the interpretation that it reflects a two-stage decision-making 
process, each part being a model of one decision. The two parts of the model are 
functionally independent. Therefore, ML estimation of the hurdle model can be achieved 
by separately ma..ximizing the two terms in the likelihood, one corresponding to the 
zeros and the other to the positives. This is straightforward. The first part uses the full 
sample, but the second part uses only the positive count observations. 

For certain types of activities, such a specification is easy to rationalize. For example, 
in a model that explains the amount of cigarettes smoked per day, the survey may 
include both smokers and nonsmokers. One model determines whether one smokes, and 
a second model determines the number of cigarettes (or packs of cigarettes) smoked 
given that at least one is smoked. 

As an illustration, we obtain draws from a hurdle model as follows. The positives 
are generated by Poisson(2) truncated at 0. One way to obtain these truncated draws 
is to draw from Poisson(2) and then replace any zero draw for any observation by a 
nonzero draw, until all draws are nonzero. This can be shown to be equivalent to 
the accept-reject method for drawing random variates that is defi.ned in, for example, 
Cameron and Trivedi (2005, 414). This method is simple but is computationally ineffi­
cient if a high fraction of draws are truncated at zero. To then obtain draws from the 
hurdle model, we randomly replace some of the truncated Poisson draws with zeros. 
A draw is replaced with a probability of 1r and kept with a probability 1 - 1r. We set 
7r = 1 - (1 - e-2)/2 � 0.568 because this can be shown to yield a mean of 1 for the 
hurdle model draws. The proportion of positives is then 0.432. We have 

* Hurdle: Pr(y=O)=pi and Pr(y=k) = ( 1-pi) x Poisson(2) truncated at 0 
quietly set obs 10000 

set seed 10101 II set the seed ' 
scalar pi=1-( 1-exp(-2))12 II Probability y=O 

. generate xh urdle = 0 

scalar minx ... 0 

uhile minx == 0 { 
2. generate xph = rpoisson(2) 
3. quietly replace xhurdle = xph if xhurdle==O 
4. drop xph 
5 # quietly summarize xhurd.le 
6 .  scalar minx = r(min) 
7. } 

replace xhurdle = 0 if runiform() < pi 
(5663 real changes made) 
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summarize xh urdle 

Variable 

xhurdle I 
Obs Moan 

10000 .999 
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Std. Dev. Min Max 

1 . 415698 0 9 

The setup is such that the random variable has a mean of 1. From the summary 
statistics, tbis is the case. The model has induced overdispersion because the variance 
1.41572 = 2.004 > 1 .  

The hurdle model changes the conditional mean specification. Under the hurdle 
model, the conditional mean is 

(17.11) 

and the two terms on the right are determined by the two respective parts of the 
model. Because of the form of the conditional mean specification, the calculation of 
MEs, 8E(yjx)j8xj, is more complicated. 

Variants of the hurdle model 

Any binary outcome model can be used for modeling the zero-versus-positive outcome. 
Logit is a popular choice. The second part can use any truncated parametric count 
density, e.g., Poisson or NB. In application, the covariate� in the hurdle part that models 
the zero/one outcome need not be the same as those that appear in the truncated part, 
although in practice they are often the same. 

The hurdle model is widely used, and the hurdle NB model is quite flexible. The 
main drawback is that the model is not very parsimonious. A competitor to the hurdle 
model is the zero-inflated class of models, presented in section 17.4.2. 

Two variants of the hurdle count model are provided by the user-written hplogit 
and bnblogit commands (Hilbe 2005a,b). They use the logit model for the first part 
and either the zero-truncated Poisson (ZTP) or the zero-truncated NB (ZTNB) model 
for the second part." (Zero-inflated models are discussed in section 17.4.2.) The partial 
synta.' is 

hplogit depvar [ indepvars ] [ if ]  [ in ]  [ ,  options ] 

where options include robust and nolog, as well ns many of those for the regression 
command. 

Application of the hurdle model 

We implement ML estimation oft he hurdle model with two-step estimation using official 
Stata commands, rather than the user-written .commands, because the user-written 
commands require the same set of regressors in each part. 
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The first step involves estimating the parameters of a binary outcome model, popular 
choices being binary logit or pro bit estimated by using logi t or probi t. 

The second step estimates the parameters of a ZTP or ZTNB model, using the ztp 
command or the ztnb command. The syntax and options for these commands are the 
same as those for the poisson and n breg commands. In particular, the default for ztn b 
is to estimate the parameters of a zero-truncated NB2 modeL 

We first use logi t. We do not need to transform docvis to a binary variable before 
running the logit because Stata does this automatically. This is easy to verify by doing 
the transformation and then mnning the logit. 

• Hurdle logit-nb model manually 
. legit docvis $xlist, nolog 

Logistic regression Number of obs 3677 
LR chi2(7) 453.08 
Prob > chi2 0 .0000 

Log likelihood = -1040 . 3258 Pseudo R2 0 . 1788 

docvis Coef. Std. Err. z P> l z l  [95% Conf . Interval] 

private . 6586978 . 1264608 5 . 2 1  0 . 000 . 4108393 . 9065563 
medicaid .0554225 -1 726693 0 . 32 0 . 748 - . 2830032 . 3938482 

ago . 5428779 .2238845 2 . 42 0 . 015 . 1040724 . 9816834 
age2 - . 0034989 . 0014957 -2.34 0 . 019 - . 0064304 - . 0005673 

educyr . 047035 . 0155706 3 . 0 2  0 . 003 .0165171 . 0775529 
act lim . 1623927 . 1523743 1 . 07 0 . 287 - . 1362553 .4610408 
totchr 1 . 050562 .0671922 1 5 . 64 0 . 000 . 9188676 1 . 182256 

cons -20 .94163 8 . 335137 - 2 . 5 1  0 . 01 2  -37.2782 -4. 605058 

The second-step regression is based only on the sample with positive observations 
for docvis. 

* Second step uses positives only 
summarize docvis if docvis > 0 

Variable Obs Mean 

docvis I 3276 7 . 657814 

Std. Dev. Min Max 

7 . 415095 144 

Dropping zeros from the sample has raised the mean and lowered the standard deviation 
of docvis. 
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The parameters of the ZTNB model are. then estimated next by using ztnb. 

. * Zero-truncated negative binomial 

. ztnb docvis $xlist if docvis>O, nolog 

Zero-truncated negative binomial regression 

Dispersion = mean 
Log likelihood � -9452.899 

docvis Coef. 

private . 1095567 
medicaid . 0972309 

age . 2719032 
age2 - . 0017959 

educyr .0265974 
act lim . 1955384 
totchr . 2226969 

cons - 9 . 19017 

/lnalpha - . 5259629 

alpha .590986 

Std. Err . z 

. 0345239 3 . 17 

. 0470358 2 . 07 

. 0625359 4 . 35 
.000416 -4.32 

. 0043937 6 . 05 
. 0355161 5 . 5 1  
. 0124128 17.94 
2. 337591 -3.93 

. 0418671 

. 0247429 

Likelihood-ratio test of alpha= O:  chibar2 (01)  

N'umber of obs 
LR chi2(7) 
Prob > chi2 
Pseudo R2 

P> l z l  [95% Conf . 

0 . 0 0 2  . 0418911 
0 . 039 . 0050425 
0 . 000 . 1493352 
0 . 00 0  - . 0026113 
0 . 00 0  . 0 179859 
0 . 000 . 1.259281 
0 . 000 . 1983683 
0 . 000 - 1 3.77176 

- . 6030209 

. 5444273 

3276 
509.10 
0 . 0000 
0 . 0262 

Interval] 

. 1772223 

. 1 894193 

.3944712 
- . 0009805 

. 035209 
. 2651488 
.2470254 

-4. 608576 

- . 443905 

. 6415264 

= 7089 . 3 7  Prob>=chibar2 = 0 . 000 
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A positively signed coefficient in the logit model mean� that the corresponding re­
gressor increases the probability of a positive observation. In the second part, a positive 
coefficient means that, conditional on a positive count, the corresponding variable in­
creases the value of the count. The results show that all the variables except medicaid 
and actlim have statistically significant coefficients and that they affect both the out­
comes in the same direction. 

For this example with a common set of regressors in both parts of the model, the 
user-written hllblogit command can instead be used. Then 

* Same hurdle model fitted using the user-Yritten hnblogit command 
hn blogi t doc vis $xlist, robust 

(output omitted ) 

yields the same parameter estimates as the separate estimation of the two components 
of the modeL 

· 

Computation of MEs for the hurdle model are complicated, because change in a 
regressor may change both the logit and the truncated count components of the model. 
A complete analysis specializes the expression for the conditional mean given in (17 .11) 
to one for a logit-truncated Poisson hurdle model or a logit-truncated NB2 hurdle 
model, and then computes the ME using calculus or finite-difference methods. Here we 
simply calculate MEs for the two components separately, using the mfx command, which 
evaluates at the sample mean of the regressors. · 

The MES for the first part are obtained by using mfx. 
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* Hurdle legit-Poisson model using the user-uritten hplogit command 
quietly hnblogit docvis $xlist 

* mfx for marginal effects 
mfx, predict (eq(logit)) 

Marginal effects after ml 
y Q Linear prediction (predict, eq(logit))  

2 .  788129 

variable dy/dx Std. Err. z P> \ z \  

private* . 6 586978 . 12646 5 . 21 0 . 000 
medicaid* .0554225 . 17267 0 . 32 0 . 748 

age . 542878 . 22388 2.42 0 . 015 
age2 - . 0034989 .0015 -2.34 0 . 019 

educyr . 047035 . 0 1557 3 . 02 0 . 003 
actlim* . 1623927 . 15237 1 . 07 0 . 287 
totchr 1 . 050562 . 06719 15 . 64 0 . 000 

95% 

.410839 
- . 283003 

. 104071 
- . 00643 
.016517 

- . 136255 
. 9 18868 

(•) dy/dx is for discrete change of dummy variable from 0 to 

c. I .  

. 906556 

. 393848 

. 981684 
- . 000567 

. 077553 

.461041 
1 . 18226 

X 

.4966 
. 166712 

74. 2448 
5552 . 9 4  
1 1 . 1803 
. 333152 
1. 84335 

The MEs for the second part are also obtained by using mfx applied to the ZTNB 
estimates. 

quietly bnblogit docvis $xlist 

* mfx for marginal effects 
mfx, predict(eq(negbinomial ) )  

Marginal effects after ml 
y Q Linear prediction (predict, eq(negbinomia l)) 

1 . 8682591 

variable dy/dx Std. Err. z P> \ z l  957. 

private* . 1095566 . 03452 3 . 17 0 . 002 . 041891 
medicaid* .0972308 . 04704 2 . 07 0 . 039 . 005042 

age . 2719031 . 06254 4 . 35 0 . 000 . 149335 

C . I .  

. 177222 

. 189419 

. 394471 
age2 -. 0017959 . 00042 -4.32 0 . 000 - . 002611 - . 000981 

educyr . 0265974 . 0 0439 6 . 05 0 . 000 . 01798& . 0 35209 
act lim* . 1955384 . 03552 5 . 5 1  0 . 000 . 125928 . 265149 
totchr . 2226967 .01241 1 7 . 94 0 . 000 . 198368 . 247025 

( • )  dy/dx is for discrete change of dummy variable from 0 to 

X 

. 4966 
. 166712 
74.2448 
5552.94 
1 1 . 1803 
. 333152 
1 . 84335 

The .parameters of the Poisson hurdle model can be estimated by replacing ztnb 
with ztp, because the first part of the model is the same. The ZTNB regression gives a 
much better fit than the ZTP because of the overdispersion in the data. The majority 
of ZTP coefficients are slightly larger or of the same magnitude as the ZTNB coefficients, 
but the substantive conclusions from ZTP and ZTNB are similar. 

The hurdle model estimates are more fragile because any distributional misspecifica­
tion leads to inconsistency of the MLE. This should be clear from the conditional mean 
expression in (17.11) .  This includes a truncated mean, Epo(YIY > O,x) ,  that will differ 
according to whether we use ZTP or ZTNB. 

The discussion of model selection is postponed to later in this chapter. 
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17 .3.6 Finite-mixture models 

The NB model is an example of a continuous mixture model, because the heterogeneity 
variable, or mixing random variable, v, was assumed to have a continuous distribution 
(gamma). An alternative approach instead uses a discrete representation of unobserved 
heterogeneity. This generates a class of models called finite-mixture models (PMMs)­
a particular subclass of latent-class models; see Deb (2007) and Cameron and Trivedi 
(2005, sec. 20.4.3). 

FMM specification 

An FMM specifies that the density of y is a linear combination of m different densities, 
where the jth density is fj(Y!f3j) , j  = 1, 2, . . .  , m. Thus an m-component finite mixture 
is 

A simple example is a two-component (m = 2) Poisson mixture of Poisson(,uJ ) and 
Poisson(!-!2) .  This may reflect the possibility that the sampled population contains 
two "types" of cases, whose y outcomes are characterized by the distributions h (Y!.Bd 
and f2(y!(32 ) ,  which are assumed to have different moments. The mixing fraction, 7r1 , 
is in general an unknown parameter. In a more general formulation, it too can be 
parameterized for the observed variable(s) z. 

Simulated FMM sample with comparisons 

As an illustration, we generate a mixture of Poisson(0.5) and Poisson(5.5) in proportions 
0.9 and 0 . 1 ,  respectively. 

* Mixture : Poisson( . 5) 1./ith prob . 9  and Poisson(5.5)  -with prob . 1  
set seed 10101 // set the seed ! 
generate xp1= rpoisson ( . 5 )  

generate xp2= rpoisson(5.5) 

summarize xpl xp2 

Variable Obs Mean Std. Dev. 

xp1 I 10000 .5064 . 7 1 14841 
xp2 10000 5 . 4958 2 . 335793 

rename xpl xpmix 

quietly replace xpmix = xp2 if runiform ( )  > 0 . 9  

summarize xpmix 

Variable Obs Mean Std. Dev. 

xpmix J 10000 . 9936 1 . 761894 

Min Max 

0 5 
0 16 

Min Max 

0 15 

The setup yields a random variable with a mean of 0.9 x 0.5 + 0.1 x 5.5 = 1. But the 
data are overdispersed, with a variance in this sample of 1 .7622 = 3.10 .  This dispersion 
is greater than those for the preceding generated data samples from Poisson, NB2, and 
hurdle models. 
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tabulate xpmix 

xpmix Freq. Percent Cum. 

0 5,414 54. 14 5 4 . 1 4  
1 2 , 770 27.70 81.84 
2 764 7 . 6 4  89.48 
3 245 2.45 9 1 . 9 3  
4 195 1 .  95 93.88 
5 186 1 . 86 95.74 
6 151 1.  51 97.25 
7 108 1 . 08 98.33 
8 73 0.73 99.06 
9 42 0 . 42 9 9 . 48 

1 0  2 7  0 . 27 99 . 75 
11 12 0 . 12 99 . 87 
12 6 0 . 0 6  9 9 . 9 3  
1 3  4 0 . 0 4  99 . 97 
14 2 0 . 0 2  9 9 . 9 9  
1 5  0 . 0 1  1 0 0 . 0 0  

Total 1 0 ,000 100.00 

As for the NB2, the distribution has a long right tail. Although the component means 
are far apart, the mixture distribution is not bimodal; see the histogmm in figure 17 .1. 

This is because only 10% of �he observations come from the high-mean distribution. 

It is instructive to view graphically the four distributions generated in this chapter­
Poisson, NB2, hurdle, and fi.nite mixture. All have the same mean of 1, but they have 
different dispersion properties. The generated data were used to produce four histograms 
that we now combine into a single graph . 

. * Compare the four di�tributions , all Yith mean 
• graph combine mus17xp. gph mus17negbin.gph mus17pmix.gph 
> mus17hurdle . gph, title(1 1Four different distributions �orith mean "" 1 u )  
> ycommon xcommon 
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It is helpful for interpretation to supplement this graph with summary statistics for 
the distributions: 

* Compare the four distributions,  all Yith mean 1 
summarize xpois xnegbin xpmix xhurdle 

Variable Obs Mean Std. Dev. 

xpois 10000 . 9933 1 .  001077 
xnegbin 10000 1. 0129 1 . 442339 

xpmix 10000 . 9936 1 . 761894 
xhurdle 10000 .999 1 . 415698 

Ml estimation of the FMM 

Min 

0 
0 
0 
0 

Max 

6 
12 
15 

9 

The components of the mixture may be assumed, for generality, to differ in all their 
parameters. This is a more flexible specification because all moments of the distribu­
tion depend upon ( 1f j, (3 j> j = 1, . . . , m). But such flexibility comes at the expense 
of parsimonious parameterization. More parsimonious formulations assume that only 
some parameters differ across the components; e.g., the intercepts, and the remaining 
parameters are common to the mixture components. 

ML estimation of an FMM is computationally challenging because the log-likelihood 
function may be multimodal and not logconcave and because individual components 
may be hard to identifY empirically. The presence of outliers in the sample may cause 
further identification problems. 
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The fmm command 

The user-written· fmm command (Deb 2007) enables ML estimation of finite-mixture 
count models. The command can be used to estimate mixtures of several continuous 
and count models. Here only the count models are covered. 

The partial syntax for this command is as follows: 

fmm depvar [ indepvars ] [ if J [ in J [ weight J , component s ( #) 

mixtureof (density) [ options J 

where components ( #) refers to the number of components in the specification and 
mixture of (density) refers to the specification of the distribution. For count models, 
there a.re three choices: Poisson, NB2 (negbin2), and NBl (negbin1). Specific examples 
are 

fmm depvar [ varlist1 J ,  components (2) mixtureof (poisson) vee (robust) 

fmm depvar [ varlist1 ] , components (3) mixtureof (negbin2) vee (robust) 

fmm depvar [ varlist1 J ,  components (2) mixtureof (negbinl)  

pro ba bili ty ( varlist2) vee (robust) 

The algorithm works sequentially with the number of components. If the specifica­
tion with three components is desired, then one should first run the specification with 
two components to provide initial values for the algorithm for the three-component 
model. An important option is probability(varlist2) ,  which allows the 1fj to be pa­
rameterized as a function of the variables in varlist2. 

The default setup assumes constant class probabilities. The command supports the 
vee 0 option with all the usual types of VCE. 

Application: Poisson finite-mixture model 

Next we apply the FMM to the doctor-visit data. Both Poisson and NB variants are 
considered. In a 2-component Poisson rnLx:ture, denoted by FMM2-P, each component 
is a Poisson distribution with a different mean, i.e., Poisson{exp(x',Bj ) } , j = 1 , 2, and 
the proportion 1r j of the sample comes from each subpopulation. Tilis model will have 
2K + 1 unknown parameters, where K is the number of exogenous variables in the 
modeL For the 2-component NB mixture, denoted by FMM2-NB, a similar interpretation 
applies, but now the overdispersion parameters also vary between subpopulations. This 
model has 2(K + 1) + 1 unknown parameters. 
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We first consider the FMM2-P modeL 

* Finite-mixture model using fmm command "Yith constant probabilities 
use mus17dat a . dta, clear 
fmm docvis $xlist , vce(robust) components(2) mixtureof (poisson) 

Fitting Poisson model: 

Iteration 0: log likelihood -15019.656 
Iteration 1 :  log likelihood -15019.64 
Iteration 2 :  log likelihood -15019.64 

Fittini 2 component Poisson model: 

Iteration O :  log pseudolikelihood = -14985.068 
Iteration 1 :  log pseudolikelihood = -12233. 072 
Iteration 2 :  log pseudolikelihood = -11752.598 
Iteration 3 :  log pseudolikelihood = -11518.01  
Iteration 4: log pseudolikelihood = -11502.758 
Iteration 5 :  log pseudolikelihood = -11502 . 686 
Iteration 6 :  log pseudolikelihood = -11502. 686 
2 component Poisson regression 

Log pseudolikelihood = -11502. 686 

Robust 
docvis Coef . Std. Err. z 

component! 
private .2077415 .0560256 3 . 7 1  

medicaid . 1071618 .0964233 1 . 1 1 
age .3798087 . 100821 3 . 7 7  

age2 - . 0 024869 .0006711 - 3 . 7 1  
educyr . 029099 . 0067908 4 . 29 
act lim . 1244235 . 0558883 2.23 
totchr .3191166 .0184744 1 7 . 27 

_cons -14.25713 3. 759845 -3.79 

component2 
private . 1 38229 . 0614901 2.25 

medicaid . 1269723 . 1329626 0 . 95 
age . 2628874 . 1 140355 2 . 3 1  

age2 __ - . 0017418 . 0007542 - 2 . 3 1  
educyr . 0241679 . 0076208 3 . 17 
actlim . 1831598 . 0 622267 2 . 94 
totcbr . 1970511 . 0263763 7.47 

_cons -8.051256 4. 28211 - 1 . 88 

/imlogitpi1 . 877227 . 0952018 . 9 . 21 

pil . 7062473 . 0 1 97508 
pi2 .2937527 . 0 1 97508 

Interpretation 

(not concave) 
(not concave) 

Number of obs 
Wald chi2(14) 
Prob > chi2 

P> l z l  [95% Coni . 

0 . 000 . 0979333 
0 . 266 - . 0818245 
0 . 000 . 1822032 
0 . 000 - . 0038022 
0 . 000 . 0 157893 
0 . 026 . 0148844 
0.000 . 2829074 
0 . 000 -21. 62629 

0 . 025 . 0177106 
0 . 340 - . 1336297 ' 
0 . 021 . 0393819 
0.021 - . 00322 
0 . 002 . 0092314 
0 , 003 . 0611977 
0 . 000 . 1453545 
0 . 060 - 1 6 .44404 

0 . 000 . 690635 

. 6661082 

. 2565803 

3677 
576.86 
0 . 0000 

Interval] 

. 3 175497 

. 2961481 

. 5774143 
- . 0011717 

. 0424087 

.2339625 

.3553259 
-6. 887972 

.2587474 

.3875742 
.486393 

- . 0002636 
. 0391045 
.3051218 
. 2487477 
. 3415266 

1 . 063819 

. 7434197 

.3338918 
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Here the computer output separates the parameter estimates for the two components, 
If the two latent classes differ a lot in their responses to the cllanges in the regressors, we 
would expect the parameters to differ also. In this example, the differentiation does not 
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appear to be very sharp at the level of individual coefficients. But as we see below, this 
is misleading because the two components have substantially different mean numbers 
of doctor visits, leading to quite different MEs even though the slope parameters do not 
seem to be all that different. 

The last two lines in the output give 7i'1 and 1i'2(= 1 -7i'1 ) .  The algorithm parameter­
izes 1r as a logistic function to constrain it to have a positive value. After the algorithm 
converges, 7?1 is recovered by transformation. The interpretation of pi1 is that it rep­
resents the proportion of observations in class 1. Here about 70% are in class 1 and the 
remaining 30% come from class 2. 

These classes are latent, so it  is helpful to give them some interpretation. One 
natural interpretation is that classes differ in terms of the mean of their respective 
distributions, i.e., exp(x' {31) 7'= exp(x' {32) . To make this comparison, we generate fitted 
values by using the predict conunand. For the Poisson model, the predictions are 
fl{ = exp(x�/3j ) ,  j = 1 ,  2 .  

The predictions from the two components are stored as the yfi tl and yfi t2 vari­
ables. 

* Predict y for t�o components 
quietly fmm docvis $xlist, vce(robust) componen ts(2) mixtureof(poisson) 

predict yfit 1 ,  equation(component1) 

predict yfit2, equation(component2) 

summarize yfitl yfit2 

Variable Obs Mean Std. Dev. Min Max 

yfiti 3677 3 . 801692 2 . 176922 .9815563 27. 28715 
yfit2 3677 13. 95943 5 .  077463 5 . 6 1 5584 55. 13366 

The summary statistics make explicit the implication of the mixture model. The first 
component has a relatively low mean number of doctor visits, around 3.80. The second 
component has a relatively high mean number of doctor visits, around 13.96. The 
probability-weighted average of the two classes is 0.7062 x 3.8017 + 0.2938 x 13.9594 = 
6.79, which is close to the overall sample ;werage of 6.82. 

So the FMM has the interpretation that the data are generated by two classes of in­
dividuals, the first of which accounts for about 70% of the population who are relatively 
low users of doctor visits and the second that accounts for about 30% of the population 
who are high users of doctor visits. 

Comparing marginal effects 

The two classes also differ in their response to changes in regressors. To compare these, 
we use the mfx command, which evaluates the MEs at the same value of the regressors, 
the sample mean X:. 



1 7.3.6 Finite-mixture models 

* Marginal effects 
* Marginal effects for component 
mfx, predict(eq(component1 ) )  

Marginal effects after fmm 
y = predicted mean: component1 (predict, eq(component1))  

3 . 3468392 

variable dy/dx Std. Err . z P> l z l  95% C . I .  

private* . 6970204 . 18014 3 .87 0 . 000 . 343954 1 .  05009 
medicai'd* . 3718723 . 35206 1 . 06 0 . 29 1  - . 318154 1. 0619 

age 1 .  271159 . 33005 3 . 85 0 . 000 . 624266 1 .  91805 
age2 - . 0083233 . 0022 -3.79 0 . 000 - . 012631 - . 004016 

educyr . 0973897 . 02357 4 . 13 0 . 000 . 051188 . 143592 
actlim* .425435 . 19812 2 . 15 0 . 032 . 037131 .813739 
totchr 1 . 068032 .06411 16.66 0 . 000 . 942378 1 . 19369 

(•) dy/dx is for discrete change of dummy variable from 0 to 

* Marginal effects for component 2 
. mfx, predict(eq(component 2)) 

Marginal effects after from 
y = predicted mean: component2 (predict, eq(component 2)) 

1 3 . 181057 

variable dy/dx Std. Err. z P> l z l  95% c . I .  

private* 1 . 824312 . 79775 2 . 29 0 . 022 . 26076 3 . 38786 
medicaid* 1 .  747147 1 .  94245 0 . 90 0 . 368 -2. 05998 5 . 55427 

age 3 . 465134 1 . 4826 2 . 34 0 . 0 19 . 559287 6 . 37098 
age2 - . 0229591 . 00982 -2.34 0 . 0 19 - . 042198 - . 00372 

educyr .318559 . 10432 3 . 05 0 . 002 . 1141 . 523018 
act lim* 2 . 492638 .89937 2.77 0 . 006 . 729903 4 . 25537 
totchr 2 . 597342 . 3458 7 . 5 1  0 . 000 1 . 91959 3 . 2751 

<•l dy/dx is for discrete change of dummy variable from 0 to 
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X 

.4966 
. 166712 
74. 2448 
5552.94 
1 1 . 1803 
. 333152 
1 . 84335 

X 

.4966 
. 166712 
74. 2448 
5552.94 
1 1 . 1803 
. 333152 
1 . 84335 

The MEs for the high-use group, the second group, are several times those for the low­
use group. For the two key insurance status variables, the MEM is roughly 3 and 4 times 
larger for the high-use group. 

The following code produces histograms of the distributions of the fitted means for 
the two components. 

* Create histograms of fitted values 
quietly histogram yfit 1 ,  name(_comp_1,. replace) 

quietly histogram yfit2, name(_comp_2, replace) 

quietly graph combine _comp_1 _comp_2 

These histograms are plotted in figure 17.2. Clearly, the second component experi­
ences more doctor visits. 
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prodlctod moan: componont1 prodctod mcuo: componont2 

Figure 17.2. Fitted values distribution, FMM2-P 

Application: NB finite-mixture model 

The fmm command with the mixtureof (negbin1) option can be used to estimate a mi.x­
ture distribution with NB components. This model involves additional overdispersion 
parameters that can potentially create problems for convergence of the numerical algo­
rithm. This may happen if an overdispersion parameter is too close to zero. Further, 
the number of parameters increases linearly with the number of components, and the 
likelihood function quickly becomes high dimensional when the specification includes 
many regressors. Typically, the mixtureof (negbin1) or mixtureof (negbin2) option 
requires many more iterations than the mixture of (poisson) option. 

A 2-compo11ent NBl finite-mixture model example follows . 

. * 2-component mixture of NB1 

. fmm docvis $xlist, vce (robust) components(2) mixtureof (negbin1) 

Fitting Negative Binomial-1 model: 

Iteration 0 :  log likelihood = -15019.656 
Iteration 1: log likelihood � - 15019.64 
Iteration 2 :  l o g  likelihood = -15019.64 

Iteration 0 :  log likelihood = -12739 . 566 
Iteration 1 :  log likelihood = -11 125.786 
Iteration 2 :  log likelihood = -10976.314 
Iteration 3: log likelihood = -10976. 058 
Iteration 4:  log likelihood = -1097 6 . 058 

Itera�ion 0 :  log likelihood = -10976.058 
Iteration 1 :  log likelihood = -10566.829 
Iteration 2 :  log likelihood = -10531.205 
Iteration 3: log likelihood = -10531. 054 
Iteration 4: log likelihood = -10531. 054 
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Fitting 2 component Negative Binomial-1 model : 
Iteration 0 :  log pseudolikelihood = -10531 .611 (not concave) 
Iteration 1 :  log pseudolikelihood = -10529 .012 (not concave) 
Iteration 2 :  log pseudolikelihood = -10515 .85 ([\ot concave) 
Iteration 3 :  log pseudolikelihood = -10500.668 . (not concave) 
Iteration 4 :  log pseudolikelihood - -10495 .501 (not concave) 
Iteration 5 :  log pseudolikelihood = -10494.709 
Iteration 6 ·. log pseudolikolihood � -10493.449 
Iteration 7 :  log pseudolikelihood = -10493.333 
Iteration 8 :  log pseudolikelihood = -10493.324 
Iteration 9 :  log pseudolikelihood = -10493. 324 
2 component Negative Binomial-1 regre ssion Number of o bs 3677 

Wald chi2(14) 560.31 
Log pseudolike:ihood = -10493.324 Prob > chi2 0 . 0000 

Robust 
docvis Coef. Std. Err . z P> l z l  [95'/. Conf . Interval] 

component1 
private . 137827 .0610423 2 . 26 0 . 024 . 0181863 .2574676 

medicaid . 0379753 . 0 628139 0 . 60 0 . 545 - . 0851377 . 1610883 
age . 253357 . 0633567 4 . 00 0 . 000 . 1 2918 .3775339 

age2 - . 0016569 . 0004261 -3.89 0 . 000 - . 002492 - . 0008218 
educyr . 0228524 . 0055063 4 . 15 0 . 000 . 0120602 . 0336446 
act lim . 1060655 . 0514198 2 . 0 6  0 . 039 . 0052845 . 2068464 
totchr . 2434641 . 0294843 8.26 0.000 . 1856759 .3012523 

cons -8. 645394 2 . 352187 -3 . 68 0 . 000 - 1 3 . 2556 -4. 035192 

component2 
private .372013 .5124233 0 . 73 0 . 468 - . 6323182 1 . 376344 

medicaid .3344168 . 856897 0 . 39 0 . 696 - 1 . 34507 2 . 0 13904 
age .5260549 . 6902627 0 . 76 0 . 446 - . 8268352 1 . 878945 

age2 - . 0034424 . 0047508 -0 . 72 0 . 469 - . 0127539 . 005869 
educyr . 0457671 . 0499026 0 . 92 0 . 359 - . 0520402 . 1435743 
act lim .3599301 .3852059 0 . 93 0 . 350 - .  3950595 1 . 1 1492 
totcl:Jr . 4150389 . 1 332826 3 . 1 1  0 . 002 . 1538097 .6762681 

cons - 1 9 . 3304 25. 16197 -0 . 77 0 . 442 -68. 64696 29 .98615 

/imlogitpi1 2 . 382195 2 . 159316 1 . 10 0 . 270 - 1 . 849987 6 . 614377 
/lndelta1 1 .  210492 . 2343343 5 . 17 0 . 000 .7512047 1 .  669778 
/lndelta2 2 . 484476 . 7928709 3 . 13 0 . 002 .9304772 4 . 038474 

delta1 3 . 355133 .7862229 2 . 119552 5 . 310991 
delta2 1 1 . 99483 9 . 5 1 0352 2 . 535719 5 6 . 7397 

pil . 9154595 . 1 671169 . 1358744 . 9986608 
pi2 . 0845405 . 1 671169 . 0013392 .8641256 

The two classes are very different in probability of occurrence, because 92% of the 
population falls in the low-use category and only 8% fall in the high-use category. Only 
one coefficient, that of totchr, is significantly different from zero in the second category. 
The maximized value of the log likelihood is about the same as in the case of hurdle 
NB, but there are three more parameters in the inixture modeL The coefficients in the 
two classes do not differ much from the corresponding FMM2-P results. AB expected, 
there is evidence of over dispersion in both components; del tal and del ta2 are the 
overdispersion parameters. 
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A comparison of the mean and variance of the two components is possible by using 
the fitted values from each component. 

� * Fitted values for 2-component NBl mixture 
. drop yfit1 yfit2 

. predict yfit1, equation(component1 )  

predict yfit2, equation(component2) 

summarize yfitl yfit2 

Variable Obs Mean 

yfit1 3677 6 . 366216 
yfit2 3677 12. 39122 

Std. Dev. 

2 . 634751 
1 1 . 20933 

Min Max 

2 . 382437 28. 68904 
1 . 507496 186.8094 

The first component has a mean of 6.37, slightly below the sample average; the second 
component has mean of 12.39. The variance of the second distribution is very high, 
which indicates a substantial overlap between the two distributions. This means that 

· the distinction between the two components is more blurred than in the case of the 
FMM2-P model but the fi.t is significantly better. 

Model selection 

Choosing the "best" model involves trade-offs between fit, parsimony, and ease of in­
terpretation. Which of the six models that have been estimated best fits the data? 

Table 17.1 summarizes three commonly used model-comparison statistics-log like­
lihood, and Akaike and Bayes information criteria (AIC and BIC)-explained in sec­
tion 10.7.2. 

The log likelihood for the hurdle model is simply the sum of log likelihoods for the 
two parts of the model, whereas for the other models, it is directly given as command 
output. All three criteria suggest that the N.lil2 hurdle model provides the best fitting 
and the most parsimonious specification. Such an unambiguous outcome is not always 
realized. 

Table 17.1. Goodness-of-fit criteria for six models 

Model Parameters Log likelihood AIC .liliC 
Poisson 8 -15,019.64 30,055 30,113 
NB2 9 -10,589.34 21,197 21,253 
Poisson hurdle 16 -14,037.91 (). 28,108 28,207 
N.lil2 hurdle 17 - 10,493.23 21,020 21,126 
FMM2-P 17 -11,502.69 23,039 23,145 
FMM2-NB1 19 -10,493.32 21,025 21,143 

" The log-likelihood value for the Poisson-hurdle model can be obtained by using 
hplogit instead of bnblogit in the model fi.t on page 573. 
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Most of these models are nonnested, so LR tests are not possible. The LR test can 
be used to test the Poisson against the NB2 model and leads to strong rejection of the 
Poisson modeL 

Cautionary note 

It is easy to overparameterize mixture models. When the number of components is small, 
say, 2, and the means of the component distribution are far apart, clear discrimination 
between the-components will emerge. However, if this is not the case, and a larger value 
of m is specified, unambiguous identification of all components may be difficult because 
of the increasing overlap in the distributions. In particular, the presence of outliers may 
give rise to components that account for a small proportion of the observations. For 
example, if m = 3, 1r1 = 0.6, 1r2 = 0.38, and 1r3 = (1 - 0.6 - 0.38) = 0.02, then this 
means that the third component accounts for just 2% of the data. If 2% of the sample 
is a small number, one might regard the result as indicating the presence of extreme 
observations. The f= command allows the number of components to be between 2 and 
9. 

There are a number of indications of failure of identification or fragile identi.B.cation 
of mixture components. We list several examples. First, the log llkelihood may only 
increase slightly when additional components are added. Second, the log likelihood may 
"fall" when additional components are added, which could be indicative of a multimodal 
objective function. Third, one or more mixture components may be small in the sense 
of accounting for few observations. Fourth, the iteration log may persistently generate 
the message "not concave". Finally, convergence may be very slow, which could in­
dicate a .B.at log likelihood. Therefore, it is advisable to use contextual knowledge and 
information when specifying and evaluating an FMM. 

17.4 Empirical example 2 

We now consider the application of a class of count-data models that permits the mech­
anism generating !he zero observations to differ from the one for positive observations. 
A subclass of these models is the so-called zero-inflated class of models designed to deal 
with the "excess zeros" problem. These models are generalizations of several that were 
considered in the previous section, so it is natural to ask at an appropriate point in the 
investigation whether they are statistically superior to their restricted versions. 

17 .4.1 Zero-inflated data 

The dataset used in this section overlaps heavily with those used in the last section. The 
most important difference is that the variable we choose to analyze is different. In place 
of docvis as the dependent variable, we use the er variable, defined as the number of 
emergency room visits by the survey respondent. An emergency room visit is a rare 
event for the Medicare elderly population who h:ave access to care through their public 
insurance program and hence do not need to use emergency room facilities as the only 
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available means of getting care. There is a high degree of randomness in this variable, 
which will become apparent. 

The full set of explanatory variables in the model was initially the same as that used 
in tae docvis example. However, after some preliminary analysis, this list was reduced 
to just three health-status variables-age, act lim, and totchr-that appeared to have 
some predictive power for er. The summary statistics follow, along with a tabulation 
of the frequency distribution for er. 

* Summary stats for ER use model 
use mus17data_z.dta 
global xlist1 age actlim totcbr 

summarize er $xlistl 

Variable Obs Mean Std. De v .  Min Max 

er 3677 . 2774001 . 6929326 0 1 0  
age 3677 74. 24476 6 . 376638 65 90 

act lim 3677 .333152 .4714045 0 
totcbr 3677 1 .  843351 1 . 350026 0 8 

tabulate er 

# Emergency 
Room Visits Freq. Percent Cum. 

0 2 , 967 80.69 80.69 
1 515 14.01  94.70 
2 128 3.48 98.18 
3 40 1 . 09 99 . 27 
4 15 0 . 41 99 . 67 
5 8 0 . 22 9 9 .89 
6 2 0 . 05 99.95 
7 0 . 03 9 9 . 9 7  

1 0  0 . 0 3  1 0 0 . 0 0  

Total 3 , 677 1 0 0 . 0 0  

Compared with docvis, the er variable has a much higher proportion (80.7%) of zeros. 
The first four values (0, 1, 2, 3) account for over 99% of the probability mass of er. 

In itself, this does not imply that we have the "excess zero" problem. Given the 
mean value of 0.2774, a Poisson distribution predicts that Pr(Y = 0) = e-0·2774 = 
0.758 . The observed proportion of 0.807 is higher than this, but the difference could 
potentially be explained by the regressors in the model. So there is no need to jump to 
the conclusion that a zero-inflated variant is essential. 

17.4.2 Models for zero-inflated data 

The zero-inflated model was originally proposed to handle data with excess zeros relative 
to the Poisson model. Like the hurdle model, it supplements a count density, !2(· ) , with 
a binary process with a density of !1 (· ) . If the binary process takes on a value of 0 ,  with 
a probability of f1 (0), then y = 0 .  If the binary process takes on a value of 1 ,  with a 
probability of f1 (1 ) ,  then y takes on the count values 0, 1, 2, . . .  from the count density 
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]2(- ) . This lets zero counts occur in two ways: as a realization of the binary process 
and as a realization of the count process when the binary random variable takes on a 
value of L 

Suppressing regressors for notational simplicity, the zero-inflated model has a density 
of 

J(y) = { ft (O) + {1 - ft (O)}f2(0) 
{ 1 - h (O)}h (y) 

if y =  0, 
if y 2': 1 

As in the case of the hurdle model, the probability ft (0) may be a constant or may be 
parameterized through a binomial model like the logit or pro bit. Once again, the set of 
variables in the f1 ( - )  density need not be the same as those in the h(· )  density. 

To estimate the parameters of the zero-inflated Poisson (ZIP) and zero-inflated NB 
(ZINB) models, the estimation commands zip and zinb, respectively, are used. The 
partial syntax for zip is 

zip depvar [ indepvars ] [ if ]  [ in ]  [ weight ] ,  inflate (varlist) [ options ] 

where inflate( varlist) specifies the variables, if any, that determine the probability 
that the count is logit (the default) or pro bit (the probi t option). Other options are 
essentially the same as for poisson. 

The partial syntax for zinb is essentially the same as that for zip. Other options 
are the same as for nbreg. The only NB model estimated is a (truncated) NB2 model. 

For the Poisson and NB models, the count process has the conditional mean exp(x�,6) 
and the corresponding with-zeros model can be shown to have the conditional mean 

. E(yjx) = { 1 - h (Oixi)} x exp(x�,62) (17.12) 

where 1- /I (OJxi) is the probability that the binary process variable equals 1. The MEs 
are complicated by the presence of regressors in both parts of the model, as for the hurdle 
modeL �ut if the binary process does not depend on regressors, so JI(OjxJ l = ft(O) , 
then the parameters, ,62 , can be directly interpreted as semielasticities, as for the regular 
Poisson and NB models. 

· 

After the zip and zinb commands, the predicted mean in (17.12) can be obtained 
by using the postestimation predict command, and the mfx command can be used to 
obtain the MEM or MER. The AME can be obtained by using the user-written margeff 
command. 

17.4.3 Results for the NB2 model 

Our starting point is the NB2 modeL 



588 

• • NB2 for er 
• nbreg er $.xlist1 , nolog 
Negative binomial regression 

Dispersion = mean 
Log likelihood � -2314.4927 

er Coef. 

age . 0088528 
act lim .6859572 
totchr . 2 5 14885 

cons - 2 . 799848 

/lnalpha . 4464685 

alpha 1 . 562783 

Std. Err. z 

. 0061341 1 . 44 

. 0848127 8.09 

. 0292559 8 . 6 0  
.4593974 - 6 . 0 9  

. 1091535 

. 1 705834 

Likelihood-ratio test of alpha= O:  chibar2 (01) 
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Number of obs 
LR chi2(3) 
Prob > chi2 
Pseudo R2 

P> l z l  [95% Conf . 

0 . 149 - . 0031697 
0 . 000 . 5 197274 
0 . 000 . 1941481 
0 . 0 0 0  -3.700251 

.2325315 

1 .  26179 

3677 
225.15 
0 . 0000 
0 . 0464 

Interval] 

. 0208754 

.8521869 
.308829 

- 1 . 899446 

. 6604055 

1 .  935577 

237 .98 Prob>�chibar2 = 0 . 000 

There is  statistically significant overdispersion with a: =  1.56. The coefficient estimates 
are similar to those from Poisson model (not given ). The regression equation has low but 
statistically significant explanatory power. For an event that is expected to have a high 
degree of inherent randomness, low overall explanatory power is to be expected. Having 
an activity limitation and a high number of chronic conditions is positively associated 
with er visits. 

The prcounts command 

One indication of the fit of the model is obtained from the average fi.tted probabilities 
of the NB2 model. This can be done by using the user-written countfi t command, dis­
cussed in section 17.3.3. Instead, we demonstrate the use of the user-written prcounts 
command (Long and Freese 2006), which computes predicted probabilities and cumu­
lative probabilities for each observation. We use the max(3) option because for these 
data most counts are at most 3. 

* Sample average fitted probabilities of y = 0 to ma.x() 
prcounts erpr, max(3) 

summarize erpr* 

Variable Obs Moan Std. Dev. Min Max 
-

crprrate 3677 . 2782362 . 1833994 . 1081308 1 . 693112 
erprprO 3677 .8073199 .0855761 . 4370237 .9049199 
erprpr1 3677 . 1387214 .0389334 .0837048 . 2 136777 
erprpr2 3677 .0355246 . 0243344 . 0099214 . 1207627 
ezprpr3 3677 . 0 112286 . 0 1 22574 . 001262 . 0771202 

erprcuO 3677 . 8073199 . 0855761 . 4370237 .9049199 
erprcu1 3677 . 9460414 .0485141 . 6399685 . 9886248 
erprcu2 367:l. .981566 . 0249449 .7607312 . 9985461 
erprcu3 3677 .9927946 . 0130371 .8378514 . 9998082 

erprprg� 3677 . 0072054 . 0 1 30371 . 0001918 . 1621486 
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The output begins with ·the erprra te variable, which is the fitted mean and has an 
average value of 0.278·, close to the sample mean of 0.277. The erprpr0-erprpr3 
variables are predictions of Pr(y; = j ) , j = 0, 1, 2, 3, that have averages of 0.807, 0.139, 
0.036, and O.Oll compared with sample frequencies of 0.807, 0.140, 0.035, and O.Oll, 
given in the output in section 17.4.1. The fitted frequencies and observed frequencies are 
very close, an improved fit compared with the Poisson model, which is not given. The 
erprcu0-erprcu3 variables are the corresponding cumulative predicted probabilities. 

17.4.4 Results for ZINB 

The parameters of the ZINB model are estimated by using the zinb command. We use 
the same set of regressors in the two parts of the model 

. * Zero-inflated negative binomial for er 
• zinb er $xlist1, inflate($xlist1) vuong nolog 

Zero-inflated negative binomial regression 

Inflation model � logit 
Log likelihood -2304 . 868 

Coef. Std. Err. 

er 
age . 0035485 . 0076344 

act lim . 2743106 . 1768941 
totcl:Jr . 1963408 . 0558635 

_cons - 1 . 822978 . 6515914 

inflate 
age - . 0236763 .0284226 

act lim -4. 22705 1 8 . 91192 
totchr - . 3471091 .2052892 

cons 1 . 846526 2 . 071003 

/lnalpha � .  . 1602371 . 235185 

alpha I 1 . 173789 .2760576 

z 

0 .46 
1 . 55 
3 . 5 1  

-2.80 

-0 . 83 
-0.22 
- 1 . 69 

0 . 89 

0 . 68 

Number of obs 
Nonzero obs 
Zero obs 

LR chi2(3) 
Frob > chi2 

3677 
710 

2967 

34.29 
0 . 0000 

P> l z l  [95% Conf . Interval] 

0 . 642 - .0114146 .0185116 
0 . 121 -. 0723954 . 6210165 
0 . 000 . 0868504 . 3058313 
0 . 005 -3. 100074 - . 5458825 

0 . 405 - . 0793835 .0320309 
0 . 823 -41. 29372 32. 83962 
0 . 09 1  - . 7494686 .0552505 
0 . 373 -2. 212565 5. 905618 

0 . 496 - . 3007171 .6211913 

.7402871 1 .  861144 

Vuong test of zin b vs.  standard negative binomial: z = 1 . 99 Pr>z = 0. 0233 

The estimated coefficients differ from those from the NB2 model. The two models have 
different conditional means-see (17.12)-so the coefficients are not directly compara­
ble. 

The vuong option of zinb implements the LR test of Vuong (1989) to discriminate 
between the NB and ZINB models. This test corre:cts for the complication that the ZINB 
model only reduces to the NB model at the boundary of the parameter space for the 
logit model [so that h (O) = 0]. Furthermore, Vuong's test does not require that either 
of the two models be correctly specified under the null hypothesis. The test statistic 
is standard normally distributed, with large positive values favoring the ZINB model 
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and large negative values favoring the NB model. Here the test statistic of 1.99 with a 
one-sided p-value of 0.023 favors the ZINii model at a significance level of 0.05. 

17.4.5 Model comparison 

Count models, even those nonnested, can be compared on the basis of goodness of fit. 

The countfit command 

Although we could simply stop at this point and base our substantive conclusions on 
these estimates, we should examine whether zero-inflated models improve the fit to the 
data. The user-written countf it command (Long and Freese 2006) facilitates the task 
of multiple model comparisons for the four candidate models: Poisson, NB2, ZIP, and 
ZINii. 

Model comparison using countfit 

We apply the countfi t command, using several options to restrict the output, most 
notably not reporting model estimates and just comparing the Nli2 and ZINii models. 
We obtain 

. * Comparison of NB and ZINB using countfit 
. countfit er $xlist1, nbreg zinb nograph noestimates 
Comparison of Mean Observed and Predicted Count 

Model 

NBRM 
ZINB 

NBRM: 
Count 

Maximum 
Difference 

0 . 0 0 1  
0 . 006 

At 
Value 

Mean 
I Di ffl  

0 . 000 
0.001 

Predicted and actual probabilities 

Actual Predicted IDiif l Pearson 
-------��--�-----��-�--------�-------------��---

0 0 . 807 0 . 807 0 . 000 0 . 0 0 1  
0 . 140 0 . 139 0 . 00 1  0 . 047 

2 0 . 035 0 . 036 0 . 001 0 . 053 
3 0 . 01 1  0 . 0 1 1  0 . 000 0 . 040 
4 0 . 004 0 . 004 0 . 000 0 . 00 1  
5 0 . 002 0 . 002 0.001  0 . 558 
6 0 . 00 1  0 . 00 1  0.000 0 . 181 
7 0 . 000 0.000 0 . 000 0 . 052 
8 0 . 000 0.000 0 . 000 0 . 610 
9 0 . 000 0 . 000 0 . 000 0 . 308 
-------�----------------------�-----------------

Sum 1 . 0 0 0  1 . 000 0 . 004 1 . 850 
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ZINB : Predicted and actual probabilities 

Count Actual Predicted I Diff l Pearson 
----------------------.-.� ..... -----------------------

0 0 . 807 0 . 808 0 . 00 1  0 . 009 
0. 140 0 . 135 0 . 006 0 . 834 

2 0 . 035 0 . 039 0 . 004 1 . 467 
3 0 .0 1 1  0 . 012 0 . 00 1  0 . 444 
4 0 . 004 0 . 004 0 . 000 0 . 003 
5 0 . 002 0 . 00 1  0 . 001 1 . 499 
6 0 . 001 0 . 00 1  0 . 000 0 . 003 
7 0.000 0 . 000 0 . 000 0 . 087 
8 0 . 000 0 . 000 0 . 000 0 . 3 0 0  
9 0 . 0 0 0  0 . 000 0 . 000 0 . 125 
------------------------------------------------

Sum 1 . 000 1 . 000 0 . 013 4 . 770 

Tests and Fit Statistics 

NBRM BIC�-255 17 .593 AIC� 1 . 262 Prefer Over Evidence 

VS ZINB BIC�-25504. 004 
AIC� 1 .  259 

dif� 
dif= 

Vuong= 1 . 99 1  prob� 

- 1 3 .589 NBRM 
0 . 003 ZINB 
0 .  023 ZINB 

ZINB Very strong 
NBRM 
NBRM p�O, 023 

The first set of output gives average predicted probabilities for, respectively, the NB2 
model (nbreg) and the ZINB model (zinb). Both are close to actual frequencies, and 
the ZINB actually does better. 

The second set of output provides the penalized log-likelihood-based statistics AIC 
(aic) and BIC (bic), which are alternative scalings to those detailed in section 10.7.2. 
The BIC, which penalizes model complexity (the number of parameters estimated) more 
severely than the AIC, favors the NB2 model, whereas AIC favors the ZINB model. 

This example indicates that having Iilany zeros in the dataset does not automatically 
mean that a zero-inflated model is necessary. For these data, the ZINB model is only 
a sJjght improvement on the NB2 model and is actually no improvement at all if BIC 
is used as the mod_el-selection criterion. It is easier to interpret the estimates of the 
parameters of the NB2 modeL 

17.5 Models with endogenous regressors 

So far, the regressors in the count regTession are assumed to be exogenous. vVe now 
consider a more general model in which one regressor is endogenous. Specifically, the 
empirical example used in this chapter has assumed that the regressor private is ex­
ogenous. But individuals Cilll and do choose whether they want supplementary private 
insurance and hence potentially this variable is endogenous, i.e., jointly determined 
with docvis. If endogeneity is ignored, the standard single-equation estimator will be 
inconsistent. 
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The general issues are similar to those already presented in section 14.8 for endogene­
ity in the pro bit modeL We present two distinct methods to control for endogeneity-a 
structural-model approach and a less parametric nonlinear instrumental-variables (IV) 
approach. 

17 .5.1 Structural-model approach 

The structural-model approach defines explicit models for both the dependent variable 
of interest (y1) and the endogenous regressor (y2). 

Model and assumptions 

First, the structural equation for the count income is a Poisson model with a mean that 
depends on an endogenous regressor: 

Yli � Poisson(/-!i) 

(17.13) 
where Y2 is endogenous and x1 is  a vector of exogenous variables. The term u1 is 
an error term that can be ir.terpreted as unobserved heterogeneity correlated with the 
endogenous regressor, Y2, but is uncorrelated with the exogenous regressors, X J .  The 
error term, u1, is added to allow for endogeneity. Also it induces overdispersion, so that 
the Poisson model has been generalized to control for overdispersion as would be the 
case if a NB model was used. 

Next, to clarify the nature of interdependence between y2 and u1, we specify a linear 
reduced-form equation for Y2· This is 

(17.14) 

where x2 is a vector of exogenous variables that affects Y2 nontrivially but does not 
directly affect Y1 , and hence is an independent source of variation in Y2. It is standard 
to refer to this as an exclusion restriction and to refer to x2 as excluded exogenous 
variables or IV. By convention, a condition for robust identification of (17.13), as in the 
case of the linear model, is that there is available at least one valid excluded variable 
(instrument) .  When only one such variable is present in (17.14), the model is said to 
be just-identified, and it is said to be overidentified if there are additional excluded 
variables. 

Assume that the errors u1 and c: are related via 

Uii = PC:i + 1]; 
where '17i � [O, u�] is independent ofc:i � [0, u�] -

(17.15) 

This assumption can be interpreted to mean that c: is a common latent factor that 
affects both Y1 and Y2 and is the only source of dependence between them, after con­
trolling for the influence of the observable variables x1 and x2. If p = 0, then y2 can 
be treated as exogenous. Otherwise, y2 is endogenous, since it is correlated with u1 in 
(17.14) because both Y2 and u1 depend on c:. 
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Two-step estimation 

ML estimation of this model is computationally challenging. A two-step estimator is 
much simpler to implement. 

Substituting (17.14) for u1 in (17.13) yields l.t = exp((31y2 + xi/32 + pc:)erJ. Taking 
the expectation with respect to 71 yields Ery(Jl) = exp(j:)1y2 + xif32 + pc:) x E(erJ) = 
eA.1J(!31Y2 + lnE(erJ) + x�/32 + pc:) . The constant tenn lnE(e"') can be absorbed in the 
coefficient of the intercept, a component of x1 .  It follows that 

(17.16) 

where C:i is a new additional variable, and the intercept has absorbed E(e"'· ) . 

If c: were observable, including it as a regressor would control for the endogeneity of 
Y2- Given that it is unobservable, the estimation strategy is to replace it by a consistent 
estimate. The following two-step estimation procedure is used: First, estimate (17 .14) 
by OLS, and generate the residuals ei- Second, estimate parameters of the Poisson model 
given in (17.16) after replacing C:i by £;.  As discussed below, if p = 0, then we can use 
the vee (robust) option, but if p =f 0 then the YCE needs to be estimated with the 
bootstrap method detailed in section 13.4.5 that controls for the estimation of c:1. by ?;. 

Application 

We apply this two-step procedure to the Poisson model for the doctor visits data an­
alyzed in section 17.3, with the important change that private is now treated as en­
dogenous. Two excluded variables used as instruments are income and ssira tio. The 
first is a measure of total household income and the second is the ratio of social security 
income to total income. - Jointly, the two variables reflect the affordability of private 
insurance. A high value of income makes private insurance more accessible, whereas a 
high value of ssira tio indicates an income constraint and is expected to be negatively 
associated with private. For these to be valid instruments, we need to assume that for 
people aged 65-90 :years, doctor visits are not determined by income or ssira tio, after 
controlling for other regressors that include a quadratic in age, education, health-status 
measures, and access to Medicaid. 

The first step generates residuals from a linear probability regression of private on 
regressors and instruments. 

(Continued on next page) 
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* First-stage linear regression 
use mus17data. dta 
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global xlist2 medicaid age age2 educyr actlim totcbr 

regress private $xlist2 income ssiratio, vce (robust) 

Linear regression 

Robust 
private Coef. Std. Err. t P> l t l  

Number of obs 3677 
F( 8, 3668) = 249 . 6 1  
Prob > F = 0 . 0000 
R-squared 
Root MSE 

[95% Conf . 

0 . 2108 
.44472 

Interval] 

medicaid - . 3934477 . 0 173623 -22 . 66 0 . 000 - . 4274884 - .3594071 
age - . 0831201 . 0293734 -2. 83 0 . 005 - . 1407098 - . 0255303 

age2 . 0005257 .0001959 2.68 0 . 007 . 0001417 . 0009098 
educyr . 0212523 . 0020492 1 0 . 37 0 . 000 . 0172345 . 02527 
actlim - . 0300936 .0 176874 - 1 . 7 0  0 . 089 - . 0647718 . 0045845 
totchr . 0185063 .005743 3 . 22 0 . 00 1  . 0072465 . 0297662 
income . 0027416 .0004736 5 . 79 0.000 . 0018131 .0036702 

;;siratio - . 0647637 .0211178 -3. 07 0 . 002 - . 1061675 - . 0233599 
_cons 3 .531058 1 .  09581 3 . 22 0.001  1 . 3826 5 . 679516 

predict lpuhat , residual 

The two instruments, income and ssira tio, are highly statistically significant with 
expecLed signs. 

The second step fits a Poisson model on regressors that include the first-step residual. 

* Second�stage Poisson with robust SEs 
poisson docvis private $xlist2 lpuhat , vce (robust) nolog 

Poisson regression Number of obs 3677 
Wald chi2(8) 718.87 
Prob > chi2 0 .  0000 

Log pseudolikelihood - 15010.614 Pseudo R2 0 . 1303 

Robust 
doc vis Coef . Std. Err . z P> l z l  [95% Conf. Interval] 

private . 5505541 . 2453175 2 . 24 0 . 025 . 0697407 1 . 031368 
medicaid .2628822 . 1 197162 2 . 20 0 . 028 .0282428 . 4975217 

age .3350604 .0696064 4.81 0 . 000 . 1 986344 .4714865 
age2 - . 0021923 . 0004576 -4.79 0 . 000 - . 0030893 - . 0012954 

educyr . 018606 . 0080461 2 . 3 1  0 . 021 . 002836 . 034376 
actlim . 2053417 . 0414248 4 . 96 0. 000 . 1241505 . 286533 
totchr . 24147 . 0129175 18.69 0 . 000 . 2161523 . 2667878 
:puhat - . 4166838 . 249347 - 1 . 67 0 . 095 - . 9053949 . 0720272 

cons - 1 1 . 90647 2 . 661445 -4.47 0 . 000 - 17 . 1228 -6.69013 



17.5.1 Structural-model approach 595 

The z statistic for the coefficient of lpuhat provides the basis for a robust Wald test 
of the null hypothesis of exogeneity, Ho : p = 0. The z statistic has a p-value of 0.095 
against H1 : p f= 0, leading to nonrejection of H0 at the 0.05 level. But a one-sided test 
against H1 : p < 0 may be appropriate because this was proposed on a priori grounds. 
Then the p-value is 0.047, leading to rejection of Ho at the 0.05 level. 

If p f= 0, then the YCE of the second-step estimator needs to be adjusted for the 
replacement of c:, with ?., by using the bootstrap method given in section 13.4.5. We 
have 

* Program and bootstrap for Poisson tyo-step estimator 
program endogtYostep, eclass 
L version 1 0 . 1  
2. tempname b 
3. tempvar lpubat 
4 .  regress private $xlist2 income ssiratio 
5. predict '1 pubat • , residual 
6 .  poisson docvis private $xlist2 lpuhat 
7 .  matrix • b • = e(b) 
8 .  ereturn post � b � 
9 .  end 

bootstrap _b, reps(400) seed(10101) nodots noYarn: endogtYostep 

Bootstrap results Number of obs 
Replications 

3677 
400 

Observed Bootstrap Normal-based 
Coef . Std. Err. z P> l z l  [95/, Conf . Interval] 

private .5505541 .2406273 2 . 29 0 . 022 . 0789334 1 . 022175 
medicaid . 2628822 . 1 151473 2 . 28 0 . 022 . 0371976 . 4885669 

age . 3350604 . 0673445 4.98 0 . 000 . 2030677 .4670532 
age2 - . 0021923 . 0004444 -4.93 0 . 000 - . 0030634 - . 0013213 

educyr . 0 18606 .0 078638 2 . 37 0 . 018 . 0031934 . 0340187 
act lim .2053417 .0407465 5 . 04 0 . 000 . 1254802 .2852033 
totcbr .24147 .0131985 18.30 0 . 000 .2156014 .2 673387 
lpuhat - . 4166838 . 2469318 - 1 . 6 9  0 . 092 - . 9006614 . 0672937 

cons - 1 1 . 90647 2 . 566368 -4.64 0 . 000 - 1 6 . 93646 - 6 . 876476 

The standard errors differ little from the previous standard errors obtained by using the 
option vee (robust) . From section 17.3 .2, the Poisson ML estimate of the coefficient 
on private was 0.142 with a robust standard. error of 0.036. The two-step estimate 
of the coefficient on private is 0.551 with a standard error of 0.241. The precision of 
estimation is much less, because the standard error is seven times larger. This large 
increase is very common for cross-section data, where instruments are not very highly 
correlated with the regressor being instrumented. At the same time, the coefficient is 
four times larger, and so the regressor retains statistical significance. The effect is now 
very large, with private insurance leading to a 100(e0·551 - 1) = 73% increase in doctor 
visits. 

The negative coefficient of lpuhat can be interpreted to mean that the latent fac­
tor, whlch increases the probability of purchasing private insurance lowers the number 
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of doctor visits-an effect consistent with favorable selection, according to which the 
relatively healthy individuals self-select into insurance. Controlling for endogeneity has 
a substantial effect on the ME of an exogenous change in private insurance because the 
coefficient of private and the associated MEs are now much higher. 

17.5.2 Nonlinear IV method 

An alternative method for cmi.trolling for endogeneity is the nonlinear IV (NLIV) , or 
GMM, method presented in section ll.S.  In the notation of section 17 .5.1, this assumes 
the existence of the instruments Zi = (x�i x&J' that Satisfy 

Equations (17.13)-(17.15) do not imply this moment condition, so this less parametric 
approach will lead to an estimator that differs from that using the structural approach 
even in the limit as N -+ co. 

To apply it to our example, we use the program given in section 11.8.2. The following 
code obtains parameter estimates and their estimated VCE in Mata and passes them 
back to· Stata. 

* Nonlinear IV estimator for Poisson: computation using optimize 
generate cons = 1 

local y docvis 

local xlist private medicaid age age2 educyr actlim totchr cons 
local zlist income ssiratio medicaid age age2 educyr actlim totchr cons 

mat a 
------------------ mata (type end to exit) --

void pgmm(todo, b, y ,  X, Z, Qb,  g, H) 
> { 
> Xb � X•b' 
> mu = exp(Xb) 
> h = z· (y-mu) 
> W = cholinv(cros s(Z,Z))  
> Qb = h 'W•h 
> if (todo == 0) retun1 
> G = -(mu:•Z) 'X 
> g = (G'W•h) . 
> if (to do == 1) retllnl 

> _makesymmetric(H) 
> } 

st_ view(y= . ,  

st_ view(X= . ,  

" ' y ' " )  

tokens ( "  'xlist · " ) )  
st_view(Z=. , tokens ( '' � zlist . '' ) )  

S = optimize_init ( )  

optimize_init_which(S, ''min'') 

optimize_init_evaluator(S,  &pgmm ( ) )  

optimize_ini t _ ev al ua tortype ( S ,  u d211) 
optimize_init_argument(S,  1, y) 
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optimize_init_argument ( S ,  2 ,  X) 

opti.mize_init_argument (S,  3, Z) 

optimize_init_params ( S ,  J ( 1 ,cols(X) , O) ) 

optimize_ini t_ technique ( S ,  1' nr'') 
b = optimize (S) 

Iteration 0: f(p) 
Iteration 1:  f(p) 
Iteration 2: f(p) 
Iteration 3 :  f(p) 
Iteration 4: f(p) 
Iteration 5 :  f(p) 
Iteration 6: f(p) 
Iteration 7: f(p) 

156836 .04 
21765.741 
2087.4467 
186.55764 

182.298 
182.29545 
182.29541 
182.29541 

I I Compute robust estimate of VCE 
Xb = X•b" 

mu = ·  exp(Xb) 

h = z· (y-mu) 

W = cholinv(cross(Z,Z))  

G = - (mu:•Z) ·x 
Shat = ( (y-mu) : •Z) " ( (y-mu) : •Z) •rous (X)I (rous(X)-cols(X)) 

Vb = luinv ( G"W•G)•G"W•Shat•W•G•luinv(G "W•G) 

st_matrix(11b'' , b) 

st_matrix ( "Vb " , Vb) 

end 

We then use the Stata ereturn command to produce formatted output: 

* Nonlinear IV estimator for Poisson: formatted results 
matrix colnames b = �xlist; 

matrix colnames VD � 'xlist� 

matrix rouna.mes Vb = �xlist� 

ereturn post b Vb 

ereturn display 

I Coef . Std. Err. z P> l z l  

private .5920658 .3401151 1 .74 0 . 082 
medicaid .3186961 . 1912099 1 .67 0 . 096 

age . 3323219 . 0706128 4 . 7 1  0 . 000 
age2 - . 002176 .0004648 -4.68 0 . 000 

educyr . 0190875 . 0092318 2 .07 0 . 039 
act lim .2084997 . 0434233 4.80 0 . 000 
totchr . 2418424 . 013001 18 .60  0 . 000 

cons - 1 1 . 86341 2. 735737 -4.34 0 . 000 

[95% Conf. Interval] 

- . 0745475 1 . 258679 
- .0560685 .6934607 

. 1939233 .4707205 
- . 0 03087 - . 001265 
.0009935 . 0371815 
. 1233916 . 2936079 
.2163608 . 267324 

-17. 22535 -6.50146 
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The results are qualltatively very similar to the others given above. The coefficient of 
private is now statistically insignificant at the 0.05 level using a two-sided test, because 
of a larger standard error than that obtained with the two-step estimation method of 
section 17.5.1. However, it remains statistically significant at the 0.05 level using a 
one-sided test against the alternative that the coefficient is negative. 
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17.6 Stata resources 

The single-equation Stata commands [R] poisson and [R] nbreg (for nbreg and gnbreg) 
cover the basic count regression. See also [R] poisson postestimation and [R] nbreg 
postestimation for guidance on testing hypotheses and calculating MEs. For zero­
inflated and truncated models, see [R] zip, [R] zinb, [R] ztp, and [R] ztnb. For esti­
mating hurdle and finite-mixture models, the user-written hplogit, bnblogit, and f= 
commands are relevant. The user-written prvalue, prcount, and countfi t commands 
are useful for model evaluation and comparison. For panel count-data analysis, the 
basic commands [XT] xtpoisson and [XT] xtnbreg are covered in chapter 18. Quantile 
regression for counts is covered in section 7.5. Finally, Deb and Trivedi (2006) provide 
the mtreatnb command for estimating the parameters of a treatment-effects model that 
can be used to analyze the effects of an endogenous multinomial treatment (when one 
treatment is chosen from a set of more than two choices) on a nonnegative integer-valued 
outcome modeled using the NB regression. 

17.7 Exercises 

1. Consider the Poisson distribution with {l = 2 and a multiplicative mean-preserving 
lognormal heterogeneity with a variance of 0.25. Using the pseudorandom gen­
erators for Poisson and lognormal distributions, and following the approach used 
for generating a oimulaLed sample from the NB2 distribution, generate a draw 
from the Poisson-lognormal mixture distribution. Following the approach of sec­
tion 17 .2.2, generate ar.other sample with a mean-preserving gamma distribution 
with a variance of 0.25. Using the summarize, detail command, compare the 
quantiles of the two samples. Which distribution has a thicker right tail? Re­
peat this exercise for a count-data regression with the conditional mean function 
J.l.(X) = exp(l + 1x), where x is an exogenous variable generated as a draw from 
the uniform(O, 1 ) distribution. 

2. For each regression sample generated in the previous exercise, estimate the pa­
rameters of the NB2 model. Compare the goodness of fit of the NB2 model in the 
two cases. vl/hich of the two datasets is better explained by the NB2 model? Can 
you explain the outcome? 

3. Suppose it is suggested that the use of the ztp command to estimate the param­
eters of the ZTP model is unnecessary. Instead, simply subtract 1 from all the 
counts y, replacing them with y• = y - 1, and then apply the regular Poisson 
model using the new dependent variable y•; E(y*) = E(y) - 1. Using generated 
data from Poisson{p(x) = 1 + x} , x = uniform(O, 1) ,  verify whether this method 
is equivalent to the ztp. 

4. Using the finite-mixture command (fmm), estimate 2- and 3-component NB2 mix­
ture models for the univariate (intercept only) version of the docvis model. [The 
models should be fitted sequentially for the two values of m because fmm uses 
results from the (m - I)-component mixture to obtain starting values for the 
m-component mixture modeL] Use the BIC to select the "better" model. For 
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the selected model, use the predict command to compute the means of the m 
components. Explain and interpret the estimates of the component means, and 
the estimates of the mixing fractions. Is the identification of the two and three 
components robust? Explain your answer. 

5. For this exercise, use the data from section 17.4. Estimate the parameters of the 
Poisson and ZIP models using the same covariates as in section 17.4. Test whether 
there is statistically significant improvement in the log likelihood. Which model 
has a better BIC? Contrast this outcome with that for the NB2/ZINB pair and 
rationalize the outcome. 

6. Consider the data application in section 17.5. 1. Drop all observations for which the 
medicaid variable equals one, and therefore drop medicaid as a covariate in the 
regression. For this reduced sample, estimate the parameters of the Poisson model 
treating the private variable first as exogenous and then as endogenous. Obtain 
and compare the two estimates of the ME of private on do·cvis. Implement the 
test for endogeneity given in section 17.5.1. 





1 8  N on l inear panel  models 

1 8 . 1  Introduction 

The general approaches to nonlinear panel models are similar to those for linear models, 
such as pooled, population-averaged, random effects, and fixed effects. 

We focus exclusively on short panels in which consistent estimation of fixed-effects 
(FE) models is not possible in some standard nonlinear models, such as binary probit. 
Unlike the linear case, the slope parameters in pooled and random-effects (RE) models 
lead to different estimators. More generally, results for linear models do not always 
carry over to nonlinear models, and methods used for one type of nonlinear model may 
not be applicable to another type. 

We begin with a general treatment of nonlinear panel models. We then give a lengthy 
treatment of the panel methods for the logit model. Other data types are given shorter 
treatment. 

1 8 . 2  Nonlinear panel-data overview 

We assume familiarity with the material in chapter 8. We use the individual-effects 
models as the starting point to survey the various panel methods for nonlinear models. 

18.2.1 Some basic nonlinear panel models 

We consider nonlinear panel models for the seal� dependent variable Yu with the re­
gressors Xit, where i denotes the individual and t denotes time. 

In some cases, a fully parametric model may be specified, with the conditional density 

f(Yitla, ,  Xitl = f(Yit, w + x�t/3, 1 ), t = 1 ,  . . . , T;, i = 1, . . .  , N (18.1) 

where 1 denotes additional model parameters such as variance parameters, and a:.; is 
an individual effect. 

In other cases, a conditional mean model may be specified, with the additive effects 

E(Yitla; ,X;t) = a; +  g(x:tl3) 
or with the multiplicative effects 

E(Yit la.;, Xit) = a, x g(x';t/3) 
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(18.2) 

(18 .. 3) 
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for the specified function g(·). In these models, X;t includes an intercept, so a; is a 
deviation from the average centered on zero in (18.1) and (18.2) and centered on unity 
in (18.3). 

FE models 

An FE model treats a, as an unobserved random variable that may be correlated with 
the regressors X;t. In long panels, this poses no problems. 

But in short panels, joint estimation of the FE a1 , . . . , aN and the other model 
parameters, {3 and possibly /, usually leads to inconsistent estimation of all parameters. 
The reason is that the N incidental parameters a; cannot be consistently estimated if TI 
is small, because there are only T; observations for each a,:. This inconsistent estimation 
of a1 can spill over to inconsistent estimation of (3. 

For some models, it is possible to eliminate a; by appropriate conditioning on a 
sufficient statistic for Yil ,  . . .  , YiT, . This is the case for logit (but not pro bit) models for 
binary data and for Poisson and negative binomial models for count data. For other 
models, it is not possible, though recent work has proposed bias-corrected estimators in 
those cases. 

Even when {3 is consistently estimated, it may not be possible to consistently es­
timate the marginal effects (MEs). It is possible for additive effects, because then 
oE(Y·itla; , X; t)/oX.;� = {3 from (18.2) .  But for multiplicative effects, (18.3) implies that 
8E(Y;t la; ,  X·it)/8x;t = a1{3, which depends on a; in addition to {3. For other nonlinear 
models, the dependence on a; is even more complicated. 

RE models 

An RE model treats the individual-specific effect a; as an unobserved random variable 
with the specified distribution g( a;h ), often the normal distribution. Then a; is elim­
inated by integrating over this distribution. Specifically, the unconditional density for 
the ith observation is 

f(y,t , · · · ,  y,T, lx·il , .  · · , XiT, ,  {3, "f,Tf) = J { n��l f(YitiXit ,  a; , {3, -y)} g(a; lry)da.; (18.4) 

In nonlinear models, this integ1·al usually has no analytical solution, but numerical 
integration works well because only univariate integration is required. 

This approach can be generalized to random slope parameters (random coefficients), 
not just a random intercept, with a greater computational burC.en because the integral 
is then of a higher dimension. 

Pooled models or population-averaged models 

Pooled models set a; = a. For parametric models, it is assumed that the marginal 
density for a single (i, t) pair, 
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is correctly specified, regardless of the (unspecified) form of the joint density 
f(Y·it> · . .  , yirlxa, . . . , xiT, {3, 1) . The parameter of the pooled model is easily estimated, 
using the cross-section command for the appropriate parametric model, which implicitly 
assumes independence over both t and i. A panel-robust or cluster-robust (with clus­
tering on i) estimate of the variance-covariance matrix of the estimator (veE) can then 
be used to correct standard errors for any dependence over time for a given individual. 
Tbis approach is the analog of pooled ordinary least squares (OLS) for linear models. 

Potential· efficiency gains can occur if estimation accounts for the dependence over 
time that is inherent in panel data. This is possible for generalized linear models , defined 
in section 10.3.7, where you can weight the first-order conditions for the estimator to ac­
count for correlation over time for a given individual but still have estimator consistency 
provided that the conditional mea:n is correctly specified as E(yit Jxit) = g( a+ xitf3), for 
a specified Junction g( ·) .  This is called the population-averaged (PA) approach, or gen­
eralized estimating equations approach, and is the analog of pooled feasible generalized 
least squares (FGLS) for linear models. 

Unlike the linear model, in nonlinear models the PA approach generally leads to 
inconsistent estimates of the RE model and vice versa (the notable exception is given 
in section 18.6). This important distinction between RE and PA estimates in nonlinear 
models needs to be emphasized. 

Comparison of models 

If the FE model is appropriate, then an FE estimator must be used, if one is available. 

The RE model has a different conditional mean than that for pooled and PA models, 
unless the random individual effects are additive or multiplicative. So, unlike the linear 
case, pooled estimation in nonlinear models leads to inconsistent parameter estimates 
if the assumed RE model is appropriate and vice versa. 

18.2.2 Dynamic _!"!lOdels 

Dynamic models with individual effects can be estimated in some cases, most notably 
conditional mean models with additive or multiplicative effects as in (18.2) and (18.3). 
The methods are qualitatively similar to those in the linear case. Stata does not cur­
rently provide built-in commands to estimate dynamic nonlinear panel models. 

18.2.3 Stata nonlinear panel commands 

The Stata commands for PA, RE, and FE estimators of nonlinear panel models are the 
same as for the corresponding cross-section mm;lel, with the prefix xt. For example, 
xtlogit is tbe command for panel logit. The re option fi ts an RE model, the fe  option 
fits an FE model if this is possible, and the pa option fits a PA model. The xtgee 
command with appropriate options is equivalent to the xtlogi t ,  pa command, but 
xtgee is available for a wider range of models, including gamma and inverse Gaussian. 
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Models with random slopes, in addition to a random intercept, can be estimated for 
logit and Poisson models by using the xtmelogi t and xtmepoisson commands. The 
user-written gllamm command can be applied to a wider range of mi..'Ced models than 
these two models. Table 18.1 lists the Stata commands for pooled, PA, RE, random 
slopes, and FE estimators of nonlinear panel models. 

Table 18.1. Stata nonlinear panel commands 

Binary Tobit Counts 

Pooled legit to bit poisson 
probit nbreg 

PA xtlogit , pa xtpoisson, pa 
xtprobi t, pa xtnbreg, pa 

RE xtlogit , re xttobit xtpoisson, re 
xtprobit , re xtnbreg, re 

Random slopes xtmelogit xtmepoisson 

FE xtlogit , fe xtpoisson, fe 
xtnbreg, fe 

The default for all these commands is to report standard errors that are not �luster­
robust. Cluster-robust standard errors for pooled estimators can be obtained with the 
vee (cluster id) option, where id is the individual identifier. For PA, RE, and FE com­
mands that in principle control for clustering, it can still be necessary to also compute 
cluster-robust errors. For PA estimators, this can be done by using the vee (robust) 
option. The other xt commands for nonlinear models do not have this option, but the 
vee (bootstrap) option is available. For the xtpoisson, fe command, the user-written 
xtpqml command calculates cluster-robust standard errors. 

1 8 . 3  Nonlinear panel-data example 

The example dataset we consider is  an unbalanced panel from the Rand Health Insur­
ance Experiment. This social experiment randomly assigned different health insurance 
policies to families that were followed for several years. The goal was to see how the use 
of health services varied with the coinsurance rate, where a coinsurance rate of 25%, 
for example, means that the insured pays 25% and the insurer pays 75%. Key results 
from the experiment were given in Manning et al. (1987). The data extract we use was 
prepared by Deb and Trivedi (2002). 

18.3.1 Data description and summary statistics 

Descriptive statistics for the dependent variables and regressors follow. 



18.3.1 Data description and summary statistics 

* Describe dependent variables and regressors 
use mus18data.d�a, clear 
describe dmdu med mdu lcoins ndisease female age lfam child id year 

storage 
variable name type 

dmdu float 
med float 
mdu float 
lcoins float 
ndisease float 
female float 
age float 
lfam float 
child float 
id float 
year float 

display value 
format label 

%9.0g 
%9.0g 
%9.0g 
%9.0g 
%9.0g 
%9.0g 
%9 .0g 
%9.0g 
%9.0g 
%9.0g . 
%9.0g 

variable label 

any MD visit = 1 if mdu > 0 
medical exp excl outpatient men 
number face-to-fact md visits 
log(coinsurance+1) 
count of chronic diseases -- ba 
female 
age that year 
log of family size 
child 
person id, leading digit is sit 
study year 

The corresponding summary statistics are 

* Summarize dependent variables and regressors 
summarize dmdu med mdu lcoins ndisease female age lfam child id year 

Variable Obs Mean Std. Dev. Min Max 

dmdu 20186 . 6875062 .4635214 0 
med 20186 171.5892 698. 2689 0 39182.02 
mdu 20186 2 . 860696 4 . 504765 0 77 

lcoins 20186 2. 383588 2 . 041713 0 4 .564348 
ndisease 20186 1 1 . 2445 6 . 741647 0 58.6  

female 20186 .5169424 .4997252 0 1 
age 20186 25.71844 1 6 . 76759 0 64. 27515 

lfam 20186 1. 248404 . 5390681 0 2 . 639057 
child 20186 .4014168 . 4901972 0 1 

id 20186 3579 71.2 180885 . 6  125024 632167 

year 20186 2 . 420044 1 .217237 5 
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We consider three different dependent variables. The dmdu variable is a binary 
indicator for whether the individual visited a doctor in the current year (69% did) . The 
med variable measures annual medical expenditures (in dollars) , with some observations 
being zero expenditures (other calculations show that 22% of the observations are zero) . 
The mdu variable is the number of (face-to-face) doctor visits, with a mean of 2.9 visits. 
The three variables are best modeled by, re:spectively, logit or probit models, tobit 
models, and count models. 

The regressors are lco ins, the natural logarithm of the coinsurance rate plus one; 
a health measure, ndisease; and four demographic variables. Children are included in 
the sample. 

(Continued on next page) 
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18.3.2 Panel-data organization 

We declare the individual and time identifiers and use the xtdescri be command to 
describe the panel-data organization. 

* Panel description of dataset 
xtset id yea:r 

panel variable: id (unbalanced) 
time variable :  year, 1 t o  5 ,  but Yith gaps 

delta: 1 unit 
xtdescribe 

id: 125024, 125025, . . .  , 632167 
year: 1, 2, . . .  , 5 

Delta(year) = 1 unit 
Span(year) = 5 periods 
(id*year uniquely identifies each observation) 

Distribution of T _i: min 5% 25% SO% 
2 3 3 

Freq. Percent Cum. Pattern 

3710 62.80 62.80 111 . .  
1584 26.81 89.61 11111 

156 2 . 64 92 . 25 1. . . .  
147 2.49 94.74 11. . .  
79 1 . 34 96.07 . .  1 . . 
66 1 . 12 97.19 . 1 1 . . 
33 0 . 56 97.75 . .  111  
33 0 . 56 98.31 . 1111  
29 0 .49  98.80 . . .  11  
71  1.  20  100.00 (other patterns) 

5908 100.00 xxxxx 

n = 

T = 

75% 
5 

95% 
5 

5908 
5 

max 
5 

The panel is unbalanced. Most individuals (90% of the sample of 5,908 individuals) 
were in the sample for the first three years or for the first five years, which was the 
sample design. There was relatively small panel attrition of about 5% over the first two 
years. There was also some entry, presumably because of family reconfiguration. 

18.3.3 Within and between variation 

Before analysis, it is useful to quantify the relative importance of within and between 
variation. For the dependent variables, we defer this until the relevant sections of this 
chapter. 
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The regressor variables lcoins, ndisease, and female are time-invariant, so their 
within variation is zero: We therefore apply the xtsum command to only the other three 
regressors. We have 

* Panel summary of time-varying regressors 
. xtsum age lfam child 
Variable Mean Std. Dev. Min Max Observations 

age overall 25.71844 16 .76759 0 64.27515 N = 20186 
· between 16.97265 0 63 .27515 n = 5908 
within 1 .086687 23. 46844 27. 96844 T-bar = 3 . 4 1672 

lfam overa�l 1 .  248404 .5390681 0 2 . 639057 N = 20186 
between . 5372082 0 2 . 639057 n = 5908 
within . 0730824 .3242075 2 . 44291 T-bar = 3 . 41672 

child overall .4014168 .4901972 0 1 N = 20186 
between . 4820984 0 1 . n = 5908 
within . 1096116 - .3985832 1 . 201417 T-bar = 3 . 41672 

For the regressors age, lfam, and child, most of the variation is between variation 
rather than within variation. We therefore expect that FE estimators will not be very 
efficient because they rely on within variation. Also the FE parameter estimates may 
differ considerably from the other estimators if the within and between variation tell 
different stories. 

18.3.4 FE or RE model for these data? 

More generally, for these data we expect a priori that there is no need to use FE models. 
The point of the Rand experiment was to eliminate the endogeneity of health insurance 
choice, and hence endogeneity of the coinsurance rate, by randomly assigning this to 
individuals. The most relevant models for these data are RE or PA, which essentially 
just correct for the panei complication that observations are correlated over time for a 
given individual. 

18.4  Binary outcome models 

We fit logit models for whether an individual visited a doctor ( dmdu) . Similar methods 
apply for probit and complementary log-log m·odels. The PA and RE estimators can be 
obtained with the xtprobi t and xtcloglog commands, but there is no FE estimator 
and no mixed models command analogous to xtmelogi t. 

18.4.1 Panel summary of the dependent variable 

The dependent variable dmdu has within variation and between variation of similar 
magnitude. 
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. * Panel summary of dependent variable 

. xtsum dmdu 
Variable 

dmdu overall 
betYeen 
uithin 

Mean Std. Dev. Min 

. 6875062 .4635214 0 
. 3571059 0 
.3073307 - . 1124938 

* Year-to-year transitions in whether visit doctor 
xttrans dmdu 

any MD any MD visit ... if 
visit � 1 mdu > 0 

if mdu > 0 0 Total 

0 58.87 41 .13  100.00 
19 .73  8 0 . 27 100 .00 

Total 31 .81  68.19  100.00 

Max Observations 

N � 20186 
1 n = 5908 

1 . 487506 T-bar = 3 . 41672 

There is considerable persistence from year to year: 59% of those who did not visit 
a doctor one year also did not visit the next, while 80% of those who did visit a doctor 
one year also visited the next. 

* Correlations in the dependent variable 
corr dmdu 1 .  dmdu 12. dmdu 

(obs=8626) 
1 .  12. 

dmdu dmdu dmdu 

dmdu 
1 .  0000 

11.  0 .  3861 1 .  0000 
12. 0 .  3601 0 . 3807 1 . 0000 

The correlations in the dependent variable, clmdu, vary little with lag length, unlike 
the chapter 8 example of log wage where correlations decrease as lag length rises. 

18.4.2 Pooled logit estimator 

The pooled logit model is the usual cross-section model, 

(18.5) 

where A(z) = e=j(l + e=) .  A cluster-robust estimate for the VCE is then used to correct 
for error correlation over time for a given individual. 



18.4 . .'3 The xtlogit command 

The logit command with the vee (cluster id) option yields 

. * Legit cross-section uith panel-robust standard errors 

. legit dmdu lcoins ndisease female age lfam child, vce(cluster id) nolog 
Logistic regression Nu�ber of obs 20186 

Log pseudolikelihood = -11973.392 
(Std. 

Robust 
dmdu Coef. Std. Err. 

leo ins - . 1572107 .0 109064 
ndisease . 050301 .0039656 

female .3091573 .0445771 
age .0042689 .0022307 

lfam - .  2047573 . 0470285 
child . 0921709 . 0728105 
_cons . 6039411 . 1107709 

Err. 

z 

-14.41 
12 . 68 

6.94 
1 . 9 1  

-4.35 
1 . 27 
5 . 45 

Wald chi2(6) 488 . 18 
Prob > chi2 
Pseudo R2 

0 . 0000 
0 . 0450 

adjusted for 5908 clusters in id) 

P> l z l  [95% Conf. Interval] 

0 . 000 - . 1785868 - . 1358345 
0 . 000 . 0425285 .0580735 
0 . 000 .2217878 .3965269 
0 . 056 - . 0001032 . 0 08641 
0 . 000 - . 2969314 - . 1 125831 
0.206 - . 0505351 .2348769 
0.000 .386834 . 8210481 
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The first four regressors have the expected signs. The negative sign of lfam may be due 
to family economies of scale in health care. The po�itive coefficient of child may reflect 
a u-shaped pattern of doctor visits with age. The estimates imply that a child of age 10, 
say, is as likely to see the doctor as a young adult of age 31 because 0.092+ 0.0043 x 10 c:= 
0.0043 X 31 = 0.1333. 

The estimated coefficients can be converted to MEs by using the mfx command, 
which computes the ME at the mean or, approximately, by multiplying by y(1 - y) = 
0.69 x 0.31 = 0 .21 . For example, the probability of a doctor visit at some stage during 
the year is 0.07 higher for a woman than for a man, because 0.:31 x 0.21 = 0.07. 

In output not given, the default standard errors are approximately two-thirds those 
given here, so the use of cluster-robust standard errors is necessary. 

18.4.3 Th� xtlogit command 

The pooled logit command assumes independence over i and t ,  leading to potential 
efficiency loss, and ignores the possibility of FE that would lead to inconsistent parameter 
estimates. 

These panel complications are accommodated by the xtlogit command, which has 
the syntax 

xtlogi t depvar [ indepvars ] [ if ]  [ in ]  [ weight ] [ , options ] 

The options are for PA (pa), RE (re), and FE. (fe) models. Panel-robust standard 
errors can be calculated by using the vee (robust) option with the pa option. This 
is not possible for the other estimators, but the vee (bootstrap) option can be used. 
Model-specific options are discussed below in the relevant model section. 
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18.4.4 The xtgee command 

The pa option for the xtlogit command is also available for some other nonlinea.r 
panel commands, such as xtpoisson. It is a special case of the xtgee command. This 
command has the syntax 

xtgee depvar [ indepvars ] [ if ]  [ in ]  [ weight ] [ , options ] 

The family ()  and link()  options define the specific model. For example, the linear 
model is family(gaussian) link(identity) , and the logit model is family(binomial) 
link(logit ) .  Other family ( )  options are poisson, nbinomial, gamma, and igaussian 
(inverse Gaussian). 

The corr O option defines the pattern of time-series correlation assumed for obser­
vations on the ith individual. These patterns include exchangeable for equicorrelation, 
independent for no correlation, and various time-series models that have been detailed 
in section 8.4. 3. 

In the examples below, we obtain the PA estimator by using commands such as 
xtlogit with the pa option. Jf instead the corresponding xtgee command is used, then 
the postestimation estat wcorre lation command produces the estimated matrix of 
the within-group correlations. 

18.4.5 PA logit estimator 

The PA estimator of the parameters of (18.5) can be obtained by using the xtlogit 
command with the pa option. Different arguments for the corr ()  option, presented in 
section 8.4.3 and in [xT] xtgee, correspond to ditferent models for the correlation 

Pts = Cor[{Yit - A(x;tf3) } {Yis - A(x!j3)} ] , s =/= t 

The exchangeable model assumes that correlations are the same regardless of how 
many years apart the observations are, so Pts = a. For our data, this model may be 
adequate because, from section 18.4.1, the correlations of dmdu varied little with the 
lag length. Even with equicorrelation, the covariances can vary across individuals and 
across year pairs because, given Var(yitiXit ) = Ait(1 - Ait ) ,  the implied covariance is 
aJ Ait(l - A;t) x Ais(l - Ais ) ·  
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Estimation with the xtlogit , pa command yields 

. * Pooled legit cross-section uith exchangeable errors and panel-robust VCE 

. xtlogit dmdu lcoins ndisease female age lfam child, pa corr(exch) vce(robust) 
> nolog 
GEE population-averaged model Number of obs 20186 
Group variable: id Number of groups 5908 
Link: log it Obs per group : min = 1 
Family: binomial avg ""' 3 . 4  
Correla �ion: exchaD.gea ble max = 5 

Wald chi2(6) 521.45 
Scale parameter: Prob > chi2 0 . 0000 

(Std. Err . adjusted for clustering on id) 

Semi-robust 
dmdu Coef. Std. Err. z P> l z l  [95% Conf . Interval] 

leo ins - . 1603179 .0107779 -14.87 0 . 000 -. 1814422 - . 1391935 
ndisease .0515445 . 0038528 13.38 0 . 000 . 0439931 . 0590958 

female .2977003 . 0438316 6 .  79 0 . 000 . 211792 .3836086 
age .0045675 . 0021001 2 . 17 0 . 030 . 0004514 . 0086836 

lfam - . 2044045 . 0455004 -4.49 0 . 000 - . 2935837 - . 1152254 
child . 1 184697 . 0674367 1 .  76 0 . 079 -.0 137039 .2506432 

cons . 5776986 . 106591 5 . 42 0 . 000 .368784 . 7866132 
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The pooled logit and PA logit parameter estimates are very similar. The cluster-robust 
standard errors are slightly lower for the PA estimates, indicating a slight efficiency gain. 
Typing matrix list e (R) shows that Pts = a = 0.34. The parameter estimates can be 
interpreted in exactly the same way as those from a cross-section logit modeL 

18.4.6 R E logit estimator 

The logit individual-effects model specifies that 

(18.6) 

where O:i may be an FE or an RE. 

The logit RE model specifi es that a:i � N(D, a;). Then the joint density for the ith 
observation, after integrating out O:i, is 

f(Yit , . .  · ,  YiT) = j [ If=1 A( a:, + �t.6)1;.' { 1 - A(a:i + x;tf3)P-v,,] g(a:; la2)da:i 
(18.7) 

where g(a:i la2) is the N(O, a;) density. After a:; is integrated out, Pr(yit = 1 IX;t , f3) oF 
A(x;tf3), so the RE model parameters are not comparable to those from pooled logit 
and PA logit. 

There is no analytical solution to the univariat.e integral (18. 7), so numerical methods 
are used. The default method is adaptive 12-point Gauss-Hermite quadrature. The 
intmethod() option allows other quadrature methods to be used, and the intpoints O 
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option allows the use of a different number of quadrature points. The quadchk command 
checks whether a good approximation has been found by using a different number of 
quadrature points and comparing solutions; see [XT] xtlogit and (xT] quadchk for 
details. 

The RE estimator is implemented by using the xtlogi t command with the re option. 
We have 

. * Legit random-effects estimator 

. xtlogit dmdu lcoins ndisease female age lfam child, re nolog 
Random-effects logistic regression 
Group variable: id 
Random effects u_i - Gaussian 

Log likelihood 

dmdu 

lcoins 
ndisease 

female 
age 

lfam 
child 
_cons 

/lnsig2u 

sigma_u 
rho 

-10878.687 

Coef . 

- . 2403864 
. 078151 

.4631005 

.0073441 
- .3021841 

. 1935357 

. 8629898 

1 .  225652 

1 . 84564 
. 5087003 

Std. Err. 

.01 62836 

.0055456 
. 0663209 
. 0031508 
. 0644721 
. 1002267 
. 1568968 

. 0490898 

. 045301 
.0 122687 

z 

-14.76 
14.09 

6 . 98 
2 .33 

-4.69 
1 .93 
5 . 50 

Number of obs 
Number of groups 
Obs per group : min = 

avg � 

max = 
Wald chi2 (6) 
Prob > chi2 

P> l z l  [95% Conf. 

0 . 000 -. 2723017 
0 . 000 . 0672819 
0 . 000 . 3331138 
0 . 020 .0011687 
0 . 000 - . 4285471 
0 . 053 - . 002905 
0 . 000 . 5554778 

1 . 129438 

1 .758953 
.4846525 

20186 
5908 

1 
3 .4  

5 
549 .76  
0 . 0000 

Interval] 

- .  208471 
. 0890201 
.5930871 
.0135194 
-. 175821 
. 3899763 
1 . 170502 

1 .  321866 

1 . 936599 
. 532708 

Likelihood-ratio test of rho= O :  chibar2 (01) = 2189.41 Prob >= chibar2 = 0 . 000 

The coefficient estimates are roughly 50% larger in absolute value than those of the PA 
model. The standard errors are also roughly 50% larger, so the t statistics are little 
changed. Clearly, the RE model has a different conditional mean than the PA model, 
and the parameters are not directly comparable. 

The standard deviation of the RE, u0, is given in the output as sigma_u, so it is 
estimated that a, � N(O, 1.8462 ) .  The logit RE model can be motivated as coming 
from a latent-variable model, with Yit = 1 if Y:t = x;t/3 + ai + £·it > 0, where £it 
is logistically distributed with a variance of u; = rr2 /3. By a calculation similar to 
that in section 8.3.10, the intraclass error correlation in the latent-variable model is 
p = u';/(u'; + u;). Here p = 1.8462 /(1 .8462 + rr2 /3) = 0.509, the quantity reported as 
rho. 

Consistent estimation of /3 does not allow predicting for the individual because, from 
(18.7) ,  the probability depends on a;, which is not estimated. Similarly, the associated 
ME for the RE model 
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also depends on the unknown a;. The mfx command computes this ME at a; = 0, 
but this can be a nonrepresentative evaluation point and, in this example, understates 
the MEs. We can still make some statements, using the analysis in section 10.6.4 for 
single-index models. If one coefficient is twice as large as another, then so too is the 
ME. The sign of the ME equals that of /3j , because A(){1 - A()} > 0. And the log of 
the odds-ratio interpretation for logit models, given in chapter 14, is still applicable 
because ln{p;/(1 -p,)} = a; + x:t.B so that EJ ln{p;/(1 - pi)}/Bxji,t = /3i . For e:-::ample, 
the coefficient of age implies that aging one year increases the log of the odds ratio of 
·visiting a doctor by 0.0073 or, equivalently, by 0. 73%. 

18.4.7 FE logit estimator 

In the FE model, the a; may be correlated with the covariates in the model. Parameter 
estimation is difficult, and many of the approaches in the linear case fail. In particular, 
the least-squares dummy-variable estimator of section 8.5.4 yielded a consistent estimate 
of ,6, but a similar dummy-variables estimator for the logit model leads to inconsistent 
estimation of ,6 in the logit model, unless T -> oo. 

One method of consistent estimation eliminates the a.; from the estimation equation. 
This method is the conditional maximum likelihood estimator (MLE), which is based 
on a log density for the ith individual that conditions on 'E��1 y;t, the total number of 
outcomes equal to 1 for a given individual over time. 

We demonstrate this in the simplest case of two time periods. Condition on y;1 + 
Y·i2 = 1, so that Yit = 1 in exactly one of the two periods. Then, in general, 

I ) 
Pr(y;1 = 0, Y·i2 = 1) 

Pr(Yil = 0, Yi2 = 1 Yil j- Yi2 = 1 = 
) Pr(yil = 0, Yi2 = 1) + Pr(y;J = 1, Yi2 = 0 

(18.8) 

Now Pr(y;1 = O,y;2 = 1) = Pr(y;1 = 0) x Pr(Yi2 = 1), assuming that Yli and Y?:i are 
independent given a; and Xit ·  For the logit model (18.6), we obtain 

Similarly, 

( - · ) 
1 

x 
exp( a; + x;213) Pr YiJ = 0, Y·i2 .= 1 = 

1 + exp( a; +  x;l/3) 1 + exp(a; + x;213) 

exp(a; + xi113) 1 
Pr(ya = 1, Yi2 = 0) = 

( 
x!. {3) x 

( /3 1 + exp a; + il 1 + exp a; + xi2 ) 

Substituting these two expressions into (18.8) , the denominators cancel and we obtain 

Pr(y;1 = 0 , Yi2 = 1 IYil + Yi2 = 1) 

= exp(a; + xi2/3l/{exp(a; + xi1/3) + exp(a; + x:2.B)} 
= exp(xb/3l/{e:-::p(x;113) + exp(x:2.B)}  
= exp{(x;2 - x;1)' 13}/[1 + exp{(X.2 - x,l )'/3}] 

(18.9) 
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There are several results. First, conditioning eliminates the problematic FE a;. Second, 
the resulting conditional model is a logit model with the regressor X;2 - x,1.  Third, 
coefficients of time-invariant regressors are not identified, because x.,2 - Xil = 0. 

More generally, with up to T outcomes'r we can eliminate a, by conditioning on 
2::;:,1 Yit = 1 and on 2::;::,1 Yit = 2, . · · ,  l::t=l Yit = T - 1. This leads to the loss of 
those observations where Yit is 0 for all t or Yit is 1 for all T. The resulting condi­
tional model is more generally a multinomial logit modeL For details, see, for example, 
Cameron and Trivedi (2005) or [R] clogit. 

The FE estimator is obtained by using the xtlogit command with the fe option. 
We have 

� * Logit fixed-effects estimator 
. xtlogit dmdu lcoins ndisease female age lfam child, fe nolog 
note : multiple positive outcomes within groups encountered . 
note: 3459 groups (11161 obs) dropped because of all positive or 

all negative outcomes . 
note: lcoins omitted because of no within-group variance .  
note: ndisease omitted because of  no tdthin-group variance.  
note; female omitted because of  no within-group variance . 
Conditional fixed-effects logistic regression Number of obs 
Group variable:  id Number of groups 

Obs per group : min � 

9025 
2449 

2 
avg = 3 .  7 

Log likelihood � -3395. 5996 

dmdu 

age 
lfam 

child 

Coef . Std. Err. 

- . 0341815 .01 83827 
. 478755 • 2597327 
.270458 . 168497 4 

max .,::; 5 
LR chi2(3) 
Prob > chi2 

10.74 
0 .0132 

z P> l z l  

-1 .86 0 . 063 
1 . 84 0 . 065 
1 .  61 0 . 108 

[95% Conf. Interval] 

- . 070211 
- . 0303116 
- . 0597907 

. 001848 
• 9878217 
.6007068 

As expected, coefficients of the time-invariant regressors are not identified and these 
variables are dropped. The 3,459 individuals with 2::[�1 Yit = 0 (all zeros) or 2:'{,;,1 Yit = 
T, (all ones) are dropped because there is then no variation in Yit over t, leading to a loss 
of 11 , 161 of the original 20,186 observations. Standard errors are substantially larger 
for FE estimation because of this loss of observations and because only within variation 
of the regressors is used. 

The coefficients are considerably different from those from the RE logit model, and 
in two cases, the sign changes. The interpretation of parameters is similar to that given 
at the end of section 18.4.6 for the RE modeL Also one can use an interpretation that 
conditions on I:'t1 Yit; see section 18.4.9. 
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We combine the preceding estimators into a single table that makes comparison easier. 
We have 

* Panel legit estimator comparison 
global xlist lcoins ndisease female age lfam child 
quietly legit dmdu $xlist, vce (cluster id) 
estimates store POOLED 
quietly xtlogit dmdu $xlist , pa corr(exch) vce(robust) 
estimates store PA 
quietly xtlogit dmdu $xlist, re 
estimates store RE 
quietly xtlogit dmdu $xlist, fe 
estimates store FE 

II SEs are not cluster-robust 

II SEs are not cluster-robust 

estimates table POOLED PA RE FE, equations(!) se b(%8.4f) ",tats(N 11) 
> stfmt (%8 . 0f) 

Variable I POOLED 

#1 
leo ins 

ndisease 

female 

age 

lfam 

child 

_cons 

lnsig2u I _cons-

Statistics 
N 

11 

-0. 1572 
0 . 0109 
0. 0503 
0 . 0040 
0 . 3092 
0 . 0446 
0 . 0043 
0 . 0022 

-0. 2048 
0 . 0470 
0. 0922 
0 . 0728 
0 . 6039 
0 . 1108 

20186 
-11973 

PA 

-0. 1603 
0 . 0108 
0 . 0515 
0 . 0039 
0 .  2977 
0 . 0438 
0 . 0046 
0 . 0021 

-0. 2044 
0 . 0455 
0 . 1185 
0 . 0674 
0 . 5777 
0 . 1066 

20186 

RE 

-0. 2404 
0. 0163 
0 . 0782 
0 . 0055 
0 . 4631 
0 . 0663 
0 . 0073 
0 . 0032 

-0. 3022 
0 . 0645 
0 . 1935 
0 . 1002 
0. 8630 
0 . 1569 

1 . 2257 
0 . 0491 

. 20186 
-10879 

FE 

-0. 0342 
0 . 0 184 
0 . 4788 
0 . 2597 
0 . 2705 
0 . 1685 

9025 
-3396 

legend: b/ se 

The pooled logit and PA logit models lead to very similar parameter estimates and 
cluster-robust standard errors. The RE logit estimates differ quite substantially from 
the PA logit estimates though, as already noted, the associated t statistics are quite 
similar. The FE estimates are much less precise, differ considerably from the other 
estimates, and are available only for time-varying regTessors. 
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18.4.9 Prediction and marginal effects 

The postestimation predict command has several options that vary depending on 
whether the xtlogit command was used with the pa, re, or fe option. 

After the xtlogit ,  pa command, the default predict option "is mu, which gives the 
predicted probability given in (18.5). 

After the xtlogit , re command, the default predict option is xb, which computes 
x;t/3. To predict the probability, one can use puO, which predicts the probability when 
ai = 0. This is of limited usefulness because (18.6) conditions on ai, which is not 
observed or estimated. Interest lies in the unconditional probability 

Pr(y,, = 1 lxit , .l3)  = j A(a.; + x:t.B)g(a.;la2)da, (18.10) 

where g(a.M2) is the N(O, a�r) density, and this does not equal A(x:,.l3), which is what 
puO computes. One could, of course, calculate (18.10) by using the simulation methods 
presented in section 4.5. Or one can estimate the parameters of the RE model by using 
the xtmelogit command, presented in the next section, followed by the postestimation 
predict command with the reffects option to calculate posterior modal estimates of 
the RE; see [xT] xtmelogit postestimation. 

After the xtlogit , fe command, the predict options xb and puO are available. 
The default option is pel, which produce� the <;onditional probability that y,, = 1 
given that exactly one of Yil, . . . , y,T, equals one. This is used because this conditional 
probability does not depend on ai; the formula in the special case Ti = 2 is given in 
(18.9) . 

The postestimation mfx command with the predict 0 option computes the cor­
responding ME, evaluated at the mean value of regressors. After xtlogi t ,  pa, the 
MEs are interpreted the same as for cross-section logit models. After xtlogi t ,  re and 
xtlogi t ,  fe, interpretation is more difficult because of the presence of ai. Some dis­
cussion his already been given at the end of the relevant sections. For nonlinear panel 
models, the ease of computing MEs by using PA rather than RE models is emphasized 
by Drukker (2008). 

18.4.10 Mixed-effects logit estimator 

The RE logit model specifies only the intercept to be normally distributed. Slope pa­
rameters may also be normally distributed. The x

'
tmelogit command estimates the 

parameters of this model, which is the logit extension of xtmixed for linear models, 
presented in section 9.5.2. 

For example, the following yields the same estimates as xtlogi t with the re option, 
aside from minor computational difference: 

xtmelogit dmdu lcoins ndisease female age lfam child I I id: 
(output omitted ) 
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Adding the lcoins and ndisease variables allows the intercept and slope parameters 
for leo ins and ndisease to be jointly normally distributed. Then a trivariate integral is 
computed with the Gauss-Hermite quadrature, and estimation is very computationally 
intensive; without restrictions on the variance matrix, the model may r10t even be 
estimable. 

As in the linear case, the mixed logit model is used more for clustered data than for 
panel data and is mostly used in areas of applied statistics other than econometrics. 

18.5  Tobit mode! 

We fit a panel tobit model for medical expenditures (med) . Then the only panel estimator 
available is the re option, which introduces a normally distributed RE. 

18.5.1 Panel summary of the dependent variable 

For simplicity, we model expenditures in levels, though from chapter 16 the key assump­
tion of normality for the tobit model is more reasonable for the natural logarithm of 
expenditures. 

The dependent variable, med, has within variation and between variation of similar 
magnitude, because the xtsu.m command yields 

18.5.2 

. * Panel summary of dependent variable 

. xtsum med 
Variable Mean Std. Dev. 

med overall 171. 5892 698.2689 
betueen 503. 2589 
uithin 526.269 

RE tobit model 

Min Max Observations 

0 39182.02 N = 20186 
0 19615 . 14 n = 5908 

-19395.28 20347 . 2  T-bar = 3 .  41672 

The RE panel tobitmodel specifies the latent variable Yit to depend on regressors, an 
idiosyncratic error, and an individual-specific error, so 

(18 .11)  

where O:i � N(o, u;) and cit "" N(O,  u;) and the regressor vector X-;t: includes an inter­
cept. For left censoring at L, we observe the Y-it variable, where 

{ Yit Y·it =  L 
if yit > L  
if Y:t :S: L (18.12) 

The xttobit command has a similar syntax· to the cross-section tobit command. 
The 11 () option is used to define the lower limit for left censoring, and the ul () option 
is used to define the upper limit for right censoring. The limit can be a variable, not 
just a number, so more generally we can have the limit L; rather than the limit L in 



618 Cbapter 18 Nonlinear panel models 

(18.12) .  Like the RE logit model, estimation requires univariate numerical integration, 
using Gauss-Hermite quadrature. 

For our data, we obtain 

* Tobit random-effects estimator 
xttobit med lcoins ndisease female age lfam child, 11(0) nolog 

Random-effects tobit regression Number of obs 
Group variable: id Number of groups 
Random effects u_i � Gaussian Obs per group: min := 

avg = 
max 

Wald chi2(6) 
Log likelihood -130030.45 Prob > chi2 

med Coef. Std. Err. z P> l z l  [95% Conf . 

lcoins -31 . 10247 3 . 578498 -8.69 0 . 000 -38.1162 
ndisease 13. 49452 1 . 139156 1 1 . 8 5  0 . 000 1 1 .26182 

female 60 . 10112 14. 95966 4 . 02 0 . 000 30.78072 
age 4. 075582 .7238253 5 . 63 0 . 000 2 . 656911 

lfa.m -57. 75023 14. 68422 -3.93 0 . 000 -86. 53077 
child -52.02314 24.21619 -2 .15  0 . 032 -99.48599 

cons -98. 27203 36.05977 -2.73 0 . 006 -168. 9479 

/sigma_u 371 . 3134 8 . 64634 42.94 0 . 000 354.3668 
/sigma_e 715 . 1779 4. 704581 152.02 0 . 000 705.9571 

rho . 2123246 . 0086583 . 1957541 

Observation summary: 4453 left-censored observations 
15733 uncensored observations 

0 right�censored observations 

20186 
5908 

1 
3 . 4  

5 
573.45 
0 . 0000 

Interval] 

-24. 08875 
15. 72722 
89. 42152 
5 .494254 

-28. 96968 
-4. 560284 
-27.59618 

388.2599 
724.3987 

. 2296872 

About 22% of the observations are censored (4,453 of 20,186). All regTessor coefficients 
are statistically significant and have the expected sign. The RE ai has an estimated 
standard deviation of 371.3, which is highly statistically significant. The quantity la­
beled rho equals o�/(o}, + o]l and measures the fraction of the total variance, o; + o;, 
that is due to the RE a. In an exercise, we compare these estimates with those from 
the tobi t command, which treats observations as independent over i and t (so a, = 0). 
The estimates are similar. 

18.5.3 Generalized tobit models 

The xtintreg command estimates the parameters of interval-data models where con­
tinuous data are reported only in ranges. For example, annual medical expenditure data 
may be reported only as $0, between $0 and $100, between $100 and $1,000, and more 
than $1,000. The unobserved continuous variable, Yit , is modeled as (18.11) ,  and the 
observed variable, Yi: , arises as Yit falls into the appropriate range. 

Stochastic production frontier models introduce into the production function a strict­
ly negative error term that pushes production below the efficient leveL In the· simplest 
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panel model, this error term is time invariant and has a truncated normal distribution, 
so the model ha.<; some commonalities with the panel tobit model. The xtfrontier 
command is used to estimate the parameters of these models. 

All three commands-xtto bit, xtin treg, and xtfron tier-rely heavily on the 
assumption of homoskedastic normally distributed errors for consistency and, like their 
cross-section counterparts, are more fragile to distributional misspecification than, for 
example, linear models and logit models. In particular, in many applications where a 
tobit model is used, a more general sample-selection model may be warranted. Stata 
does not provide panel commands in tbis case, though methods have been proposed. 

18.5.4 Parametric nonlinear panel models 

More generally, it can be difficult to generalize highly parameterized cross-section non­
linear models to the panel case, even without introducing FE. 

The PA, or pooled, approach uses the cross-section estimator, but then bases infer­
ence on a panel-robust estimate of the VCE that can be obtained with a panel bootstrap. 
This approach requires the assumption that the specified marginal distribution for Y·a 
is correct even if 1/i.t is correlated over t. The RE approach introduces an RE ai, similar 
to the re option. The user-written gllamm command (Rabe-Hesketh, Skrondal, and 
Pickles 2002) does so for a wide range of generalized linear models. 

These two approaches are quite distinct and lead to differently scaled parameters. 

1 8 . 6  Count-data models 

We fit count models for the number of doctor visits (mdu) . Many of the relevant issues 
have already been raised for the xtlogi t command. One difference is that analyti­
cal solutions are possible for count RE models, by appropriate choice of (nonnormal) 
distribution for the RE. A second difference is that Poisson panel estimators have the 
same robustness properties as Poisson cross-section estimators. They are consistent 
even if the data are not Poisson distributed, provided the conditional mean is correctly 
specified. At the same time, count data are often overdispersed, and the need to use 
heteroskedasticity-robust standard errors in the cross-section case carries over to a need 
to use panel-robust standard errors in the panel case. 

18.6.1 The xtpoisson command 

The xtpoisson command has the syntax 

xtpoisson depvar [ indepvars ] [ if ] [ in ]  [ weight ] [ , options ] 

The options include PA (pa) , RE (re) ,  and FE (fe) models. 

Then P A, RE, and FE estimators are available for both the Poisson model, using 
xtpoisson, and for the negative binomial model, using xtnbreg. 
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18.6.2 Panel summary of the dependent variable 

The dependent variable, mdu, is considerably overdispersed because, from section 18.3.1, 
the sample variance o£4.502 = 20.25 is seven times the sample mean of 2.86. This makes 
it very likely that default standard errors for both cross-section and panel Poisson 
estimators will considerably understate the true. standard errors. 

The mdu variable has a within variation of similar magnitude to the between varia­
tion. 

. * Panel summary of dependent variable 

. xtsum mdu 
Variable Mean Std. Dev. Min Max Observations 

mdu overall 
between 
within 

2 .  860696 4 .  504 765 0 77 N � 20186 
3 .  785971 0 63. 33333 n = 5908 
2 . 575881 -34.47264 40. 0607 T-bar = 3 . 41672 

To provide more detail on the variation in mdu over time, it is useful to look at 
transition probabilities, after first aggregating all instances of four or more doctor visits 
into a single category. We have 

* Year-to-year transitions in doctor visits 
generate mdushort � mdu 
replace mdushort =- 4 if mdu >= 4 

(4039 real changes made) 
xttrans mdushort 

mdushort 
mdushort 0 2 3 4 Total 

0 58.87 19 .61  9 . 21 4.·88 7 . 42 100.00 
1 33.16 24.95 17 .58 1 0 . 14 14 . 16 100.00 
2 23.55 24.26 17.90 1 2 . 1 0  2 2 . 1 9  100.00 
3 17.80 20 . 74 18 . 55 12 .14 30 . 77 100.00 
4 8 .79  11 .72 12 .32 1 1 . 93 55.23 100.00 

Total 31 .81  19 .27 13 .73 9 . 46 25.73 100 .00  

There is considerable persistence: over half of people with zero doctor visits one year 
also have zero visits the next year, and over half of people with four or more visits one 
year also have four or more visits the next year. 

18.6.3 Pooled Poisson estimator 

The pooled Poisson estimator assumes that Yit is Poisson distributed with a mean of 

E(y;tiXit) = exp(x;,f3) (18.13) 

as in the cross-section case. Consistency of this estimator requires that (18.13) is cor­
rectly specified but does not require that the data actually be Poisson distributed. If 
the data are not Poisson distributed, however, then it is essential that robust standard 
errors be used. 
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The pooled Poisson .estimator can be estimated by using the poisson command, 
with cluster-robust standard errors that take care of both overdispersion and serial 
correlation. We have 

. * Pooled Poisson estimator uith cluster-robust standard errors 

. poisson mdu lcoins ndisease female age lfam child, vce(cluster id) 
Iteration 0 :  log pseudolikelihood = -62580. 248 
Iteration 1 :  log pzeudolikelihood � -62579.401 
Iteration 2: log pseudolikelihood = -62579.401 
Poisson regression 

Log pseudolikelihood = -62579.401 

Number of obs 
Wald chi2 (6) 
Prob > chi2 
Pseudo R2 

20186 
4 76.93 
0 . 0000 
0. 0609 

(Std. Err. adjusted for 5908 clusters in id) 

Robust 
mdu Coef . Std. Err. z P> l z l  [95% Conf . Interval] 

lcoins - . 0808023 . .  0080013 -10.10  0.000 - . 0964846 - .  0651199 
ndisease . 0339334 .0026024 13 .04 0 . 000 .0288328 . 039034 

female . 1717862 . 0342551 5 .01  0 . 000 . 1046473 .2389251 
age . 0040585 . 0016891 2 .40 0 . 016  . 000748 . 0073691 

lfam - . 1481981 . 0323434 -4.58 0 . 000 - . 21159 - .0848062 
child . 1030453 . 0506901 2 . 03 0 . 042 . 0036944 .2023961 

cons .748789 . 0785738 9 . 53 0 . 000 .5947872 .9027907 

The importance of using cluster-robust standard errors cannot be overemphasized. 
For these data, the correct cluster-robust standard errors are 50% higher than the 
heteroskedasticity-robust standard errors and 300% higher than the default standard 
errors; see the end-of-chapter exercises. Here failure to control for autocorrelation and 
failure to control for overdispersion both lead to considerable understatement of the 
true standard errors. 

-

18.6.4 PA Poisson esil:imator 

The PA Poisson estimator is a variation of the pooled Poisson estimator that relaxes the 
assumption of independence of Y·it to allow different models for the correlation Pt" = 

Cor[{yit - exp(x:t{3)}{y;, - exp(X,8{3)}] . 

The PA estimator is obtained by using the.xtpoisson command with the pa option. 
Different correlation models are specified by using the corr 0 option; see section 8.4.3. 
Consistency of this estimator requires only that (18.13) be correct. But if the data 
are non-Poisson and are overdispersed, then the vee (robust) option should be used 
because otherwise default standard errors will understate the true standard errors. 

We use the corr (unstructured) option so that Pt• can vary freely over t and s. We 
obtain 

· 
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. * Poisson PA estimator Yith unstructured error correlation and robust VCE 
• xtpoisson mdu lcoins ndisease female age lfam child, pa corr(unstr) vce (robust) 
Iteration 1 :  tolerance = .01585489 
Iteration 2: tolerance Q . 00034066 
Iteration 3: tolerance = 2 . 334e-06 
Iteration 4: tolerance = 1 .939e-08·· 
GEE population-averaged model 
Group and tj.me vars: 
Link: 
Family: 

id year 
log 

Poisson 
Correlation: unstructured 

Scale parameter: 
(Std. Err. 

Semi-robust 
mdu Coef . Std. Err. z 

leo ins - . 0804454 .0077782 -10.34 
ndisease . 0346067 .0024238 14.28 

female . 1585075 . 0334407 4 .  74 
age . 0030901 . 0015356 2 . 0 1  

lfam - . 1406549 .0293672 -4.79 
child . 1013677 . 04301 2 . 36 
cons . 7764626 . 0717221 10. 83 

Number of obs 
Number of groups 
Obs per group : min 

Wald chi2�6) 
Prob > chi2 

avg = 
max = 

20186 
5908 

3 . 4  
5 

508.61 
0 .0000 

adjusted for clustering on id) 

P> l z l  [95% Conf. Interval] 

0 . 000 - . 0956904 - . 0652004 
0 . 000 . 0298561 . 0393573 
0 . 000 . 0929649 . 2240502 
0 . 044 . 0000803 . 0060999 
0 . 000 - . 1982135 - .0830962 
0 . 018 . 0170696 . 1856658 
0 . 000 . 6358897 . 9170354 

The coefficient estimates are quite similar to those from pooled Poisson. The standard 
errors are as much as 10% lower, reflecting efficiency gain due to better modeling of the 
correlations. A more detailed comparison of estimators and methods to estimate the 
VCE (see the end-of-chapter exercises) shows that failure to use the vce(robust) option 
leads to erroneous standard errors that are one-third of the robust standard errors, and 
similar estimates are obtained by using the corr (exchangeable) or corr(ar2) options. 

18.6.5 RE  Poisson estimators 

The Poisson individual-effects model assumes that Yit is Poisson distributed with a mean 
of 

(18.14) 
where /i = ln ai, and· here xu includes an intercept. The conditional mean can be 
viewed either as one with effects that are additive before exponentiation or as one with 
multiplicative effects. 

The standard Poisson RE estimator assumes that ai is gamma distributed with a 
mean of 1 and a variance of '1). This assumption has the attraction that there is a closed­
form expression for the integral (18.4) , so the estimator is easy to compute. Furthermore, 
E(Y·it lxit) = exp(�tf3) so that predictions and MEs are easily obtained and interpreted. 
This is the conditional mean given in (18.13) for the PA and pooled models, so for the 
special case of the Poisson, the PA and pooled estimators are c'�nsistent estimators of 
the RE model. Finally, the first-order conditions for the Poisson RE estimator, /3, can 
be shown to be 
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N T ( - + IT) LL Xit Yit - A;t Y,. 1J = 0 i=l t=l >.; + 11/T (18.15) 

where "X.; = T-1 I;t exp(x:tfl), so the estimator is consistent if E(Yit la;, x.il, . . .  , x;T) = 
a; exp(x;1.6') because then the left-hand side of (18.15) has an expected value of 0. 

The RE estimator is obtained by using the xtpoisson command with the re option. 
There is no option for cluster-robust standard errors, so we use the vee (bootstrap) 
option, which performs a cluster bootstrap. We have 

. * Poisson random-effects estimator uith cluster-robust standard errors 

. xtpoisson mdu lcoins ndisease female age lfam child, re 
> vce (boot , reps(400) seed(10101) nodots) 
Random-effects Poisson regression 
Group variable: id 
Random effects u_i - Gamma 

Log likelihood -43240 . 556 

Number of obs 
Number of groups 
Obs per group: min = 

avg = 
max 

Wald chi2(6) 
Prob > chi2 

20186 
5908 

1 
3 . 4  

5 
534.34 
0 . 0000 

(Replications based on 5908 clusters in id) 

Observed Bootstrap Normal-based 
mdu Coef . Std. E=. z P> l z l  [95% Conf. Interval] 

leo ins - . 0878258 .0081916 - 1 0 .72 0 . 000 - . 103881 - .0717706 
ndisease . 0387629 .0024574 15 .77 0 . 000 . 0339466 . 0435793 

female . 1667192 . 0376166 4 . 43 0 . 000 . 0929921 .2404463 
age . 0019159 .0016831 1 . 14 0.255 - . 001383 . 0052148 

lfam - . 1351786 . 0338651 -3.99 0 . 000 -.201553 - . 0688042 
child . 1082678 . 0537636 2 .01  0 . 044 . 0028931 . 2136426 

cons .7574177 . 0827935 9 . 15 0 . 000 .5951454 .91969 

/lnalpha .0251256 .0257423 - . 0253283 . 0755796 

alphaj 1 .025444 .0263973 .9749897 1 . 078509 

Likelihood-ratio test of alpha=O: chibar2(01) 3 . 9e+04 Prob>=chibar2 = 0 . 000 

Compared with the PA estimates, the RE coefficients are within 10% and the RE cluster­
robust standard errors are about 10% higher. The cluster-robust standard errors for 
the RE estimates are 20-50% higher than the default standard errors, so cluster-robust 
standard errors are needed. The problem is that the Poisson RE model is not sufficiently 
flexible because the single additional parameter, 71, needs to simultaneously account for 
both overdispersion and correlation. Cluster-robust standard errors can correct for this, 
or the richer negative binomial RE model may be used. 

For the RE model, E(Yit iXit) = exp(x;1J3), so· the fitted values exp(x;1.(3) ,  created by 
using predict with the nuO option, can be interpreted as estimates of the conditional 
mean after integrating out the RE. And mfx with the predict (nuO) option gives the 
corresponding MEs. If instead we want to also condition on a;,  then E(Yit la .; , X;t) = 
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a, exp(x;tf3l implies that EJE(Yit ]a.; , x;t)/oxJ;it = f3J x E(Y·itlai , X;t), so (3j can still be 
interpreted as a semielasticity. 

An alternative Poisson RE estimator assumes that "{; = lna, is normally distributed 
with a mean of 0 and a variance of O",;, similar to the xtlogit and xtprobit commands. 
Here estimation is much slower because Gauss-Hermite quadrature is used to perform 
numerical univariate integration. And similarly to the logit RE estimator, prediction and 
computation of MEs is difficult. This alternative Poisson RE estimator can be computed 
by using xtpoisson with the re and normal options. Estimates from this method are 
presented in section 18.6.7. 

The RE model permits only the intercept to be random. We can also allow slope 
coefficients to be random. This is the mi..'Ced-effects Poisson estimator implemented with 
xtmepoisson. The method is similar to that for xtmelogi t, presented in section 18.4.10. 
The method is computationally intensive. 

18.6.6 FE Poisson estimator 

The FE model is the Poisson individual-effects model (18.14), where ai is now possibly 
correlated with x.,t, and in short panels, we need to eliminate a.; before estimating ,(3. 

These effects can be eliminated by using the conditional ML estimator based on a log 
density for the ith individual tha.t. conditions on I:��� Yit, similar to the treatment of 
.FE in the logit model. Some algebra leads to the Poisson FE es�imator with first-order 
conditions 

f!_., T ( .\.it _ )  LLX·it Yit - =-Yi = 0 
·i=l t=l >..,. 

(18.16) 

where A.tt = exp(xitf3l and >;, = T-1 Lt exp(x�tf3 ) . The Poisson FE estimator is there­
fore consistent if E(Y;t ]ai, x,l> . . .  , X;T) = a.; exp(xitf3) because then the left-hand side 
of (18.16) has the expected va:ue of zero. 

The Poisson FE estimator can be obtained by using the xtpoisson command with 
the f e option. To obtain cluster-robust standard errors, we can use the vee (bootstrap) 
option. It is quicker, however, to use the user-written xtpqml command (Simcoe 2007), 
which directly calculates cluster-robust standard errors. We have 
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. * Poisson fixed-effects estimator uith cluster-robust standard errors 
. xtpoisson mdu lcoi:ns ndisease female age lfam child, fe vce(boot, reps(400) 
> seed(10101) nodots) 
Conditional fixed-effects Poisson regression 
Group variable : id 

Log lik�lihood -24173.211 

Number of  obs 
Number of groups 

17791 
4977 

Obs Per group: min � 2 
avg 3 . 6  
ma."C 5 

Wald chi2(3) 4.39 
Prob > chi2 0 . 2221 

(Replications based on 4977 clusters in id) 

Observed Bootstrap Normal-based 
mdu Coef. Std. Err. z P> l z l  [95% Conf . Interval] 

age - .0112009 . 0094595 - 1 . 18 0 . 236 - . 0297411 . 0073394 
lfa.m . 0877134 . 1 152712 0. 76 0 . 447 - . 138214 . 3136407 

child . 1059867 . 0758987 1 . 40 0 . 163 - . 0427721 . 2547454 
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Only the coefficients of time-varying regressors are identified, similar to other FE model 
estimators. The Poisson FE estimator requires that there be at least two periods of data, 
leading to a loss of 265 observations, and that the count for an individual be nonzero in 
at least one period (2:,[�1 Yit > 0) ,  leading to a loss of 666 individuals because mdu equals 
zero in all periods for 666 people. The cluster-robust standard errors are roughly two 
times those of the default standard errors; see the end-of-chapter exercises. In theory, 
the individual effects, a;, could account for overdispersion, but for these data, they do 
not completely do so. The standard errors are also roughly twice as large as the P A and 
RE standard errors, reflecting a loss of precision due to using only within variation. 

For the FE model, results should be interpreted based on E(yit ]a;,x;1) = a., exp(x;1 
/3). The predict command with the nuO option gives predictions when -y, = 0 so 
a.; = 1 ,  and the mix command with the predict(nuO) option gives the corresponding 
IVIEs. If we do not want to consider only the case of a; = 1, then the model implies that 
8E(Y·itla.,, Xit) /8xj.it = /3j x E(y.;� ]a;, X;t), so /3j can still be interpreted as a semielas­
ticity. 

Given the estimating equations given by (18.16). the Poisson FE estimator can be 
applied to any model with multiplicative effects and an exponential conditional mean, 
essentially whenever the dependent variable has a positive conditional mean. Then the 
Poisson FE estimator uses the quasi-difference, Yit - (>..;t/A.i )y1 ,  whereas the linear model 
uses the mean-difference, yu - Yi· 

In the linear model, one can instead use the first-difference, Yit - Y;,t-1, to eliminate 
the FE, and this has the additional advantage . of enabling estimation of FE dynamic 
linear models using the Arellano-:li!ond estimator. Similarly, here one can instead use 
the alternative quasi-difference, (>..,:, t-d >.u)Y;t - Yi,t- 1, to eliminate the FE and use this 
as the basis for estimation of dynamic panel count models. 
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18.6.7 Panel Poisson estimators comparison 

We summarize the results using several panel Poisson estimators. The RE and FE 
estimators were estimated with the default estimate of the VCE to speed computation, 
though as emphasized in preceding sections, any reported standard errors should be · 
based on the cluster-robust estimate of the VCE . 

. * Comparison of Poisson panel estimators 

. quietly xtpoisson mdu lcoins ndisease female age lfam child, pa corr(unstr) 
> vee (robust) 

estimates store PPA_ROB 
quietly xtpoisson mdu lcoins ndisease female age lfam child, re 
estimates store PRE 
quietly xtpoisson mdu lcoins ndisease female age lfam child, re normal 
estimates store PRE_NORM 
quietly xtpoisson mdu lcoins ndisease female age lfam child, fe 
estimates store PFE 
estimates table PPA_RaB PRE PRE_NaRM PFE, equations (1) b(%8.4f) se 

> stats(N 11) stfmt (%8.af) 

Variable I PPA_RaB PRE PRE_NaRM PFE 

#1 
leo ins -a . a8a4 -a .a878 - a . 1 145 

a . aa78 a . aa69 a . aa73 
ndisease a . a346 a . a388 a . a4a9 

a .aa24 a . aa22 a . aa23 
female a . 1585 a . 1667 a . 2a84 

a . a334 a . a286 a . a3a5 
age a . aa31 a . aa19 a . aa27 -a .a112  

a . aa15 a. aa11 a . aa12 a. aa39 
lfam -a. 14a7 -a . 1352 -a . 1443 a . a877 

a . a294 a . a26a a . a265 a . a555 
child a . 1a14 a . 1a83 a . a737 a . 1 a6a 

a . a43a a . a341 a . a345 a . a438 
cons a .  7765 a .  7574 a . 2873 

a .a717 a .a618 a . a642 

lnalpha 
_cons a . a251 

a . a21a 

lnsig2u 
cons a . a55a 

a . a255 

Statistics 
N 2a186 2a186 2a186 17791 

ll -43241 . -43227 -24173 

legend: b/se 

The PA and RE parameter estimateg are quite similar; the alternative RE estimates based 
on normally distributed RE are roughly comparable, whereas the FE estimates for the 
time-varying regressors are quite different. 
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18.6.8 Negative binomial estimators 

The preceding analysis for the Poisson can be replicated for the negative binomial. The 
negative binomial has the attraction that, unlike Poisson, the estimator is designed 
to explicitly handle ovei-dispersion, and count data are · us.ually overdispersed. This 
may lead to improved efficiency in estimation and a default estimate of the VCE that 
should be much closer to the cluster-robust estimate of the VCE, unlike for Poisson panel 
commands. At the same time, the Poisson pa.nel estimators rely on weaker distributional 
assumptions-'essentially, correct specification of the mean-and it may be more robust 
to use the Poisson panel estimators with cluster-robust standard errors. 

For the pooled negative binomial, the issues are similar to those for pooled PoissoR. 
For the pooled negative binomial, .we use the nbreg command with the vee( cluster 
id) option. -For the PA negative binomial, we can use the xtnbreg command with the 
pa and vee (robust) options. 

For the panel negative binomial RE and FE models, we use xtnbreg with the re or 
fe option. The negative binomial RE model introduces two parameters in addition to f3 
that accommodate both overdispersion and within correlation. The negative binomial 
FE estimator is unusual among FE estimators because it is possible to estimate the 
coefficients of time-invariant regressors in addition to time-varying regressors. A more 
complete presentation is given in, for example, Cameron and Trivedi (1998, 2005) and 
in [XT] xtnbreg. 

We apply the Poisson PA and negative binomial PA, RE, and FE estimators to the 
doctor visits data. We have 

. * Comparison of negative binomial panel estimators 
. quietly xtpoisson mdu lcoins ndisease female age lfam child, pa corr(exch) 
> vee (robust) 
. estimates store PPA_ROB 
. quietly xtnbreg mdu lcoins ndisease female age lfam child, pa corr(exch) 
> vee (robust) 

estimates store NBPA_ROB 
quietly xtnbreg mdu lcoins ndisease female age lfam child, re 
estimates store NBRE 

quietly xtnbreg mdu lcoins ndisease female age lfa.m child, fe 
estimates store NBFE 

(Continued on next page) 
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. estimates table PPA_ROB NBPA_ROB NBRE NBFE, equations(1 )  b(%8.4f) se 
> stats(N 11) stfmt (%8.0f) 

Variable PPA_ROB NBPA_ROB NBRE NBFE 

#1 
lcoins -0.0815 -0.0865 -0. 1073 -0.0885 

0 . 0079 0 . 0078 0 . 0062 0 .  0139 
ndisease 0 . 0347 0 . 0376 0 . 0334 0 . 0154 

0 . 0024 0 . 0023 0 . 0020 0 .0040 
female 0 . 1609 0 . 1649 0 . 2039 0 . 2460 

0 . 0338 0 . 0343 0 . 0263 0 .0586 
age 0 .0032 0 .0026 0 . 0023 -0.0021 

0 . 0016 0 . 0016 0 . 0012 0 . 0020 
lfam -0. 1487 -0. 1633 -0. 1434 -0. 0008 

0 . 0299 0 . 0291 0 .0251 0 . 0477 
child 0 . 1121 0 . 1154 0 . 1 145 0 . 2032 

0 . 0444 0 . 0452 0 .0385 0 . 0543 
-cons 0 .7755 0 .  7809 0 .8821 0 . 9243 

0 . 0724 0 . 0730 0 . 0663 0 . 1156 

ln_r 
-cons 1 . 1280 

0 . 0269 

ln_s 
-cons a. 7259 

0 .0313 

Statistics 
N 20186 20186 20186 17791 

11 -40661 -21627 

legend: b/se 

The Poisson and negative binomial PA estimates and their standard errors are simi­
lar. The RE estimates differ more and are closer to the Poisson RE estimates given in 
section 18.6.4. The FE estimates differ much more, especially for the time-invariant 
regressors. 

18.7 Stata resources 

The Stata panel commands cover the most commonly used panel methods, especially 
for short panels. This topic is exceptionally vast, and there are many other methods 
that provide less-used alterna'.:ives to the methods covered in Stata as well as meth­
ods to handle complications not covered in Stata, especially the joint occurrence of 
several complications such as a dynamic FE logit model. Many of these methods are 
covered in the panel-data books by Arellano (2003), Baltagi (2008), Hsiao (2003), and 
Lee (2002); see also Rabe-Hesketh and Skrondal (2008) for the mixed-model approach. 
Cameron and Trivedi (2005) and Wooldridge (2002) also cover some of these methods. 
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18.8 Exercises 

1. Consider the panel logit estimation of section 18.4. Compare the following three 
sets of estimated standard errors for the pooled logit estimator: default, hetero­
skedasticity-robust, and cluster-robust. How important is it to control for het­
eroskedasticity and clustering? Show that the pa option of the xtlogit command 
yields the same estimates as the xtgee command with the family(binomial ) ,  
link(logit) ,  and corr(exchangeable) options. Compare the PA estimators 
with the· corr(exchangeable ), corr (AR2) ,  and corr (unstructured) options, in 
each case using the vee (robust) option. 

2. Consider the panel logit estimation of section 18.4. Drop observations with id > 
125200. Estimate the parameters of the FE logit model by using xtlogit as in 
section 18.4. Then estimate the parameters of the same model by using logit with 
dummy variables for each individual (so use xi : log it with regressors including 
i .  id). This method is known to give inconsistent parameter estimates. Com­
pare the estimates with those from command xtlogi t. Are the same parameters 
identified? 

3. For the parameters of the panel logit models in section 18.4, estimate by using 
xtlogi t with the pa, re, and f e options. Compute the following predictions: for 
pa, use predict with the mu option; for re, use predict with the puO option; for 
pa, use predict with the puO option. For these predictions and for the original 
dependent variable, dmdu, compare the sample average value and the sample cor­
relations. Then use the mfx command with these predict options, and compare 
the resulting MEs for the lcoins variable. 

4. For the panel tobit model in section 18.5, compare the results from xttobit with 
those from tobit. Which do you prefer? Why? 

5. Consider the panel Poisson estimation of section 18.6. Compare the following 
three sets of estimated standard errors for the pooled Poisson estimator: de­
fault, heteroskedasticity-robust, and cluster-robust. How important is it to con­
trol for heteroskeda.sticity and clustering? Compare the PA estimators with the 
corr(exchangeable ) ,  corr(AR2) , and corr( unstructured) options, in each case 
using both the default estimate of the VCE and the vee (robust) option. 

6. Consider the panel count estimation of section 18.6. To reduce computation time, 
use the drop if id > 127209 command to use 10% of the original sample. Com­
pare the standard errors obtained by using default standard errors with those ob­
tained by using the vee (boot) option for the following estimators: Poisson RE, 
Poisson FE, negative binomial RE, and negative binomial FE. How iinportant is it 
to use panel-robust standard errors for these estimators? 





A P rogra m m ing a n  Stata 

In this appendix, we build on the introduction to Stata programming given in chapter 1 .  
We first present Stata matrix commands, introduced in section 1.5.  The rest of the 
appendL-x focuses on aspects of writing Stata programs, using the program command 
introduced in section 4.3.1. We discuss programs to be included within a Stata do-file, 
ado-files that are programs intended to be used by other Stata users, and some tips for 
program debugging that are relevant for even the simplest Stata coding. 

A . l  Stata matrix commands 

Here we consider Stata matrb:: comtnands, initiated with the matrix pre:fi."X. These 
provide a limited set of matrix commands sufficient for many uses, especially postes­
timation manipulation of results, as introduced in section 1.6, and are comparable to 
matrix commands provided in other econometrics packages. 

The separate appendL"X B presents Mata matrix commands, introduced in Stata 9. 
Mata is a full-blown matrix programming language, comparable to Gauss and Matlab. 

A.l .l  Stata matrix overview 

Key considerations are inputting matrices, either directly or by converting data variables 
into matrices, and performing operations on matrices or on subcomponents of the matrix 
such as individual elements. 

The basics are ·given in [u] 14 Matrix expressions and in [P) matrix. Useful 
online help commands include help matrix, help matrix operators, and help matrix 
functions. 

A.1.2 Stata matrix input and output 

There are several ways to input matrices in Stata. 

Matrix input by hand 

Matrix entries can be entered by using the matrix define command. For example, 
consider a 2 x 3 matrix with the first row entries � '  2, and 3, and the second row entries 
4, 5, and 6. Column entries are separated by commas, and rows are separated by a 
backslash. We have 

631 
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* Define a matrix explicitly and list the matrix 
matrix define A =  ( 1 , 2 , 3  \ 4 , 5 , 6) 
matrix list A 

A [2,3] 
c 1  c2 c3 

r1 1 2 3 
r2 4 5 6 

The word define can be omitted from the above command. 

The default names for the matrix rows are rl ,  r2, . . . , and the column defaults are 
cl ,  c2, . . . .  These names can be changed by using the matrix ro"Wnames and matrix 
colnames commands. For example, to give the names one and two to the two rows of 
matrbc A, type the command 

* Matrix rot� and column names 
matrix rotma.mes A = one tt�o 
matrix list A 

A [2 , 3] 
c1 c2 c3 

one 1 2 3 
tuo 4 5 6 

An alternative matrix naming command is matname. 

Matrix input from Stata estimation results 

Matrices can be ·constructed from matrices created by the Stata estimation command 
results stored in e ( )  or r() . For example, after ordinary least-squares ( OLS) regression, 
the variance-covariance matrix is stored.in e (V) . To give it a more obvious name or to 
save it for later analysis, we define a matrix equal to e (V). 

As a data example, we use the same dataset as in chapter 3. vVe use the first 100 
observations and regress medical expenditures (ltotexp) on an intercept and chronic 
problems (totchr). We have 

* Read in data, summarize a.nd run regression 
. use mus03data.dta 
. keep if _n <= 100 
(2964 observations deleted) 
. drop if ltotexp = =  . I totchr == 
(0 observations deleted) 

summarize ltotexp totcbr 
Variable Obs Meac. Std. Dev. Min Max 

ltotexp I 100 4. 533688 .8226942 1 .098612 5. 332719 
totchr 100 .48 .717459 0 3 

regress ltotexp totchr, noheader 

ltotexp Coef . Std. Err. t P> l t l  [95% Conf. Interval] 

totchr . 1353098 . 1 150227 1 . 18 0 . 242 - . 0929489 .3635685 
cons 4 .468739 . 0989462 45 . 16 0 . 000 4 .272384 4 . 665095 
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A command to drop observations with missing values from the dataset in memory is 
included, because not all matrix operators considered below handle missing values. 

vVe then obtain the variance matri..:-:: stored in e (V) and list its contents. 

* Create a matrix from estimation results 
matrix vbols = e (V) 
matrix list vbols 

symmetric vbols [2,2] 
totchr cons 

totchr .01323021 
cons - . 0063505 . 00979036 

Stata has incorporated the regressor names into the estimate of the variance-covariance 
matrix of the estimator (veE) so that vbols has rows and columns named totchr and 
_cons. 

A.l.3 Stata matrix subscripts and combining matrices 

Matrix subscripts are represented in �quare brackets. The entry (i,j) in a matrix is 
denoted [i , j ] .  For example, to set the (1, 1) entry in matrLx A to equal the (1 ,  2) 
entry, type the command 

* Change value of an entry in matrix 
matrix A [1 , 1] = A [ 1 ,2] 
matrix list A 

A[2,3] 
cl c2 c3 

one 2 2 3 
tuo 4 5 6 

If the row or column has a name, one can alternatively use this name. For example, 
because row 1 of A is named one, we could have typed matrix A [ 1 ,  1] = A [ "one " , 2] . 

For a column vector, the ith entry is denoted by [i , 1] rather than simply [i] . 
Similarly, for a row vector, the jth entry is denoted by [1 , j ]  rather than simply [j ] .  

Matrix subscripts can be given as a range, permitting a submatrix to be extracted 
from a matrix. For example, to extract all the rows and columns 2-3 from matrix A, 
type 

· 

* Select part of matrix 
matrix B = A [ l .  . .  ,2 . .  3] 
matrix list B 

B[2,2] 
c2 c3 

one 2 3 
tuo 5 6 

Here k . . . selects the kth entry on, and k . . 1 selects the kth-lth entry. 
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To add or append rows to a matrix, the vertical concatenation operator \ is used. 
For example, A \ B adds rows of B after the rows of A Similarly, to add columns to a 
matri"<, the horizontal concatenation operator , is used. For example, 

* Add columns to an existing matrix 
matrix C = B, B 
matrix list C 

C[2,4] 
c2 c3 c2 c3 

one 2 3 2 3 
tuo 5 6 5 6 

A.l.4 Matrix operators 

All the standard matrix operators can be applied, provided tl!at the matrices are con­
formable. The operators are + to add, - to subtract, * to multiply, and # for the 
Kronecker product. In addition, the multiplication command can be used for multipli­
cation by a scalar, e.g., 2*A or A*2, and scalar division is possible, e.g., A/2. A single 
apostrophe, · ,  gives the matrL--:: transpose. To compute A·  A, we use A·  *A. For example, 

* Matrix operators 
matrix D Q C + 3•C 
matrix list D 

0[2,4] 
c2 c3 c2 c3 

one 8 12 8 12 
tuo 20 24 20 24 

A.1.5 Matrix functions 

Standard matrix functions are defined by using parentheses, C ) . Some commands lead 
to a scalar result, for example, 

* Matrix functions 
matrix r = roYsof(D) 
matrix list r 

symmetric r [1 ,1]  
c 1  

rl 2 

In this example, it is more convenient to store the result as a scalar, rather than in 
a 1 x 1 matrix. For example, 

2 

* Can use scalar if 1x1 matrix 
scalar ralt Q rousof(D) 
display ral t 

Functions that produce scalars include colsof (A) , det (A) , rowsof (A) , and trace (A) . 
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Other commands produce matrices. For example, matrix B, created earlier, is a 
nonsymmetric square matrix, with the inverse 

. � Inverse of nonsymmetric square matrix 

. matrix Binv Q inv(B) 

. matrix list Binv 
Binv[2,2] 

one tuo 
c2 -2 1 
c3 1 . 6666667 - . 66666667 

Here are some functions that produce matrices: cholesky (A) , corr (A) , diag (A), 
hadamard(A,B) , I (n) , inv(A) , invsym(A) , vec(A), and vecdiag(A) . 

A.1.6 Matrix accumulation commands 

Most estimators, such as the OLS estimator (X'X)-1X'y, require the computation of 
matrix cross products. We strongly recommend that you do not put your data into 
Stata matrices. Stata has accumulation commands that corripute cross products from 
variables and return the results in Stata matrices. If you really want to put your data 
into a matrix, refer to appendix B on Mata. 

Stata's matrix accumulation commands compute the matrix cross products X'X 
and X'y without requiring the intermediate step of forming the much larger matrices 
X and y. 

As an example, the matrix accum A = vl v2 command creates a 3 x 3 matrix 
A = Z'Z, where Z is an N x 3 matrix with columns of the variables vl and v2, and 
a column of ones that a,ccum automatically appends unless the noconstant option is 
used. The companion matrix vecaccum A =  w v1 v2 command creates a 1 x 3 row vector 
A = w'Z, where w is an N x 1 column vector with a column of the variable w, and 
Z is an N x 3 matrix with columns of the variables vl and v2, and a column of ones 
that again accum automatically adds at the end unless the noconstant option is used. 
Related commands ·are matrix glsaccum, which forms weighted cross products of the 
form X'BX, and matrix opaccum. 

The following code produces the same point estimates as regress 1 totexp totchr: 

. * OLS estimator using matrix accumulati"on operators 
• matrix accum XTX Q totchr // Form x · x  including constant 
(obsQ100) 

matrix vecaccum yTX Q ltotexp totcbr II Form y'X including constant 
• matrix cols Q invsym(XTX ) • (yTX) ' 
. matrix list cols 
cols [2, 1] 

ltotexp 
totcbr . 13530976 

_cons 4 .4687394 
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A.l. 7 OLS using Stata matrix commands 

The following example runs a.n OLS regression of 1 totexp on a.n intercept a.nd totchr, 
a.nd it also reports the default OLS sta.nda.rd errors a.nd associated t statistics. We use 
matrix accumulation conna.nds so tha.t large problems ca.n be handled. The challenge 
in using these commands is to obtain s2 

= 2::::':1 {Y; - jJ;)2 without ha. ving to form a.n 
N x 1 vector of predicted values. One wa.y to do this is to use the result tha.t for OLS 

N _, -

2:::-i=l (y; - y;)2 
= y'y - {3 X'X/3. 

We ha.ve 

. * Illustrate Stata matrix commands: OLS Yith output 

. matrix accum XTX = totcbr // Form x�x including constant 
(obs=lOO) 

matrix vecaccum yTX = ltotexp totcbr // Form y�X including constant 
. matrix b � invsym(XTX )• (yTX) • 

. matrix accum yTy = 1 totexp, noconsta.nt 
(obs=100) 

scalar k = rousof (XTX) 
. scalar n ... _N 
. matrix s2 = (yTy - b••XTX"•b)/ (n-k) 
. ·matrix V = s2•invsym(XTX) 
. matrix list b 
b[2,1]  

ltotexp 
totcbr . 13530976 

cons 4 . 4687394 
. matrix list V 
symmetric V[2 ,2] 

totchr cons 
totcbr . 01323021 

cons - . 0063505 . 00979036 

This yields the sa.me estimates of the coefficients a.nd VCE a.s listed in section A.l.2. 

We now wa.nt to obtain output formatted in the usual wa.y with columns of regressor 
names, coefficient estimates, sta.nda.rd errors, a.nd t statistics. This is not straightforward 
using Sta.ta. matrix commands. We wish to form the column vector t with the jth entry 
tj = b]/sj = bjjvfvjj. But Sta.ta. provides no facility for element-by-element division 
a.nd a.lso no ea.sy wa.y to ta.ke the element-by-element square root of a. matrix. One fix 
is to first form a. column vector, seinv, with the jth entry 1/sj by creating a. dia.gona.l 
matrix with the entries s], taking the inverse of this ma.trb:, taking the square root 
of this matrix, a.nd forming a. column vector with the resulting dia.gona.l entries. Then 
form the column vector t by using the Ha.da.ma.rd product of b a.nd seinv, where for 
matrices A a.nd B of the sa.me dimension, C=hadamard(A,B) gives the matrix C with the 
ijth entry Cij = Aij X Bij· vVe obtain 
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* Stata matrix commands to compute SEs and t statistics given b and V 
matrix se � (vecdiag(cholesky(diag(vecdiag(V) ) ) ) ) • 
matrix seinv � (vecdiag(cholesky( invsym(diag(vecdiag(V) ) ) ) ) ) .  
matrix t = hadamard(b,seinv) 
matrix results = b, se,  t 

� matrix colnames results = coeff sterror tratio 
. matrix list results,  format (%7.0g) 
results[2,3] 

coeff sterror tratio 
totchr . 13531 . 11502 1 . 1764 

cons 4 . 4687 . 09895 45. 163 
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It is much easier to instead use Stata's eretUIIl commands to produce this output , 
based on a row vector of coefficient estimates and an estimated variance matrix. The 
preceding code led to a column vector of coefficients, so we first need to transpose. We 
obtain 

A . 2  

* Easier i s  t o  use ereturn post and display given b and V 
matrix brou = b � 

ereturn post brou V 
ereturn display 

Coef . Std. Err. z P> l z l  [95% Conf . Interval] 

totchr 
cons 

. 1353098 . 1150227 
4 . 468739 .0989462 

1 . 18 0 . 239 
45 . 16 0 . 000 

- . 0901305 
4 . 274808 

. 36075 
4 . 66267 

Similar code for OLS that instead uses Mata functions is provided in section 3.8. 

P rograms 

Do�fi.les, ado-fi.les, and program files are collections of Stata commands that are useful 
whenever the same analysis is to be repeated exactly or with relatively minor variation. 
For many analyses·, · a do-fi.le that enacts Stata commands (that are themselves often 
ado-fi.les written in Stata or Mata) is sufficient. 

More advanced analysis, however, may require actual programming in Stata. These 
programs can be defi.ned and executed as a component of a do-fiJ.e, or they can be 
converted to an ado-file to enable their being called by other programs. Useful references 
are [u] 18 Programming Stata and [P] program. 

A.2.1 Simple programs (no arguments or access to results) 

A program is defined by using the program def�ne command followed by the program 
name. Subsequent lines give the program, which concludes with the line end. 

The simplest programs do not have any inputs, and the program output is simply 
displayed. The following program displays the current time and date. 
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* Program Yith no arguments 
progra.JI:. time 
1 .  display c(current_time) c(current_date) 
2. end 

The word define is optional in the above input-it is sufficient to simply type program 
time. 

The program is executed by typing the name of the program. We have 

. * Run the program 

. time 
1 1 : 00 : 1617 Jun 2008 

Unlike the execution of a do-file, only the program results are listed, here the current 
date and time; the program commands that were executed are not listed. 

A.2.2 Modifying a program 

Stata does not allow one to redefine an existing program. So it is necessary to first 
remove any previous program with the same name, should such a program already 
exist. 

The program drop time command will drop the time program If this program does 
not already exist, however, Stata will stop executing and generate an error message. The 
capture prefL, ensures that Stata will continue to run, even if the time program does 
not already exist. 

Thus the preferred way to define and then execute the time program is 

• Drop program if it already exists, Yrite program and run 
capture program drop time 
program time 
1 .  display c (current_time) c(current_date) 
2. end 
time 

1 1 : 00 : 1617 Jun 2008 

The clear command does not drop programs, though clear all will. To specifi.­
cally drop all programs, use the clear programs command or the program drop _all 
command. 

A.2.3 Programs with positional arguments 

More complicated programs have inputs called arguments. For example, the Stata 
regress command has as arguments the dependent variable and any regressor variables. 
Then execution of the command requires that one gives both the command name and 
the command arguments, e.g., regress y x1 x2. These arguments need to be passed 
into the program and then referred to appropriately within the program. 
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Program arguments can be passed as positional arguments. The first argument is 
referred to by the local macro ' 1 · within the program, the second by local macro • 2 · ,  
and so on. For example, for regress, the dependent variable, say, y ,  may be referred 
to internally as ' 1  · . The quotation marks differ from how they appear on this printed 
page. On most keyboards, the left quote is located in the 'upper left , and the right quote 
is located in the middle right. When viewed using a text editor, the single quote appears 
correctly. But often when viewed in �'lEX documents, they misleadingly appear as ' 1 '  
rather than the correct ' 1 • .  

We present a progTam to  report the median of  the difference between two variables, 
where the two variables need to be passed to the program. Using positional arguments, 
we have 

. * P�ogram Yith tYo positional arguments 
program meddiff 
1 .  tempvar diff 
2 .  generate 'diff' = "1'  - '2"  
3 .  _pctile "dif f ' ,  p(50) 
4. display 11Median difference = ,, r(rl) 
5. end 

The program uses a temporary variable, diff, explained in the next section, to store the 
difference between the two variables. Several commands calculate the median. Here we 
use the _pctile command with the p (50) option. This command stores the resulting 
median in r(r1) , which we then output by using the display command. 

1Ne now run the meddiff program, using the same dataset and variables, ltotchr 
and totchr, as used in section A.l. We have 

. * Run the program t�i th tt�o arguments 

. meddiff 1 totexp totchr 
Median difference = -4 . 2230513 

A.2.4 Temporary variables 

The meddiff program requires the computation of the intermediate variable we have 
named diff. To ensure that this name does not conflict with the names of variables 
elsewhere and that the variable is dropped as soon as the program ends, we use the 
tempvar command to define a temporary variable that is local only to the program and 
is dropped after the program has executed. This temporary variable is declared by using 
tempvar and is then referred to in the same left and right quotation marks as are used 
for local macros. Similarly, the tempname command can be used to declare temporary 
scalars and matrices, and the tempfile command can be used to declare temporary 
files. 

A.2.5 Programs with named positional a�guments 

It is much easier to read the program if it gives names to the positional arguments ' 1  · ,  
- 2 · ,  . . . .  To use named positional arguments, we first define the arguments within the 
program in the order that they will appear in the command. For example, 
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. * Program uith tvo named positional arguments 

. capture program drop meddiff 
program meddiff 
1 . args y x 
2. tempvar diff 
3 . generate 'ditf" = y - ·x · 
4 .  _pctile 'diff · ,  p(50) 
5 .  display "Median difference = 11 r(r 1) 
6. end 
meddiff 1 totexp totcbr 

Median difference = 4 . 2230513 

As for temporary variables, the· arguments are declared without quotes, but Stata stores 
arguments as local macros, so we need to use quotes to refer to the arguments. 

A.2.6 Storing and retrieving program results 

The preceding examples simply displayed results. Often we want to store program 
results for further data analysis. This can be done by storing the results in r O  and 
e () , introduced in section 1.6, and s ( ) . To do this, we need to define the program to 
be of the relevant class and to return the results to the named entries in rO ,  e ( ) , or 
s ( ) .  

For our example, we declare the program t o  b e  rclass, with just one result that 
will be stored in r(medylx) . We have 

* Program Yith results stored in r()  
capture program drop meddiff 
program meddiff, rclass 
1 .  args y x 
2. tempvar diff 
3. generate 'diff" y - ·x·  
4 .  _pctile 'diff " ,  p(50) 
5.  return scalar medylx = r(rl) 
6 .  end 

Executing the pro.g,Tam produces no output; the results of executing the program 
are instead stored in rO.  To list the program results in r O ,  we use the return list 
command, and to disp1ay the scalars in r O ,  we use the display command. 

* RUD.D.ing the program does not immediately display the result 
meddiff 1 totexp totchr 
return list 

scalars: 
r(medylx) 

. display r(medylx) 
4 .2230513 

4. 223051309585571 

An example ?f an eclass program, returning e and V for subsequent analysis, is 
given in section 13.4.4. 
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A.2. 7 Programs with arguments using standard Stata syntax 
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Program arguments can be quite lengthy and can include optional arguments, but many 
commands use arguments in a standard format. In particular, if commands use the 
standard Stata syntax, then tools exist to parse the command, breaking down the long 
command into its various arguments. 

The full standard Stata synta.'C is 

command [ vcirlist I namelist I anything ] [ if ] [ in ]  [ using filename ] [ =exp ] 
[ weight ] [ , options ] 

Square brackets denote optional items. For some commands, some of the items in square 
brackets wiU be required to run that specific command. In the syntax for that specific 
command, these required items will not be surrounded by square brackets. 

As an example, consider the command 

. regress ltotexp totchr if ltotexp < • in 1/100, vce (robust) 

To enact tbis command, Stata interprets regress as command, 1 totexp totehr as 
varlist, if 1 totexp < • as if, in 1/100 as in, and vee (robust) as an option. For the 
regress command, Stata needs to further break down varlist, with the first variable 
being the dependent variable and any remaining variables being regressors. 

We now show how this is done. We write a program, myo1s, that duplicates regress. 
Specifically, we want to be able to break the command 

• myols ltotexp totchr if ltotexp < • in 1/100, vce (robust) 

into its arguments and th!'ln execute regress with these arguments. 

To do so, we use the syntax and get token commands as illustrated in the following 
program. 

* Program that uses Stata commands syntax and gettoken to parse arguments 
program myols .. 
1 .  syntax varlist [if] [in] [ , vee (string)] 
2 .  gettoken y xvars : varlist 
3. display "varlist contains: " 1 1 'varlist .. '• 
4 .  display '•and if  contains: 11 �� � if . .. 
5. display 11and in contains: 1 1 '  in .. 11 

6 .  display 11aD.d vee contains:  " � � �vce:.-11 
7. display '•and y contains: 11 •• ' y · '• 
8 .  display 11& xvars contains:  11 l l 'xvars "" II 

9 .  regress - y· 'xvars· 'if.  ' in · ,  'vee· noheader 
1 0 .  end 

The syntax command lists required arguments-here a list of variable names (var1ist) 
-and optional arguments-here an if qualifier ( [if] ) ,  an in range qualifier ( [in] ) ,  
and the vee 0 option with a string argument for the specific option to be used 
( [ ,  vee(string)J ) .  The syntax command will put in the local ' var1ist· macro any 
list of variable names that appears after myols and before the if or in qualifiers; in the 
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local · if - macro any if qualifier; in the local · in- macro any in range qualifi.er; and 
in the local ·ve e - macro any vee... option. The names in · varlist - are space-separated 
tokens. The specific form of the gettoken command used here puts the first token in 
' varlist - into the local · y - macro and the remaining tokens into the local ' x' macro. 

The unnecessary display commands are included to demonstrate that the parsing 
occurs as desired. Note the use of compound quotes. For example, to display the name 
in the local ·y ·  macro, we use the display " ·y - .. command. If instead we use display 
' y ' ,  then we would see the value of the variable in the local ' y '  macro. 

We then e-xecute the myols program for an example . 

. * Execute program myols for a.n example 

. myols ltotexp totchr if ltotexp < . in 1/100, vce(robust) 
varlist contains : ltotexp totcbr 
and if contains:  if ltotexp < 
and in contains: in 1/100 
aod vee contains :  robust 
and y contains : ltotexp 
& xvars contains:  totchr 

Robust 
ltotexp Coef. Std. Err. t P> l t l  [95% Conf . 

totcbr . 1353098 . 1089083 1 . 24 0 . 217 - . 0808151 
cons 4 .468739 . 1089425 41 .02  0 . 000 4 .252547 

Interval] 

.3514347 
4 . 684932 

The arguments of the myols command have been parsed successfully, leading to the 
expected output from regress. 

A.2.8 Ado-files 

Some Stata commands, such as summarize, are built-in commands. But many Stata 
commands are defi.ned by an ado-file, which is a collection of Stata commands. For 
example, the file logi t .  ado defi.nes the logi t command for logit regTession. Further­
more, Stata users can also defi.ne their own Stata commands by using ado-files. Vv'e use 
many such user-written commands throughout this book. 

An ado-fi.le is a progTam file similar to those already presented. But because they are 
intended for wider use, they are generally more tightly written. Temporary variables, 
scalars, and matrices are used to avoid potential name conflicts with the program calling 
the ado-file. Variables may be generated in double precision. Care is given to the output 
from the program, such as by using the quietly prefix to suppress the unnecessary 
printing of intermediate results. Comments are provided, such as the current version 
number and date. And there should be various checks to ensure that the command is 
being correctly used (e.g., if an input to the program should be positive, then send an 
error message if this is not the case). 

A good example of the development of an ado-file is given in [u] 18.11 Ado-files. 
For an estimation command, see Gould, Pitblado, and Sribney {2006, ch. 10) .  
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Here we provide a brief example, converting the meddiff program from earlier into 
an ado-fi.le. Specifically, the meddiff . ado file comprises 

* l  version 1 . 1 .0 22feb2008 
program meddiff, rclass 

version 10. 1 
args y x 
tempvar diff 
quietly { 

} 

generate double 'diff' � ·y·  - · x ·  
_pctile 'diff · ,  p(SO) 
return scalar medylx � r(rl) 

display 11MediaD. of first variable - second variable :::: " r(rl) 
end 

The program begins with the version and date. The program is yrritten for Stata 10.1. 
The quietly prefix suppresses output. For example, if • y· or · x· has any missing 
values, then the generate statement will lead to a statement that missing values were 
generated. This statement will be suppressed here. The · diff • variable is in double 
precision for increased accuracy. 

To execute the commands in meddiff . ado, we simply type meddiff with the ap­
propriate arguments. For example, 

. * Execute program meddiff for aD. example 

. meddiff ltotexp totcbr 
Median of first variable - second variable � 4 . 2230513 

The meddiff . ado file needs to be in a directory that Stata automatically accesses. 
For a Microsoft Windows computer, these directories include c :  \ado and c :  \Program 
Files\Stata 10 ,  and tl:ie current directory. See [u] 17 Ado-files for further details. 

A.3 Program debugging 

This section provides advice relevant to even the most basic uses of Stata. 

There are two challenges: to get the program to execute without stopping because of 
an error and to ensure that the program is doing what is intended once it is executing. 

We focus here on the first challenge. The simplest way to debug a program is to 
work with a simplified example and print out intermediate results. Stata also provides 
error messages and a trace facility to track every step of the execution of a program. 

The second challenge is easily ignored, but it. should not be skipped. Come up with 
an example where there is a known result or a way to verify the result. For example, to 
test an estimation procedure, generate many observations from a known data-generating 
process, and see whether the estimation procedure yields the known data-generating 
process parameters; see chapter 4. Printing intermediate results is again very helpfuL 
In particular, always use the su.lllmarize command to verify that you are working with 
the intended dataset. 
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A.3.1 Some simple tips 

A simple way to debug Stata code is to display the intermediate output. For example, 
in the following listing, we can see whether the correct dimension matrices are obtained. 
If the program failed, we could look at the intermediate results before the failure to see 
where the failure occurs . 

. * Display intermediate output to aid debugging 

. matrix accum XTX = totchr // Recall constant is added 
(obs=100) 
. matrix list XTX II Should be 2 x 2 
symmetric XTX [2,2] 

totchr cons 
totcbr 74 

cons 48 100 
. matrix vecaccum yTX = l totexp totcbr 
. matrix list yTX II Should be 1 x 2 
yTX[1,2] 

totchr _cons 
ltotexp 224.51242 453.36881 
. matrix bOLS = invsym(XTX) • (yTX) ' 
. matrix list bOLS 
bOLS [2,1]  

ltotexp 
totchr . 13530976 

_cons 4. 4687394 

II Should be 2 x 1 

Even when there seems to be no problem, if the program is still being debugged, it can 
be useful to comment out an extraneous command, such as matrix list, rather than 
to delete the command, in case there is reason to use it again later. 

Debugging can be quicker and simpler if one works with a simplified program. For 
example, rather than work with the full dataset and many regressors, one might ini­
tially work with a small subset of the data and a single regressor. This may also reduce 
the chance that problems are arising merely because of data problems, such as multi­
collinearity. 

To further save time, it can be worthwhile to use I* and *I to comment out those 
parts of the program that are not needed during the debugging exercise. This is espe­
cially the case for computationally intensive tasks that are not necessary, such as graphs 
to be used in the final analysis but not needed during the program development stage. 

A.3.2 Error messages and return code 

Stata produces error messages. The message given can be brief, but a fuller explanation 
can be obtained from the manual or directly from Stata. 

For example, if we regress y on z but one or both of these variables does not exist, 
we get 
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. regress y x 
variable y not foUnd 
r(11 1 ) ; 

For a more detailed explanation of the return code 1 1 1 ,  type the command 

search rc 1 1 1  
{output omitted ) 
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If a Stata: program is being debugged, then program failure can lead to an error 
message that is not at all helpful. More useful error messages can be given if the code 
is not embedded in a program. Thus rather than work with a program in the program 
environment, it can be helpful at first to work with the commands in a Stata do-file but 
not within a program. For example, a non program version of the meddiff program is 

* Debug an initial non program version of a program 
tempvar y x diff 
generate ' y �  = ltotexp 
generate �x�  = totchr 
generate double 'diff' •y· - ·x· 
_pctile 'dif f ' ,  p(SO) 
scalar medylx = r(r1) 
display 11Median of first variable - second variable "' 11 medylx 

Median of first variable - second variable = 4 .2230513 

A.3.3 Trace 

The trace command traces the execution of a program. To initiate a trace, type the 
command 

set trace on 
(out put omitted ) 

To stop the trace, type the command 

. set trace off 

The trace facility can generate a large amount of output. For this reason, it can be 
more useful to manually insert commands that give intermediate results. The default 
is set trace off. 





8 M ata 

Mata, introduced in  version 9 of Stata, is a powerful matrix prog,Tamming language 
comparable to Gauss and Matlab. Compared to the Stata matrix commands, it is 
computationally faster, supports larger matrices (Mata has no restriction on matrix size 
so the only restriction is computer specific), has a wider range of matrix commands, and 
has commands that are closer in syntax to the matrix notation used in mathematics. 

Mata is a component ofStata that can be used on its own. Additionally, it is possible 
to blend Stata and Mata functions. 

B . l  How to nm Mata 

Mata commands are usually run in Ma.ta, which is initiated by first giving the mata 
command in Stata. Single Mata commands can be given in Stata, and single Stata 
commands can be given in Mata. 

B.l .l  Mata commands in Mata 

Mata can be initiated by the Stata mata command. In Mata, the command prompt is 
a semicolon ( : ) rather tl:ian a period. Mata commands are separated by line breaks or 
by semicolons. To exit Mata and return to Stata, use the Mata end command. 

The following sample Mata session creates a 2 x 2 identity matrix, I, and then 
displays the eleme�ts of matrix I.  

* Sample Mata session 
mata 
------------------- mata (type end to exit) --
: I = I (2) 

: I 
[symmetric] 

1 2 

1 �  2 �  
end 

For symmetric matrices, such as the identity ma'trix, only the lower triangle is listed. 
Here the unlisted (1 ,  2) element equals the listed (2, 1) element, which is 0. 
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8.1.2 Mata commands in Stata 

A single Mata command can be issued in Stata by adding the mata: prefix before the 
Mata command. 

For example, to create a 2 x 2 identity matrix, I, and to display the elements of I,  
type the commands 

. * Mata commands issued from Stata 

. mata :  I � I(2) 

. mata: I 
[symmetric] 

1 2 

1 �  2 �  

8.1.3 Stata commands in Mata 

Mata commands are distinct from Stata commands. It is possible to enact a Stata 
command within a Mata program, however, by using the stat a( )  function within Mata. 

For example, suppose we are in Mata and want to find the mean of the 1 totexp 
variable, which is in the Stata dataset currently in memory. In Stata, we would type the 
summarize 1 totexp command. In Mata, we use the stataO function with the desired 
Stata command in double quotes as the argument. 

� II Stata commands issued from Mata 
mat a 
-------------------- mata (type 'end to exit) 

stata( 11summarize ltotexp11) 
Variable 

ltotexp 
end 

Obs 

100 

Mean 

4 . 533688 

8.1.4 lnteracil:ive versus batch use 

Std. Dev. Min Max 

.8226942 1 .  098612 5 .  332719 

There are differences between what is possible in Mata interactive use and what is 
possible in a Mata program. For example, comments cannot be included in Mata in 
interactive use. 

8.1.5 Mata help 

We provide some basic Mata code in this appendix. The two-volume set of Mat a manuals 
is very complete but does not p:ovide as many data-oriented examples as appear in the 
other Stata manuals. 
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The help command for Mata works at either Stata's dot prompt or Mata's colon 
prompt. 

If you know the name of the matri...x command, operator, or function, then type the 
help rna ta name command. For example, if you know t.hat the det () function takes 
the determinant of a matrix, then type the command 

help mata det 
(output; omitted ) 

In this example, the command was typed in Mata, but exactly the same help command 
can be typed in Stata. 

If you do not know the specific name, then it is harder. For example, suppose we 
want to find help on the category matrix. Then no help entry is obtained after help 
mata matrix. However, 

help mata m4 matrix 
(output omitted) 

does work because M-4 is the relevant section of the manuals for Mata. More generally, 
the command is help m# name, but this requires knowing the relevant section of the 
manuals. 

Often it is necessary to start with the help mata command and then selectively 
choose from the subsequent entries. 

B .  2 Mat a matrix commands 

We present the various basics of creating matrices and matrix operators and functions. 
Explanatory comments begin with I I because Mata does not recognize comments be­
ginning with *·  

8.2.1 Mata matrix input 

Matrix input by hand 

Matrices can be input by hand. For example, consider a 2 x 3 matrix A with the fi.rst 
row entries 1, 2, and 3, and the second row entries 4 ,  5, and 6. This can be defined as 
follows: 

: I I Create a matrix 
: A = ( 1 , 2 , 3  \ 4 , 5 ,6)  

Like the rna trix define command in Stata, a comma is used to separate column entries, 
and a backslash is used to separate rows. 
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To see the matrbc, simply type the matrix name: 

I I List a matrix 
A 

2 3 

1 2 3 
2 4 5 6 

Identity matrices, unit vectors, and matrices of constants 

An n x n identity matrix is created with I (n) . For example, 

: I I Create a 2x2 identity matrix 
: I = I (2) 

Appendix B Mata 

A 1 x n row vector with zeros in all entries aside from the ith is created with e (i,  n) .  
For example, 

II Create a lxS unit roY vector Yith 1 in second entry and zeros elseYhere 
e = e(2,5)  
e 

2 3 4 5 

0 0 0 0 

An r x c matrix of constants equal to the value v is created with J ( r , c , v ) .  For 
example, 

II Create a 2x5 matrix Yith entry 3 
J = J(2 ,5 ,3) 
J 

2 3 4 5 

1 3 3 3 3 3 
2 3 3 3 3 3 

Range operators create vectors with entries that increment by one for each entry by 
using a . . b for a row vector and a :  :b  for a column vector. For example, 

II Create a roY vector Yith entries 8 to 15 
a = 8 . .  15 
a 

2 3 4 5 6 7 8 

8 9 10 11 12 13 14 15 

creates a row vector with the entries 8, 9, . . . , 15. 

For creation of other standard matrices, type help m4 standard. 
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Matrix input from Stata data 

Matrices can be associated with variables in the current Stata dataset in memory by 
using the Mata st_ view() function. 

For example, suppose the current Stata dataset includes the variables 1 totexp, 
totchr, and cons. Then 

II Create Mata matrices from variables stored in Stata 
st_viet�(y=. , 11ltotexp11 )  
st_viet�(X=. , . , ( 11 totcbr 11 , 11cons 11 ) )  

associates the column vector, y ,  with the observations on the variable 1 totexp, and a 
matrix, X, with the observations on the variables totchr and cons. 

A brie(summary of the syntax follows, for the second st_view() function above. 
The fi.rst entry is X=. because this eliminates the need to previously define the vector 
X. If instead we had first entered simply X, we would have received the error message 
<istmt> :  3499 X not found. The second entry is a period, meaning that all the 
observations will be selected. The argument could instead be a list of observations. 
The third entry is a row vector selecting the particular variables, with variable names 
given in quotes and commas separating the column entries in the row vector. If totchr 
and cons were the 31st and 45th entries in the dataset, we could equally well type 
st_view(X= . , . ,  (3 1 , 45) ) .  

The st_view() function creates a view of the Stata dataset that does not require 
that the actual data be physically loaded into Mata, saving time and memory. For 
example, to subsequently form the ordina.ry least-squares (OLS) estimator (X'x)-1X'y 
in Mata, only the K x K matrix (X'x)-1 and the K x 1 matrix X'y need to be loaded, 
not the much larger N x K matrix X. 

The related st_dataO function does actually load matrices, but tllis is usually not 
necessary. As an example, 

I I Create a._ Mata matrix from variables stored in Stata 
. Xloaded ;:1 st_dataC . ,  ( 1 1totchr 1 1 ,  ''cons 11 ) )  

creates a matrix, X1oaded, with the ith row the ith observation on the totchr and cons 
variables. 

Matrix input from Stata matrix 

Mata matrices can be created from matrices created by Stata commands, using the 
Mata st . .matrix O  function. For example, 

II Read Stata matrix (created in first line belou) into Mata 
stata("matrix define B = I(2) " )  
C � st_matrix (' 'B 11 )  



652 

: c 
[symmetric] 

1 2 

1 �  2 �  
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The st . .ma trixO function can also be used to transfer a Mata matrix to Stata; see 
section B.2.6. 

Stata interface functions 

Stata interface functions begin with st_ and link matrices and data in Mata with those 
in Stata. Examples already given are st_viewO ,  st_dat aO,  and st . .matrix O .  The 
st_addvarO and st_storeO functions are presented in section B.2.6. A summary is 
given in [M-4] stata, and individual st_ functions are given in [M-5] intro. 

8.2.2 Mata matrix operators 

The arithmetic operators for conformable matrices are + to add, - to subtract, * to 
multiply, and # for the Kronecker product. The multiplication command can also be 
used for multiplication by a scalar, e.g., 2*A or A*2, and scalar division is possible, e.g., 
A/2. A scalar can be raised to a scalar power, e.g., a-b. The matrix -A is the negative 
of A. 

A single apostrophe, -, gives the matrix transpose (or conjugate transpose if the 
matrix is complex). To compute A-A ,  we can use A -A or A - *A. 

The Kronecker product of two matrices is given by A#B. If A is m '>< n and B is r x s, 
then A#B is mr x ns. 

Element-by-element operators 

Key arithmetic operators are the colon operators for element-by-element operations. 
A leading example is element-by-element multiplication of two matrices of the same 
dimension (the Hadamard product). Then C=A : *B has an ijth element equal to the 
ijth element of A times the ijth element of B.  

Element-by-element multiplication of a column vector and a matrix is possible if 
they have the same number of rows. Similarly, element-by-element multiplication of a 
row vector and a matrix is possible if they have the same number of columns. For the 
column vector ca.se, 

I I Element-by-element multiplication of matrix by column vector 
b = 2 : : 3  
J = J(2,5,3)  
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b:•J  
1 

1 [ 6 
2 9 

2 

6 
9 

3 4 .  

6 6 
9 9 

653 

5 

_U 
The column vector b has the entries 2 and 3, and the 2 x 5 matrix J has all entries equal 
to 3. The first row of matrL"< J is multiplied by 2 (the first entry in column vector b) 
and the second row of J is multiplied by 3 (the second entry in b). 

Let w be an N x 1 column vector and X be an N x K matrix with ith row x: . Then 
w : *X is the N x K matrix with the ith row w;x�, and (w : *X) 'X is the K x K matri.x 
equal to �;:1 W·iX;x: . 

Other colon opera tors are available for division ( :  /),  subtraction ( : -) , power ( : - ) ,  
equality ( : ==), inequality ( : ! =) ,  specific mequalities (such as : >=), and ( :&), and or 
( : I )  . These operators are a particular advantage of a matrix programming language. 

Additional classes of operators are detailed in [M-2] intro. 

8.2.3 Mata functions 

Standard matrix functions have arguments provided in parentheses, ( ) . 

Scalar and matrix functions 

Some matrix commands produce scalars, for example, 

I I Scalar functions of a matrix 
·: r = rows(A) 
; r 
2 

Commonly used examples include those for matrix determinant (det 0 ) ,  rank (rank ( ) ) ,  
and trace (trace ( ) ) .  Statistical functions include mean ( ) .  

Some matrix commands produce matrices by element-by-element transformation. · 

For example, 

2 

I I Matrix function that returns matrix by element-by-element transformation 
D = sqrt (A) 
D 

2 3 .  

1 1 . 414213562 1 .732050808 
2 2. 236067977 2 .  4494897 43 . 

Mathematical functions include absolute value
. 
(abs () ) ,  sign (sign() ) ,  natural loga­

rithm (ln() ) , exponentiation ( exp 0 ) ,  log factorial (lnfactorial ( ) ) ,  modulus (mod ( ) ) ,  
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and truncation to integer (trunc 0 ) . Statistical functions include uniform draws 
(runiformO ) ,  standard normal density (normal ( ) ) ,  and many other densities and cu­
mulative distribution funCtions. 

Some matrix commands produce vectors and matrices by acting on the whole matrix. 
A leading example is matrix inversion, djscussed below. The mean() function finds the 
mean of columns of a matrix, and corr 0 forms a correlation matrix from a variance 
matrix. 

Eigenvalues and eigenvectors of a square matri..'< can be obtained by using the IVIata 
eigensystem() function. For example, 

I I Calculate eigenvalues a.nd eigenvectors 
E � ( 1 ,  2 \ 4 , 3) 
lamda = • 

eigvecs ::l 

eigensystem(E,eigvecs,la.mda) 
lamda 

1 2 

1 1 5 - 1  

eigvecs 

1 I _ . 44 7213595 
2 - . 894427191 

2 

- .  707106781 
. 707106781 

The eigenvalues are in the row vector lamda, and the eigenvectors are the corresponding 
columns of the square matrix eigvecs. The command requires that lamda and eigvecs 
already exist, so we initialized them as missing values. 

IVIata has many functions; see [M-4] intro for. an index and guide to functions. 

Matrix inversion 

There are several different matri..'< inversion functions. The cholinvO function com­
putes the inverse of a positive-·definite symmetric matrix and is the fastest. The invsymO 
function computes the inverse of a real symmetric matrix, luinvO computes the inverse 
of a square matrix, qrinv()  computes the generalized inverse of a matrix, and pinv()  
computes the IVIoore-Peruose pseudoinverse. 

For the full column rank matrix X, the matrix X ·x is positive-definite symmetric, 
so cholinv(X'X) is best. But this function will fail if x · x  is not precisely symmetric, 
because of a rounding error in calculations. The makesymmetric() function forms 
a symmetric matrix by copying elements below the diagonal into the corresponding 
position above the diagonal. For example, 

I I Use of makesymmetric() before cholinvO 
: F = 0 . 5•I(2) 
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G = makesymmetric(cholinv(F-F) ) 
E 

[symmetric] 
1 2 

1 � 2 �  
8.2.4 Mata cross products 
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The matrix cross ( )  function creates matrix cross products. For example, cross (X, X) 
forms x ·x, cross (X ,Z) forms x ·z, and cross (X, w , Z) forms X 'diag(w) Z. For the data 
loaded earlier into X and y, the OLS estimator can be computed as 

: // Matrix cross product 
: beta = (cholinv(cross(X,X ) ) ) � (cross(X,y))  
: beta 

. 1353097647 
4. 468739434 � I '----------' 

These estimates equal those given in section A.L2. 

The advantages of using cross( )  rather than the arithmetic multiplication opera­
tor are faster computation and less memory use. Rows with missing observations are 
dropped, whereas X 'Z will produce missing values everywhere if there are any missing 
observations. And cross (X 'X) produces a symmetric result so that there is no longer 
a need to use the makes�etric 0 function before cholinvO or invsym() . 

8.2.5 Mata matrix subscripts and combining matrices 

The (i,j)th entry in a matrix is denoted by [i ,  j ] . For example, to set the (1 ,  2) entry 
in matrix A to equalthe (1, 1 )  entry, type the command 

II Matrix subscripts 
A[1,2] = A [1 , 1] 

: A 
2 3 

1 3 
5 6 

For a column vector, the ith entry is denoted by [i , 1] rather than simply [i) . 
Similarly, for a row vector, the jth entry is

. 
denoted by [1 ,  j J rather than simply [j] . 

To add columns to a matrix, the horizontal concatenation operator, a comma, is used. 
Thus A , B  adds the columns of B after the columns .of A, assuming the two matrices have 
the same number of rows. For example, 
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I I Combining matrices: add columns 
M � A, A 
M 

2 3 4 5 6 

1 lii 3 1 3 
2 6 4 5 6 4 5 

To add or append rows to a matrix, the vertical concatenation operator, a backslash, 
is used. Thus A \ B adds the rows of B after the rows of A, assuming the two matrices 
have the same number of columns. For example, 

II Combining matrices: add raYs 
N = A \ A 

N 
2 3 

1 3 
2 4 5 6 
3 1 1 3 
4 4 5 6 

A submatri-x can be extracted from a matrix by using list subscripts that give as a 
first argument the rows being extracted and as a second argument the columns being 
extracted. For example, to extract the submatrix formed by rows 1-2 and columns 5-6 
of the matrix M, we type 

II Form submatrix using list subscripts 
0 = M ( ( i\2) , ( 5 ; ;6)]  
0 

2 

1 �  2 �  
An alternative is to use range subscripts that give the subscripts for the upper-left 

entry and the lower-right entry of the portion to be extracted. Thus 

� II Form submatrix using range subscripts 
P � M [ l 1 , 5  \ 2 , 6 1 ]  
p 

2 

1 � 2 �  
Where both list and range subscripts can be used, range subscripts are preferred because 
they execute quicker. For more details, see [M-2] subscripts. 
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8.2.6 Transferring Mata data and matrices to Stata 

Mata functions beginning with st_ provide an interface with Stata. 

Creating Stata matrices from Mata matrices 
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A Stata matrb: can be created from a Mata matri'< by using the Mata st.matrix () 
function. 

For example, to create a Stata matrix, Q, from the Mata matrix P and then list the 
Stata matri'<, type 

II Output mata matrix to Stata 
: st_matrix ( 11 Q 11 , P) 
: stata(11matrix list Q1 1)  
Q [2 ,2] 

c1 c2 
r1 1 3 
r2 5 6 

Section 3.8 provides an example where the parameter vector b and the estimate of 
the variance-covariance matrix of the estimator (veE) are computed in Stata, passed 
from Mata to Stata with st_ma trix ( ) ,  and then results are posted and nicely displayed 
by using the Stata eretUIIl command. 

Creating Stata data from a Mata vector 

The st_addvarO function adds a new variable to a Stata dataset, though it creates 
only the name of the variable and not its values. The st_store () function modifi.es the 
values of a variable currently in a Stata dataset. Thus, to create a new variable in Stata 
and give that new variable values, we type st_addvarO followed by st_store ( ) .  

Recall that X i s  a matrix with the variables totchr and cons, and beta i s  a column 
vector of OLS coefficients from the regression of 1 totexp on totchr and cons. We 
create the vector of .fitted values, yhat, in Mata, pass these to Stata as the 1 totexphat 
variable, and use the summarize command to check the results. We have 

: II Output Mata matrix to Stata 
; yha t = X*beta 

st_addvar( ''float11 , 111 totexphat'1) 
46 
st_store ( . ,  l 'l totexphat 11 ,  yhat) 
sta ta ( '1 summarize 1 totexp 1 totexpha t ' ' )  

Variable Obs Mean Std. ·oev. Min Max 

ltotexp I ltotexphat 
100 
100 

4.533688 
4.533688 

.8226942 1 . 098612 5 . 332719 

. 0970792 4 . 46874 4.874669 

As expected after OLS regression, the average of the fitted values equals the average 
of the dependent variable. 
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8.3 Programming in Mata 

Detailed examples using Mata code are presented in section 3.8 and in sections 11.2, 
11.7, and l1.8. These examples pass data from Stata to  Mata, calculate parameter 
estimates and estimates of the VCE in Mata, and pass these back to Stata. 

Here we present a very introductory treatment of programming in Mata. 

8.3.1 Declarations 

The examples in sections 11 .7 and l1.8 include a Mata program with arguments to be 
passed to and from the Mata optimize () function. 

The code in these examples does not declare matrices and scalars ahead of their use. 
This makes coding easier but makes it more likely that errors may go undetected. For 
example, if an operation is expected to create a scalar but a matri..x is the result, there 
may be no message to this effect. If instead we had previously declared the expected 
result to be a scalar, then an error would occur if a matrix was erroneously created. 

The following Mata code rewrites the optimize () function evaluator poisson pro­
gram in section 11 .7.3 to declare the types of all program arguments and all other 
variables used in the program. 

void poisson(real scalar todo, 
> real rowvector b ,  
> real colvector y, 
> real matrix X,  
> real colvector lndensity, 
> real matrix g ,  
> real matrix H) 
> { 
> real colvector Xb 
> real colvector mu 
> Xb = X•b· 
> mu = exp(Xb) 
> lndensity = -mu + y :•Xb - lnfactorial(y) 
> if (todo == 0) return 
> g = (y-mu) : •X 
> if (to do == 1) return 
> H = - cross (X, mu, X) 
> } 

8.3.2 Mata program 

As an example, ·we create a Mata program, calcsu.m, that calculates the column sum of 
a column vector. This example, based on the example in [M-1] ado, is purely illustrative 
because the Mata colsumO function does this anyway. 

The column vector x is obtained from a variable named varname in the Stata dataset 
currently in memory by using the st_view() function. The varna.me string is a program 
argument supplied when the program is called. The actual calcdation of the column 
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sum is done with the Mata colsum() function. The result is put in the real scalar 
resultissum, a second program argument. To apply the program to the ltotexp 
variable, we call the calcsum program with the "1 totexp" and sum arguments. The 
result is in sum, and to see the result, we simply type su.m. We have 

mat a :  
------------------- mata (type end to exit) --

void calcsum(varname, resultissu.m.) 
> { 
> st� view(x== . , . , varname) 
> resultissum = colsum(x) 
> } 

sum == . 
calcs1Jm ( '' 1 totexp '', sum) 
sum · 
453 . 3688121 
end 

The result, 453.3688, is that expected because the sample mean of the 100 observa­
tions on ltotexp was 4.533688 from output given in section B.2.6. 

8.3.3 Mata program with results output to Stata 

The preceding Mata program passes the result, resultissu.m, back to Mata. We next 
consider a variation that passes the result, renamed sum, to Stata. 

To transfer the result to Stata, we use the Mata st _nu.mscalar () function and drop 
the second argument in the calcsum program because the result is no longer passed to 
Mata. Because the result is now in Stata, we need to use the Stata display command 
to display the result. We have 

mata: 
------------------- mata (type end to exit) --

void function calcsum2(varname) 
> { 
> st_ vieY(x=-. ,  . , varname) 
> st_numscalar ('' r (sum) '' , colsum (x) ) 
> } 
: calcsum2 ( ''ltotexp'') 
: stata(" display r (sum) " )  
453. 36881 
: end 

8.3.4 Stata program that calls a Mata program 

The preceding two programs call the Mata program from within Mata. We now create 
a Stata program, varsu.m, that calls the Mata program calcsum2 from Stata. 
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The varsum program uses standard Stata syntax (see section A.2.7) rather than 
positional arguments. This syntax recognizes the argument in the call varsum 1 totexp 
as a variable name that is placed in varlist. The Mata program calcsum2, already 
defined in the preceding section, is called with varname being the variable name in 
varlist. We have 

program varsum 
1 .  version 1 0 . 1  
2 .  syntax varname 
3 .  mata: calcsum2( j ' 'varlist � '' )  
4 .  display r(sum) 
5. end 
varsum 1 totexp 

453.36881 

8.3.5 Using Mata in ado-files 

The main construct for writing new commands in Stata is a Stata ado-file. When 
computation in Mata is convenient, the ado-file can include Mata code or call a Mata 
function. 

A Mata function defi11ed in an ado-file requires compilation every time it is called. To 
save computer time, compiled functions can be reused without the need for recompilation 
by using the mata mosave and mata mlib commands. For details, see [M-1] ado, which 
presents the preceding column sum example in much more generality. 
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2SLS - two-stage least squares 

3SLS - three-stage least squares 

AIC - Akaike information criterion 

AME - average marginal effect 

ARUM - additive random-utility model 

BC - bias-corrected 

BCa - bias-corrected accelerated 

BIC - Bayesian information criterion 

CL - conditional logit 

CV - coefficient of variation 

DGP - data-generating process 

FD - first difference 

FE - fixed effects 

FGLS - feasible generalized least squares 

FMM - finite-mixture models 

GLM - generalized linear models 

GLS - generalized least squares 

GMM - generalized method of moments 

HAC - heteroskedasticity- and autocorrelation-consistent 

IIA - independence of irrelevant alternatives 

1M - information matrix 

IV - instrumental variables 

JIVE - jackknife instrumental-variables estimator 
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LEF - linear exponential family 

LIML - limited-information maximum likelihood 

LM - Lagrange multiplier 

LPM - linear probability model 

LR - likelihood ratio 

LS - least squares 

LSDV - least-squares dummy variable 

ME - marginal effect 

MEM - marginal effect at mean 

MEPS - Medical Expenditure Panel Survey 

MER - marginal effect at representative value 

ML - maximum likelihood 

MM - method of moments 

MNL - multinomial logit 

MNP - multinomial probit 

MSE - mean squared error 

MSL - maximum simulated likelihood 

MSS - model sum of squares 

NB - negative binomial 

NL - nested logit 

NLIV - nonlinear instrumental variables 

NLS - nonlinear least squares 

NR - Newton-Raphson 

OLS - ordinary least squares 

P A - population averaged 

PFGLS - pooled feasible generalized least squares 

PSID - Panel Study of Income Dynamics 

PSU - primary sampling unit 

QCR - quantile count regression 

Glossary of abbreviations 
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QR - quantile regression 

RE - random effects 

RPL - random-parameters logit 

RSS - residual sum of squares 

SUR - seemingly unrelated regressions 

TSS - total sum of squares 

VCE - variance-covariance matrix of the estimator 

WLS - weighted least squares 

ZINB - zero-inflated negative binomial 

ZIP - zero-inflated Poisson 

ZTNB - zero-truncated negative binomial 

ZTP - zero-truncated Poisson 

66:3 





Referen ces 

Amemiya, T. 1981. Qualitative response models: A survey. Journal of Economic Liter­
ature 19: 1483-1536. 

Anderson, T. W.,  and C. Hsiao. 1981. Estimation of dynamic models with error com­
ponents. Journal of the American Statistical Association 76: 598-606. 

Andrews, D. W. K. 1988. Chi-square diagnostic tests for econometric models: Intro­
duction and applications. Journal of Econometrics 37: 135-156. 

Andrews, D. W. K, and M. Y. Buchinsky. 2000. On the number of bootstrap repetitions 
for BC_a confi.dence intervals. Cowles Foundation Discussion Papers 1250, Cowles 
Foundation, Yale University. 

Andrews, D. W. K., M. J .  Moreira, and J .  H. Stock. 2007. Performance of conditional 
vVald tests in IV regression with weak instruments. Journal of Econometrics 139: 
116-132. 

Angrist, J . D.,  G. W. Imbens, and A. B. Krueger. 1999. Jackknife instrumental variables 
estimation. Journal of Applied Econometrics 14: 57-67. 

Arellano, M. 2003. Panel Data Econometrics. New York: Oxford University Press. 

Arellano, M., and S. Bond. 1991. Some tests of specification for panel data: Monte 
Carlo evidence and an application to employment equations. Review of Economic 
Studies 58: 277�297. 

Arellano, M., and 0. Bover. 1995. Another look at the instrumental variable estimation 
of error-components models. Journal of Econometrics 68: 29-51. 

Azevedo, J. P. 2004. grqreg: Stata module to graph the co.efficients of a quantile 
regression. Statistical Software Components S437001, Boston College Department of 
Economics. Downloadable from http:/ /ideas.repec.org/c/boc/bocode/s437001 .html. 

Baltagi, B. H. 2008. Econometric Analysis of Panel Data. 4th ed. Chichester, UK: 
Wiley. 

Baltagi, B. H. ,  J. M Griffin, and W. Xiong. 2000 . To pool or not to pool: Homogeneous 
versus heterogeneous estimators applied to cigarette demand. Review of Economics 
and Statistics 82: 117-126. 



666 References 

Baltagi, B. H., and S. Khanti-Akom. 1990. On efficient estimation with panel data: An 
empirical comparison of instrumental variables. Journal of Applied Econometrics 5: 
401-406. 

Bartus, T. 2005. Estimation of marginal effects using margeff. Stata .Journal 5: 309-329. 

Baum, C. F. ,  M. E. Schaffer, and S. Stillman. 2007. Enhanced routines for instrumental 
variables/generalized method of moments estimation and testing. Stata Journal 7: 
465-506. 

Beck, N., and J. N. Katz. 1995. What to do (and not to do) with time-series cross-section 
data. American Political Science Review 89: 634-64 7. 

Berry, S. T. 1994. Estimating discrete-choice models of product differentiation. Rand 
Journal of Economics 25: 242-262. 

Bhattacharya, D. 2005. Asymptotic inference from multi-stage samples. Journal of 
Econometrics 126: 145-171. 

Blackburne, E. F., and M. W. Frank. 2007. Estimation of nonstationary heterogeneous 
panels. Stata Journal 7: 197-208. 

Blomquist, S . ,  and M. Dahlberg. 1999. Small sample properties of LIML and jackknife 
IV estimators: Experiments with weak instruments. Journal of Applied Econometrics 
14: 69-88. 

Blundell, R., and S. Bond. 1998. Initial conditions and moment restrictions in dynamic 
panel data models. Journal of Econometrics 87: 115-143. 

Bornhorst, F. ,  and C. F. Baum. 2006. levinlin: Stata module to perform Levin-Lin­
Chu panel unit root test. Statistical Software Components S419702, Boston College 
Department of Economics. Downloadable from 
http:/ /ideas.repec.org/ c/boc/bocode /s419702.html. 

---. 2007. ipshin: Stata module to perform Im-Pesaran-Shin panel unit root test. 
Statistical Software Components S419704, Boston College Department of Economics. 
Downloadable from http:/ /ideas.repec.org/c/boc/bocode/s419704.html. 

Brady, T. 2002. reformat: Stata module to reformat regression output. Statistical Soft­
ware Components S426304, Boston College Department of Economics. Downloadable 
from http:/ /ideas.repec.org/c/boc/bocode/s426304."html. 

Breitung, J . ,  and M. H. Pesaran. 2005. Unit roots and cointegTation in panels. 
Manuscript. Downloadable from http:/ /ideas.repec.org/p/cesjceswps/ _l565.html. 

Cameron, A. C., J. B. Gelbach, and D. L. MilleJ:. 2008. Bootstrap-based improvements 
for inference with clustered errors. Review of Economics and Statistics 90: 414-427. 

Cameron, A. C. ,  and P. K. Trivedi. 1998. Regression Analysis of Count Data. Cam­
bridge: Cambridge University Press. 



References 667 

---. 2005. Microeconometrics: Methods and Applications. Cambridge: Cambridge 
University Press. 

Cameron, A. C., and F. A. G. Windmeijer. 1997. An R-squared measure of goodness 
of fit for some common nonlinear regression models. Journal of Econometrics 77: 
329-342. 

Carson, R. T. ,  and Y. Sun. 2007. The Tobit model with a non-zero threshold. Econo­
metrics Journal 10: 488-502. 

Cornwell, C., and P. Rupert. 1988. Efficient estimation with panel data: An empirical 
comparison of instrumental variables estimators. Journal of Applied Econometrics 3: 
149-155. 

Cox, N. J. ·2005. Speaking Stata: The protean quantile plot. Stata Journal 5: 442-460. 

Cragg, J. G. ,  and S. G. Donald. 1993. Testing identifiability and specification in instru­
mental variable models. Econometric Theory 9: 222-240. 

Davidson, J. 2000. Econometric Theory. Oxford: �lackwell. 

Davidson, R., and J. G. MacKinnon. 2004. Econometric Theory and Methods. New 
York Oxford University Press. 

---. 2006. The case against JIVE. Joumnl nf Applied Econometrics 21: 827-833. 

Davison, A. C . ,  and D. V. Hinkley. 1997. Bootstrap Methods and Their Application. 
Cambridge: Cambridge University Press. 

Deb, P. 2007. fmm: Stata module to estimate finite mi."ture models. Statistical Software 
Components S456895,-�oston College Department of Economics. Downloadable from 
http:/ /ideas.repec.orgjcjbocjbocodejs456895.html. 

Deb, P., M. K. Munkin, and P. K. Trivedi. 2006. Private insurance, selection, and health 
care use: A bayesian analysis of a Roy-type model. Journal of Business and Economic 
Statistics 24: 403-415. 

· 

Deb, P., and P. K. Trivedi. 2002. The structure of demand for medical care: latent class 
versus two-part models. Journal of Health Economics 21: 601-625. 

---. 2006. Maximum simulated likelihood estimation of a negative binomial regres­
sion model with multinomial endogenous treatment. Stata Journal 6: 246-255. 

Driscoll, J .  C. ,  and A. C. Kraay. 1998. Consistent covariance matrb:: estimation with 
spatially dependent panel data. Review of Economics and Statistics 80: 549-560. 

Drukker, D. M. 2002. �ootstrapping a conditi<;mal moments test for normality after 
tobit estimation. Stata Journal 2: 125-139. 

---. 2008. Treatment effects highlight use ci£ population-averaged estimates. Un­
published manuscript. 



668 References 

Drukker, D. M., and R Gates. 2006. Generating Halton sequences using Mata. Stata 
Journal 6: 214-228. 

Duan, N. 1983. Smearing estimate: A nonparametric retransformation method. Journal 
of the American Statistical Association 78: 605-610. 

Efron, B., and R J. Tibshirani. 1993. An Introduction to the Bootstrap. New York: 
Chapman & Hall. 

Goldstein, H. 1987. Multilevel covariance component models. Biometrika 7 4: 430-431. 

Gould, W . , .J. Pitblado, and W. Sribney. 2006. Maximum Likelihood Estimation with 
Stata. 3rd ed. College Station, TX: Stata Press. 

Greene, W. H. 2003. Econometric Analysis. 5th eel. Upper Saddle River, NJ: Prentice 
Hall. 

---. 2008. Econometric Analysis. 6th ed. Upper Saddle River, NJ: Prentice Hall. 

Hahn, J . , and J. Hausrrian. 2002. A new specification test for the validity of instrumental 
variables. Econometrica 70: 163·-189. 

Hall, A. 1987. The information matrix test for the linear model. Review of Economic 
Studies 54: 257-263. 

Hardin, J. W., and .J. M. Hilbe. 2007. Generalized Linear Models and Extensions. 2nd 
ed. College Station, TX: Stata Press. 

Herriges, J. A., and C. L. Kling. 1999. Nonlinear income effects in random utility 
models. Review of Economics and Statistics 81:  62-72. 

Hilbe, J. 2005a. hnblogit: Stata module to estimate negative binomial-logit hurdle 
regression. Statistical Software Components 8456401, Boston College Department of 
Economics. Downloadable from http:/ /ideas.repec.org/c/boc/bocode/s456401 .html. 

---. 2005b. hplogit: Stata module to estimate Poisson-logit hurdle regression. Sta­
tistical Software Components S456405, Boston College Department of Economics. 
Downloadable from http:/ /ideas.repec.org/c/boc/bocode/s456405.html. 

Hoechle, D. 2007. Robust standard errors for panel regressions with cross-sectional 
dependence. Stata Journal 7: 281-312. 

Hole, A. R. 2007. Fitting mixed logit models by using maximum simulated likelihood. 
Stata Journal 7: 388-401. 

Holtz-Eakin, D., W. Newey, and H. S. Rosen. 1988. Estimating vector autoregressions 
with panel data. Econometrica 56: 1371-1395. 

Horowitz, J. L. 2001. The bootstrap. In Handbook of Econometrics, ed. J. J. Heckman 
and E. Leamer, vol. 5, 3159-3228. Amsterdam: Elsevier. 



References 669 

Hosmer, D. W., Jr., and S. Lemeshow. 1980. Goodness-of-fit tests for the multiple 
logistic regression model. Communications in Statistics: Theory and Methods 9: 
1043-1069. 

---. 2000. Applied Logistic Regression. 2nd ed. New York: Wiley. 

Hsiao, C. 2003. Analysis of Panel Data 2nd ed. Cambridge: Cambridge University 
Press. 

Huber, P. J." 1965. The behavior of maximum likelihood estimates under nonstandard 
conditions. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statis­
tics and Probability, vol. 1 ,  221-233. Berkeley, CA: University of California Press. 

Im, K. S., M. H. Pesaran, and Y. Shin. 2003. Testing for unit roots in heterogeneous 
panels. Journal of Econometrics 115: 53-74. 

Jann, B. 2005. Making regression tables from stored estimates. Stata Journal 5: 288-
308. 

---. 2007. Making regression tables simplified. Stata Journal 7: 227-244. 

Jolliffe, D., B. KrushelnytsJ....·yy, and A. Semykina. 2000. sg153: Censored least absolute 
deviations <;;stimator: CLAD. Stata Technical Bulletin 58: 13-16. Reprinted in Stata 
Technical Bulletin Reprints, vol. 10, pp. 240-244. College Station. TX: Stata Press. 

Keshk, 0. M. G. 2003. CDSIMEQ: A program to implement two-stage probit least 
squares. Stata Journal 3: 157-167. 

Koenker, R. 2005. Quantile Regression. Cambridge: Cambridge University Press. 

Kreuter, F . ,  and R. Valliant. 2007. A survey on survey statistics: \iVhat is done and can 
be done in Stata. Stata .Journal 7: 1-21. 

Lee, M. 2002. Panel Data Econometrics: Methods-of-Moments and Limited Dependent 
Variables. San Diego, CA: Academic Press. 

Levin, A., C.-F. Lin, and C.-S. J. Chu. 2002. Unit root tests in panel data: Asymptotic 
and finite-sample properties. Journal of Econometrics 108: 1-24. 

Liang, K.-Y., and S. L. Zeger. 1986. Longitudinal data analysis using generalized linear 
models. Biometrika 73: 13-22. 

Long, J. S., and J. Freese. 2006. Regression Models f<X Categorical Dependent Variables 
Using Stata. 2nd ed. College Station, TX: Stata Press. 

Machado, J. A. F., and J. M. C. Santos Silva. 2005. Quantiles for counts. Journal of 
the American Statistical Association 100: 1226-1237. 

MacKinnon, J. G. 2002. Bootstrap inference iii econometrics. Canadian Journal of 
Economics 35: 615-{)45. 



670 References 

Manning, W. G., J . P. Newhouse, N. Duan, E. B. Keeler, and A Leibowitz. 1987. Health 
insurance and the demand for medical care: Evidence from a randomized experiment. 
American Economic Review 77: 251-277. 

McCullagh, P., and J. A. Neider. 1989. Generalized Linear Models. 2nd ed. London: 
Chapman & Hall. 

l\1ikusheva, A. ,  and B. P. Poi. 2006. Tests and confidence sets with correct size when 
instruments are potentially weak. Stata Journal 6: 335-347. 

Miller, G. E. 1991. Asymptotic test statistics for coefficients of variation. Communica­
tions in Statistics: Theory and Methods 20: 3351-3363. 

Miranda, A. 2007. qcount: Stata program to fit quantile regression models for count 
data. Statistical Software Components S456714, Boston College Department of Eco­
nomics. Downloadable from http:/ /ideas.repec.orgjcjbocjbocodejs456714.htmL 

Mitchell, M. N. 2008. A Visual Guide to Stata Graphics. 2nd ed. College Station, TX: 
Stata Press. 

Newey, W. K 1985. Maximum likelihood specification testing and conditional moment 
tests. Econometrica 53: 1047-1070. 

---. 1987. Efficient estimation of limited dependent variable models with endogenous 
explanatory variables. Journal of Econometrics 36: 231-250. 

Newey, W. K., and K. D. West. 1987. A simple, positive semi-definite, heteroskedasticity 
and autocorrelation consistent covariance matrix. Econometrica 55: 703-708. 

Pagan, A.,  and F. Vella. 1989. Diagnostic tests for models based on individual data: A 
survey. Special issue, Journal of Applied Econometrics 4: S229-S259. 

Papps, K. L. 2006. outsum: Stata module to write formatted descriptive statistics to 
a text file. Statistical Software Components S456780, Boston College Department of 
Economics. Downloadable from http:/ /ideas.repec.orgjcjboc/bocodejs456780.html. 

Pesaran, M. H., Y. Shin, and R. P. Smith. 1999. Pooled mean group estimation of 
dynamic heterogeneous panels. Journal of the American Statistical Association 94: 
621-634. 

Pesaran, M. H., and R. Smith. 1995. Estimating long-run relationships from dynamic 
heterogeneous panels. Journal of Econometrics 68: 79-113. 

Poi, R P. 2004. From the help desk: Some bootstrapping techniques. Stata Journal 4: 
312-328. 

. 

---. 2006. Jackknife instrumental variables estimation in Stata. Stata Journal 6: 
364-376. 

Politis, D. N.,  J. P. Romano, and M Wolf. 1999. Subsampling. New York: Springer. 



References 671 

Powell, J. L. 1984. Least absolute deviations estimation for the censored reg-ression 
model. Journal of Econometrics 25: 303-325. 

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and �- P. Flannery. 1992. Numerical 
Recipes in C: The Art of Scientific Computing. 2nd ed. Cambridge: Cambridge 
University Press. 

Rabe-Hesketh, S., and A. Skrondal. 2008. Multilevel and Longitudinal Modeling Using 
Stata. 2nd �d. College Station, TX: Stata Press. 

Rabe-Hesketh, S. ,  A. Skrondal, and A. Pickles. 2002. Reliable estimation of generalized 
linear mixed models using adaptive quadrature. Stata Journal 2: 1-21. 

Salgado-Ugarte, I. H., M. Shimizu, and T. Taniuchi. 1996. snp10: Nonparametric 
regression: Kernel, WARP, and k-NN estimators. Stata Technical Bulletin 30: 15-30. 
Reprinted in Stata Technical Bulletin Reprints, vol. 5, pp. 197--'218. College Station, 
TX: Stata Press. 

· 

Schaffer, M. E. 2007. xtivreg2: Stata module to perform extended IV /2SLS, GMM and 
AC/HAC, LIML, and k-class regression for panel data models. Statistical Software 
Components S456501, �oston College Department of Economics. Downloadable from 
http:/ /ideas.repec.orgjcjbocjbocode/s456501.html. 

Simcoe, T. 2007. xtpqml: Stata module to estimate fixed-effects Poisson (quasi-ML) 
regression with robust standard errors. Statistical Software Components S456821, 
�oston College Department of Economics. Downloadable from 
http:/ /ideas.repec.org/ c /boc /bocode /s456821 .h tml. 

Skeels, C. L., and F. Vella. 1999. A Monte Carlo investigation of the sampling behavior 
of conditional moment-tests in tobit and probit models. Journal of Econometrics 92: 
275-294. 

Staiger, D. ,  and J. H. Stock. 1997. Instrumental variables regression with weak instru­
ments. Econometrica 65: 557-586. 

Stock, J. H., and M. Yogo. 2005. Testing for weak instruments in linear IV regression. 
In Identification and Inference for Econometric IVIodels: Essays in Honor of Thomas 
Rothenberg, ed. D. W. K. Andrews and J. H. Stock, 80-108. Cambridge: Cambridge 
University Press. 

Stukel, T. A. 1988. Generalized logistic models. Journal of the American Statistical 
Association 83: 426-431. 

Train, K 2003. Discrete Choice Methods with Simulation. Cambridge: Cambridge 
University Press. 

Verbeek, M. 2008. A Guide to Modern Econometrics. 3rd ed. Chichester, UK: Wiley. 

Vuong, Q. H. 1989. Likelihood ratio tests for model selection and nonnested hypotheses. 
Econometrica 57: 307-333. 



672 References 

White, H. 1980. A heteroskedasticity-consistent covariance matrix estimator and a 
direct test for heteroskedasticity. Econometrica 48: 817-838. 

Williams, R. 2006. Generalized ordered logit/partial proportional odds models for or­
dinal dependent variables. Stata Journal 6: 58-82. 

Windmeijer, F. 2005. A finite sample correction for the variance of linear efficient 
two-step GMM estimators. Journal of Econometrics 126: 25-51. 

Wolfe, F. 2002. fsum: Stata module to generate and format summary statistics. Sta­
tistical Software Components S426501, Boston College Department of Economics. 
Downloadable from http:/ /ideas.repec.org/c/boc/bocode/s426501.html. 

Wooldridge, J. M. 2002. Econometric Analysis of Cross Section and Panel Data. Cam­
bridge, MA: MIT Press. 



Author index 

A 
Amemiya, T . . . . . . . . . . . . . . . . . . . . . . .  451 
Anderson, T. W . . . . . . . . . . . . . . . . . . .  288 
Andrews, D. W. K. . . . . . .  197, 412, 419 
Angrist, J. D . . . . . . . . . . . . . . . . . . . . . . .  200 
Arellano, M . . . . . . . . .  288, 295, 311, 628 
Azevedo, J. P . . . . . . . . . . . . . . . . . . . . . .  226 

B 
Baltagi, B. H . . .  234, 262, 265, 273, 278, 

285, 311, 413, 628 
Bartus, T . . . . . . . . . . .  334, 339, 464, 475 
Baum, C. F . . . . . . . . .  188, 200, 203, 273 
Beck, N . . . . . . . . . . . . . . . . . . . . . . . . . . . .  268 
Berry, S. T . . . . . . . . . . . . . . . . . . . . . . . . . 508 
Bhattacharya, D . . . . . . . . . . . . . . . . . . . 169 
Blackburne, E. F . . . . . . . . . . . . . . . . . . .  273 
Blomquist, S . . . . . . . . . . . . . . . . . . . . . . .  200 
Blundell, R. . . . . . . . . . . . .  -. - . . . .  - . - . - 295 
Bond, S . . .  _ . . . . . . . . .  - - . . . . . . . .  288, 295 
Bornhorst, F . . . . . . . . . . . . . . . . . .  _ . . . .  273 
Bover, 0 . . . . . .  - . . . . . . . . . . . . . . . . .  - . .  295 
Brady, T . . . . . . . . . .  _-.. . . . . . .  - - . . . . . . . .  90 
Brei tung, J . . . . . . . . . . . . . . .  - . . . . . . . .  273 
Buchinsky, M. Y . .  - . - . . . . . . . . . . . . . .  419 

c 
Cameron, A. C . . . . . . .  45, 107, 126, 144, 

169, 204, 207, 217, 306, 311, 
322, 347, 383, 412, 413, 437, 
440, 442, 448, 473, 480, 505, 
534, 535, 555, 561, 566, 570, 
575, 614, 627, 628 

Carson, R. T . . . . . . . . . . . . . . . . . . . . . . .  523 
Chu, C.-S. J . . . . . . . . . . . .  · - . . . . . . . . .  273 
Cornwell, C . . . . . .  _ .  _ _  . . . . . . . . .  234, 285 

Cox, N. J . . . . . - . .  · · - · - · - · · · · · ·  . . . . .  226 
Cragg, J. G . . . . . . . . . . . . . .  - . . . . . . . . .  190 

D 

Dahlberg, M . . . . . . . . . . . . . . . . . . . .  - . .  200 
Davidson, J . . . .  _ . . . . . . . . . .  _ .  _ . . . . . .  183 
Davidson, R. . . . .  ·. _ . .  _ _  . .  _ 188, 200, 442 
Davison, A. C- _ _  . . . . . .  _ . .  422, 440, 442 
Deb, P . . . . . . . . .  _ 314, 575, 578, 598, 604 
Donald, S. G . . . . . . . . . . . . . . . . . . . . . .  _ 190 
Driscoll, J. C . . . . . . . .  - . . . . . . . . . .  - . .  268 
Drukker, D. M . . . . . . . . . . .  505, 537, 616 
Duan, N . . . . . . . . . . . .  · · · · - ·  . . . .  103, 604 

E 
Efron, B . . . . . . . .  · - · ·  . 419, 422, 424, 442 

F 
Flannery, B. P . . . . . . . . . . . .  _ . . . . . . . .  144 
Frank, M. W. - . . . . . . . . . . . . . . . .  - . . . .  273 
Freese, J. _ . 344, 461, 464, 565, 567, 588, 

590 

G 
Gates, R . . . . . . . . . . . . . . . . . . . . . . . . . . .  505 
Gelbach, J. B . . . - . . . . . . . . . . . . .  437, 442 
Goldstein, H . . . . . . . . . . . . . . . . . . . . .  - . 304 
Gould, W . . . . . _ . . . . .  356, 373, 383, 642 
Greene, W. H . . .  111 ,  347, 356, 383, 413 
Griffin, J. M . . . . . . . . . . . . . . . . . . . . . .  - 265 

H 
Hahn, J . . . . . . . . . . . . . . . . . . . . . . . . . . . .  179 
Hall, A . . . . . . . . . . . . . . . . . . . . . . . .  - . . . . .  97 
Hardin, J. W . . . . . . . . . . . . . . . . . . . . . .  322 
Hausman, J . . . . . . . . . . . . . . . . . _ . . . . . .  179 
Herriges, J. A . . . . . . . . . . . . . . . . .  - . . .  - 480 



674 Author index 

Hilbe, J. M . . . . . . . . . . . . . . . . . . .  322, 571 Mikusheva, A . . . . . . . . . . . . . . . . . . . . . .  197 
Hinkley, D. V . . . . . . . . . . . .  422, 440, 442 Miller, D. L . . . . . . . . . . . . . . . . . . .  437, 442 
Hoechle, D . . . . . . . . . . . . . . . . . . . . . . . . . 268 Miller, G. E. . . . . . . . . . . . . . . . . . . . . . . .  144 
Hole, A.  R. . . . . . . . . . . . . . . . . . . . . . . . .  508 Miranda, A . . . . . . . . . . . . . . . . . . . 222, 226 
Holtz-Eakin, D . . . . . . . . . . . . . . . . . . . . .  288 Mitchell, M. N . . . . . . . . . . . . . . . . . . . . . . 68 
Horowitz, J. L . . . . . . . . . . . .  437, 440, 442 Moreira, M. J . . . . . . . . . . . . . . . . . . . . . .  197 
Hosmer, D. W., Jr . . . . . . . . . . . .  413, 458 Munkin, M. K. . . . . . . . . . . . . . . . . . . . .  314 
Hsiao, C . . . . . . . . . . . . . 278, 288, 311, 628 
Huber, P. J . . . . . . . . . . . . . . . . . . . . . . . . 327 N 

Neider, J. A . . . . . . . . . . . . . . . . . . . . . . . 322 
I Newey, W. K. . .  288, 328, 469, 530, 535 
Irn, K. S . . . . . . . . . . . . . . . . . . . . . . . . . . .  273 Newhouse, J. P . . . . . . . . . . . . . . . . . . . . 604 
Imbens, G. W . . . . . . . . . . . . . . . . . . . . . . 200 

p 
J Pagan, A . . . . . . . . . . . . . . . . . . . . . . . . . . 535 
J ann, B . . . . . . . . . . . . . . . . . . . . . . . . . 88-90 Papps, K. L . . . . . . . . . . . . . . . . . . . . . . . . .  75 
Jolliffe, D . . . . . . . . . . . . . . . . . . . . . . . . . . 530 Pesaran, M. H . . . . . . . . . . . . . . . . . . . . . 273 

Pickles, A . . . . . . . . . . . . . . . . . . . . . . . . . .  619 
K Pitblado, J . . . . . . . . . . 356, 373, 383, 642 
Katz, J. N . . . . . . . . . . . . . . . . . . . . . . . . . 268 Poi, B. P . . . . . . . . . . . . . . . . .  197, 200, 419 
Keeler, E. B . . . . . . . . . . . . . . . . . . . . . . . 604 Politis, D. N . . . . . . . . . . . . . . . . . . . . . . .  441 
Keshk, 0. M. G . . . . . . . . . . . . . . . . . . . .  475 Powell, J. L . . . . . . . . . . . . . . . . . . . . . . . . 530 
Khanti-Akom, S . . . . . . . . . . . . . . . 234, 285 Press, W. H . . . . . . . . . . . . . . . . . . . . . . . . 144 
Kling, C. L . . . . . . . . . . . . . . . . . . . . . . . .  480 
Koenker, R . . . . . . . . . . . . . . . . . . . . . . . .  206 R 

Kraay, A. C . . . . . . . . . . . . . . . . . . . . . . . . 268 Rabe-Hesketh, S . . . . . . . . . .  304, 619, 628 
Kreuter, F . . . . . . . . . . . . . . . . . . . . . . . . .  169 Romano, J . P . . . . . . . . . . . . . . . . . . . . . . 441 
Krueger, A. B. . . . . . . . . . . . . . . . . . . . . .  200 Rosen, H. S . . . . . . . . . . . . . . . . . . . . . . . . 288 
Krushelnytskyy, B . . . . . . . . . . . . . . . . .  530 Rupert, P . . . . . . . . . . . . . . . . . . . . . 234, 285 

L s 
Lee, M . . . . . . . . . . . . . . . . . . . . . . . . 311, 628 Salgado-Ugarte, I. H . . . . . . . . . . . . . . . .  66 
Leibowitz, A . . . . . . . . . . . . . . . . . . . . . . . 604 Santos Silva, · J. M. C . . . . . . . . . . . . . . . 221 
Lemeshow, S . . . . . . . . . . . . . . . . .  . 413, 458 Schaffer, M. E . . . . . . .  188, 200, 203, 282 
Levin, A . . . . . . . . . . . . . . . . . . . . . . . . . . .  273 Semykina, A . . . . . . . . . . . . . . . . . . . . . . .  530 
Liang, K-Y . . . · . . . . . . . . . . . . . . . . . . . . .  328 Shimizu, M . . . . . . . . . . . . . . . . . . . . . . . . . 66 
Lin, C.-F . . . . . . . . . . . . . . . . . . . . . . . . . .  273 Shin, Y . . . . . . . . . . . . . . . . . . . . . . . . . . . .  273 
Long, J. S . . . . . .  344, 461, 464, 565, 567, Simcoe, T . . . . . . . . . . . . . . . . . . . . . . . . . .  624 

588, 590 Skeels, C. L . . . . . . . . . . . . . . . . . . . . . . . .  537 
Skrondal, A . . . . . . . . . . . . . . 304, 619, 628 

M Smith, R. P . . . . . . . . . . . . . . . . . . . . . . . .  273 
Machado, J. A. F . . . . . . . . . . . . . . . . . . 221 Sribney, W . . . . . . . . . . 356, 373, 383, 642 
MacKinnon, J. G . . . . 188, 200, 437, 442 Staiger, D . . . . . . . . . . . . . . . . . . . . . . . . . .  190 
Manning, W. G . . . . . . . . . . . . . . . . . . . .  604 Stillman, S . . . . . . . . . . . . . . . 188, 200, 203 
McCullagh, P . . . . . . . . . . . . . . . . . . . . . . 322 Stock, J. H . . . . . . . . . . . . . . . . . . . .  190, 197 



Author inde.:\: 

Stukel, T. A . . . . . . . . . . . . . . . . . . . . . . .  454 
Sun, Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  523 

T 

Taniuchi, T . . . . . . . . . . . . . . . . . . . . . . . . .  66 
Teukolsky, S. A . . . . . . . . . . . . . . . . . . . . 144 
Tibshirani, R. J . . . . .  419, 422, 424, 442 
Train, K. . . . . . . . . . . . . . . . .  504, 505, 518 
Trivedi, P. K . . .  45,  107, 126, 144, 169, 

v 

204, 207, 217' 306, 311,  314, 
322, 34 7' 383, 412, 413, 442, 
448, 4 73, 480, 505, 534, 535, 
5.55, 561, 566, 570, 575, 598, 
604, 614, 627, 628 

Valliant, R . . . . . . . . . . . . . . . . . . . . . . . . .  169 
Vella, F . . . . . . . . . . . . . . . . . . . . . . .  535, 537 
Verbeek, M . . . . . . . . . . . . . . . . . . . . . . . . 535 
Vetterling, W. T . . . . . . . . . . . . . . . . . . .  144 
Vuong, Q. H . . . . . . . . . . . . . . . . . .  34 7, 589 

w 
West, K. D . . . . . . . . . . . . . . . . . . . . . . . .  328 
White, H . . . . . . . . . . . . . . . . . . . . . . .  82, 327 
Williams, R. . . . . . . . . . . . . . . . . . . . . . . . 514 
Windmeijer, F. A. G . .  v . . . . . . . . . . .  291 
Wolf, M . . . . . . . . . . . . . . . . . . . . . . . . . . . .  441 
Wolfe, F . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75 
Wooldridge, J. M. . . . 261, 383, 413, 628 

X 
Xiong, W . . . . . . . . . . . . . . . . . . . . . . . . . .  265 

y 
Yogo, M . . . . . . . . . . . . . . . . . . . . . . . . . . .  190 

z 
Zeger, S. L . . . . . . . . . . . . . . . . . . . . . . . . . 328 

675 





S u bject index 

A binary outcome models, continued 
abbreviations . . . .  , . . . . . . . . . . . . . . . . . . .  9 hypothesis tests . . . . . . . . . . . . . . . 4.52 
ado-files . . . . . . . . . .  , . . . . . . . . . . . . . . . . 642 instrumental-variables pro bit . .  466 
aggregate data, binary outcome models latent-variable modeL . . . . . . . . . 447 

. . ... . . . . . . . . .  473 linear probability model . .  446, 448 
AIC . . .  see Akaike information criterion legit modeL . . . . . . . . . . . . .  . 446, 450 
Akaike information criterion . . . . . . .  346 marginal effects . . . . . . . . . . . . . . .  462 

count-data example . . . . . .  584, 591 maximum likelihood estimation . . .  
AME . . . . . .  see marginal effects, average . . . . . . . . . . . . .  447 

marginal effect model comparison . . . . . . . .  451, 456 
append command . . . . . . . . . . . . . . . . . . .  56 panel-data estimators . . . . . . . . .  607 
areg command . . . . . . . . . . . . . . . . . . . .  253 predicted outcome . . . . . . . . . . . . 459 
arithmetic operators . . . . . . . . . . . . . . . . . 9 predicted probabilities . . . . . . . .  460 
asclogi t command . . . . . . . . . . . . . . .  491 pro bit model . . . . . . . . . . . . . . . . . .  446 
asmprobi t command . . . . . . . . . . . .  , . 505 pseudo-R2 . . . . . . . . . . . . . . . . . . . . 457 
average marginal effect . . .  see marginal robust variance estimation . . . .  448 

effects specification analysis . . . . . . . . . . 454 
two-stage least squares . . . . . . .  , 471 

biprobit command . . . . . . . . . . . . . . .  515 
B bootstrap command . . . . . . . . . . . . . .  424 
batch mode for Stata . . . . . . . . . . . . . . . 1 1  bootstrap methods . . . . . . . . . . . .  415-443 
Bayesian information criterion . . . . .  346 asymptotic refinement . . . . 416,  431 

count-data exaJ1lple . . . . . .  584, 591 asymptotically pivotal statistic . . .  
BIC . . . . . .  , . . .  see Bayesian information . . . . . . . . . . . . .  431 

criterion BCa confidence interval . . . 422, 431 
binary outcome models . . . . . . . .  445-4 75 bias estimation . . . . . . . . . . . . . . . .  423 

Bernoulli trial . . . . . . . . . . . . . . . . .  445 bias-corrected confidence intervaL . 
binomial regTession . . . . . . . . . . . .  445 . . . . . . . . . . . . .  422 
classification test . . . . . . . . . . . . . . 459 bootstrap pairs . . . . . . . . . . . . . . .  417 
coefficient interpretation . . . . . .  451 bootstrap-t method . . . .  , . . . . . .  431 
complementary log-log modeL . 446 case bootstrap . . . . . . . . . . . . . . . .  418 
endogenous regressors . . . . . . . . . 465 clustered bootstrap . . . . . . . . . . .  420 
generalized legit model . . . . . . . .  454 confidence-intervals example . .  423 
goodness-of-fit measures . . . . . .  . 457 Hausman test . . . . . . . . . . . . . . . . . 429 
goodness-of -fit test . . . . . . . . . . . .  458 jackknife . . . . . . . . . . . . . . . . . . . . . . 441 
grouped-data analysis . . . . . . . . .  4 72 misuse of bootstrap . . . . . . . . . . .  416 
heteroskedastic pro bit model . .  455 non parametric bootstrap . . . . . .  418 



678 

bootstrap methods, continued 
normal-based confidence interval . .  

. . . . . . . . . . . . .  421 
number of bootstraps . . . . . . . . .  419 
paired bootstrap . . . . . . . . . . . . . . 418 
parametric bootstrap . . . . . . . . . .438 
percentile-t confidence interval . . . .  

. . . . . .  . .  . .  422, 433 
percentile-t method . . . . . . . . . . .  431 
percentile-t Wald test . . . . . . . . .  432 
quantile regression variance matrix 

. . . . . . . . . . . . .  208 
residual bootstrap . . . . . . . . . . . .  . 439 
standard-error estimation . . . .  . 415, 

418 
subsampling . . . . . . . . . . . . . . . . . .  441 

_two-step estimator . . . . . . . . . . . .  427 
variance of standard error . . . . .  426 
wild bootstrap . . . . . . . . . . . . . . . .  440 

box cox command . . . . . . . . . . . . . . . . . . .  95 
bsample command . . . . . . . . . . . . . . . . .  434 
bsq reg command . . . . . . . . .  .' . . . . . . . .  208 
by prefix command . . . . . . . . . . . . . . . . .  4 7 
bysort prefi.....: command . . . . . . . . . . . .  4 7 

c 
capture command . . . . . . . . . . . . . . . . .  638 
case sensitivity . . . . . . . . . . . . . . . . . . . . . . .  9 
cd command . . . . . . . . . . . . . . . . . . . . . . . .  1 1  
censored data . . . . . . . . . .  see tobit model 
centile command . . . . . . . . . . . . . . . . . 209 
chi-squared goodness-of-fit test . . . . .  see 

specification tests 
cii command . . . . . . . . . . . . . . . . . . . . .  407 
clad command . . . . . . . . . . . . . . . . . . . .  530 
clear command . . . . . . . . . . . . . . . .  21,  32 
elegit command . . . . . . . . . . . . . . . . .  . 491 
cloglog command . . . . . . . . . . . . . . . .  . 448 
clustered data . . . . . . . . . . . . . . . . .  306-311 
cluster-robust variance matrL....: . . . . .  82, 

328 
coefficient interpretation 

in marginal effects . . . . . . . . . . . . 334 
in multinomial outcome models . . .  

. . . . . . . . . .  486, 493 

Subject index 

coefficient interpretation, continued 
in single-index models . . . . . . . . .  336 

comma-separated values data . . .  30, 35 
comments in Stata commands . . . . . .  13 
condi vreg command . . . . . . . . . . . . . .  197 
confidence intervals 

asymmetric confidence interval . . .  
. . . . . . . . . . . . .  398 

bootstrap confidence intervals . . . .  
. . . . . . . . . . . . .  421 

bootstrap confidence-intervals 
example . . . . . . . . . . . . . . . . . .  423 

percentile-t confidence interval . . . .  
. . . . . . . . . . . . .  433 

Wald confidence-interval definition 
. . . . . . . . . .  396, 397 

Wald confidence-interval example . .  
. . . . . . . . . . . . .  398 

constraint command . . . . . . . . .  87, 162 
constraints 0 option . . . . . . . . . . . . . . 87 
continue command . . . . . . . . . . . . . . . .  24 
correlate command . . . . . . . . . .  84, 246 
count-data models . . . . . . . . . . . .  553-599 

comparison of four distributions . .  
. . .  . . . .  . . .  . . .  575 

endogenous regressors . . . . . . . . .  591 
eq uidispersion . . . . . . . . . . . . . . . . .  554 
excess zeros . . . . . . . . . . . . . . . . . . . 570 
finite-mixture model . . . . . . . . . .  575 
fitted probabilities . . . . . . . .  565, 580 
frequency distribution . . . . . . . . .  557 
generalized negative binomial 

regression . . . . . . . . . . . . . . . .  567 
goodness of fit . . . . . . . . . . . . . . . .  565 
hurdle mode L .  . . . . . . . . . . . . . . . .  569 
interpretation of coefficients . . .  562 
main features of count data . . .  553 

.marginal effects . . . . .  562, 564, 573, 
580, 587 

model selection . . . . . . . . . . .  584, 590 
NBl model . . . . . . . . . . . . . . . . . . . .  555 
NB2 model . . . . . . . . . . . . . . . . . . . .  555 

·
negative binomial (NB) model . . .  . 

. .  . . . . . . . .  555, 562 
nonlinear least squares . . . . . . . . 568 



Subject index 

count-data models, continued 
overdispersion . . . .  : . . . . . . . . . . . .  555 
over fitting . . . . . . . . . . . . . . . . . . . . .  585 
panel-data estimators . . . . . . . . . 619 
Poisson model . . . . . . . . . . . . 315, 554 
quantile regression . . . . . . . . . . . . 220 
robust variance estimation for Pois-

son . . . . . . . . . . . . . . . . . . . . .  _ .  560 
test of endogeneity . . . . . . . . . . . . 595 
test of overdispersion . . . . . . . . . .  561 
two-part model . . . . . . . . . . . . . . . 569 
unobserved heterogeneity . . . . .. . 555 
zero-inflated models . . . . . . . . . . . 585 
zero-truncated models . . . . . . . . . 572 

countfit command . . . . . . . . . . . 56.5, 590 
creturn command . . . . . . . . . . . . . . . . . . 15 
critical values 

chi-squared compared with F . . 386 
computation of. . .  _ . . . . . . . . . . . .  388 
standard normal compared with t 

. . . .  . .  . . . . . . . 386 

D 

data-generating process . _  . . . . . . . . . . 113 
data management . . . . . . . . . . . . . . . 29-57 

appending datasets . . . . . . . . . . . . . 56 
common pitfalls . . . . _ . . . . . . . _ . . . 38 
data transformations . . . . . . . . . . . 45 
data types . . . . . . . . . . . . . . . . . . . . .  29 
demeaned variables . . . . . . . . . . . . . 50 
dictionary file . .  _ . . . . . . . . . . . . . . . 37 
imputing missiii.g values . _ . . . . . .  45 
indicator variables . . . . . . . . . . . . . . 4 7 
inputting data . . . . . . . . . . . . . . . . .  3 2  
interaction variables . . . . . . . . . . . .  49 
labeling variables . . . . . . . . . . . . . . .  41 
long form . . . . . . . . . . . . . . . . . . . .  _ . 54 
merging datasets . . . . . . . . . . . . . . .  54 
missing values . . . . . . . . . . . . . . . . . .  43 
naming variables . . . . . . . . . . . . . . .  41 
ordering data . . . . . . . .  _ . . . . . . . . . 53 
preserving and restoring data . . .  53 
PSID example . . . .  _ . . . . . . . . . . . . . 38 
saving data . . . . . . . . . . . . . . . . . . . . 51 
selecting sample . . . . . . . . . . . . . . . .  51 

679 

data management, continued 
special data formats . . . . . . . . . . . . 35 
wide form . . . . . . . . . . . . . . . . . . . . . . 54 

dataset description 
fishing-mode multinomial data . . . .  

. . . . . . . .  - . . . .  480 
HRS private health insurance . . 449 
MEPS 2001 ambulatory 

expenditures . . . . . . . . . . . . . 524 
MEPS 2002 doctor visits . . . . . . . 314 
MEPS 2003 doctor visits . . . . . . .  557 
MEPS emergency room visits . .  586 
MEPS drug expenditures . .  158, 178 
MEPS medical expenditures . . . . . 71 
NHANES II survey design data . .  164 
PSID earnings example . . . . . . . . . 38 
PSID panel wage data . . . . . . . . . 234 
Rand Health Insurance 

Experiment . . . . . . . . .  _ . . . . .  604 
U.S. state paM! cigarette data . . . .  

. . . . . . . . . . . . .  265 
Vietnam clustered village data . . . .  

. . . . . .  . . . . . . . 306 
delimit command . . . . . . . . . . . . . . . . . . 14 
describe command . . . . . . . . . . . . . . .  _ 72 
descriptive statistics . . . . . . . . . . . . . 73-79 
destring command . . . . . . . . . . . . . . . .  31 
do command . . . . . . . . . . . . . . . . . . . . . . . . 11 
do-file . . . . . . . . . .  _ . . . . . . . . . . . . . . . . . . . 10 
drawnorm command . . . . . . . . . . . . . . . 129 
drop command . . . . . . . . . . . . . . . . . . . . . 52 

E 
e-class commands . . . . . . . . .  17, 427, 640 
egen command . . . . . . . . . . . . . . . . . . . . . 46 

· elasticities 
in linear regression model . . . . . 102 
in nonlinear models . . . . . . 335, 340 

endogeneity test . . . . . .  see specification 
tests 

endogenous regressors . . . . . . . . . also see 
· 

instrumental variables 
binary outcome model . . . . . . . . 465 
definition . . . . . . . . . . . . . . . . . . . . . 172 
dynamic panel-data model . . . .  289 



680 

endogenous regressors, continued 
fixed-effects modeL . . . . . . .  231, 251 
Hausman test . . . . . . . . . . . .  412, 429 
Hausman-Taylor model . . . . . . .  284 
in count-data models . . . . . . . . . .  591 
in tobit model . . . . . . . . . . . . . . . .  530 
instrumental-variables regression . . 

. . . . . . . . . . . . . 174 
nonlinear instrumental-variables 

regTession . . . . . . . . . . . . . . . .  379 
panel instrumental variables . . .  282 
simulation example . . . . . . . . . . . 142 
to bit model . . . . . . . . . . . . . . . . . . .  530 

eretu= command . . . . . . . . . . . . . . . . .  637 
eretu= display command . . . . . . .  1 1 1  
eretu= list command . . . . . . . . . . . .  1 7  

. error messages . . . . . . . . . . . . . . . . .  1 0 ,  644 
est add command . . . . . . . . . . . . . . . . . . . 89 
esta t a bond command . . . . . . . . . . . .  294 
estat alternatives command . . . .  494 
estat bootstrap command . . . . . . .  422 
estat classification command . .  459 
est at commands . . . . . . . . . . . . . . . . . .  403 
esta t correlation command . . . . . 507 
estat covariance command . . . . . .  507 
estat endogenous command . .  183, 185 
estat firststage command . . . . . .  191 
estat gof command . . . . . . . . . . 4 1 2, 458 
estat hettest command . . . . . .  96, 153 
estat ic command . . . . . . . . . . . . . . . .  347 
estat imtest command . . . . . . .  97, 412 
esta t mfx command . . . . . . . . . .  494, 507 
esta t overid command . . . . . . . . . . .  412 
esta t ovtest command . . . . . . . . . . . .  95 
esta t sargan command . . . . . . . . . . .  295 
estat vee command . . . . . . . . . . . . . . . 391 
estimates drop command . . . . . . . . . .  90 
estimates sta ts command . _ . . . . . . .  87 
estimates store command . . . . . . . . .  87 
estimates table command . . . . . . . . . 87 
estimation commands 

summary of linear panel 
commands . . . . . . . . . . . . . . . .  234 

summary of multinomial 
commands . . . . . . .  · . . . . . . . .  .480 

Subject index 

estimation commands, continued 
summary of nonlinear panel 

commands . . . . . . . . . . . . . . . .  604 
summary of Stata commands . . 313 

est out command . . . . . . . . . . . . . . . . . . .  90 
eststo command . . . . . . . . . . . . . . . . . . .  90 
est tab command . . . . . . . . . . . . . . . . . . .  89 

F 
findi t command . . . . . . . . . . . . . . . . . . . .  5 
finite-mixture model . . . .  see count-data 

models 
fL;::ed effects . . . . . . . . . . . . .  see panel data 
fl.oating-point data . . . . . . . . . . . . . . . . . . 30 
fmm command . . . . . . . . . . . . . . . . . . . . .  578 
foreach command . . . . . . . . 23, 343, 536 
formats to display data . . . . . . . . . . . . . 31 
forvalues command . . . . . . 23, 125, 246 
fsum command . . . . . . . . . . . . . . . . . . . . .  75 

G 

generalized least squares . . . . . .  14 7-163 
cluster-robust variance matrix . . . .  

. . . . . . . . . . . . .  149 
efficient estimation . . . . . . . . . . . . 148 
feasible G LS estimation . . . . . . . .  14 7 
FGLS heteroskedastic errors exam-

ple . . . . . . . . . . . . . . . . . . . . . . .  154 
FGLS systems example . . . . . . . .  158 
GLS estimation . . . . . . . . . . . . . . . .  147 
heteroskedastic errors example . . . _ 

. . . . . . . . . . . . .  150 
robust variance matrix . . . . . . . . 149 
seemingly unrelated regressions . . . 

. . . . . . . . . . . . .  156 
weighted LS estimator . . . .  149, 156 
working matrix . . . . . . . . . . . . . . . 149 

generalized linear models 
definition . . . . . . . . . . . . . . . . . . . . .  321 
Poisson example . . . . . . . . . . . . . .  322 

generalized method of moments 
count-data example . . . . . . . . . . .  596 
nonlinear example . . . . . . . . 379, 380 
panel Arellano-Bond estimator . . .  

. . . . . . . . . . . . .  289 



Subject index 

generate command . . . . . . . . . . . . . . . .  46 
get token command . . . .. . . . . . . . . . . . 641 
Gibbs sampler . . . . . . . . . . . . . . . . . . . . . 131 
GLM . . . . .  see generalized linear models 
glm command . . . . . . . . . . . . . . . . . . . . .  321 
global command . . . . . . . . . . . . . . . . . . .  19 
global macros . . . . . . . . . . . . . . . . . . . 19, 21 
glogi t command . . . . . . . . . . . . . . . . . .  4 75 
gn breg command . . . . . . . . . . . . . . . . . .  568 
gologit command . . . . . . . . . . . . . . . . .  514 
goodness-of-fit measures . . . . . . . . . . . 345 
graph box command . . . . . . . . . . . . . . . .  60 
graph combine command . .  59, 78, 152 
graph export command . . . . . . . . . . . .  59 
graph matrix command . . . . . . . . . . . .  67 
graph save command . . . . . . . . . . . . . . .  58 
graph twoway command . . . . . . . . . . . .  57 
graphs . . . . . . . . . . . . . . . . . . . . . . . . . .  57-68 

binary outcome plot . . . . . . . . . . .  460 
box-and-whisker plot . . . . . . . . . . .  60 
combining graphs . . . . . . . . . .  59, 152 
graph formats . . . . . . . . . . . . . . . . . .  59 · 
graphing commands . . . . . . . . . . . .  57 
histogram . . . . . . . . . . . . . . . . . . . . . .  61 
kernel density plot . . . . . . . . . .  62,  78 
line plot . . . . . . . . . . . . . . . . . . . . . . . .  64 
multiple scatterplots . . . . . . . . . . .  6'!' 
non parametric regression . . . . . . .  65 
outlier detection . . . . . . . . . . . . . . . .  92 
panel-data plots . . . . . . . . . . . . . . .  241 
plotting known density . . . . . . . .  386 
residual plots . .  -: . . . . . . . . . . .  91, 152 
scatterplot . . . . . . . . . . . . . . . . . . . . .  64 
Stata Graph Editor . . . . . . . . . . . .  59 

grouped data, binary outcome models 
. . . . . . . . . . . . .  472 

grqreg command . . . . . . . . . . . . . . . . . .  215 

H 
hausman command . . . . . . .  183, 260, 413 
Hausman test . . . .  see specification tests 
heckman command . . . . . . . . . . . . . . . . .  543 
help command . . . . . . . . . . . . . . . . . . . . . .  3 
help mata command . . . . . . . . . . . . . . .  649 

681 

hetprob ·command . . . . . . . . . . . . . . . . . 455 
hierarchical models . . . . . . . . . . . . . . . . 310 
histogram command . . . . . . . . . . . . . . .  61  
hnblogi t command . . . . . . . . . . . . . . .  573 
hplogit command . . . . . . . . . . . . . . . . . 571 
hsearch command . . . . . . . . . . . . . . . . . . . 5 
hurdle modeL . . .  see count-data models 
hypothesis tests . . . . . . . . . . . . . . .  385-414 

auxiliary regression computation . .  
. . . . . . . . . . . . .  403 

binary outcome models . . . . . . .  .452 
bootstrap methods . . . . . . . . . . . .  415 
chi-squared compared with F . . . .  . 

. . . . . . . . . .  386, 389 
computation cif p-values . . . . . . .  388 
computation of critical values . . 388 
delta method . . . . . . . . . . . . . . . . .  395 
invariance under transformation . .  

. . . . . .  · · · · · · ·  399 
Lagrange multiplier statistic defini-

tion . . . . . . . . . . . . . . . . . . . . . . 402 
Lagrange multiplier test example . .  

. . . . . . . . . . .  97, 454 
likelihood-ratio statistic definition 

. . . . . . . . . . . . . 399 
likelihood-ratio statistic direct 

computation . . . . . . . . . . . . . .  402 
likelihood-ratio statistic example . .  

. . . . . . . . . . . . .  401 
linear hypotheses . . . . . . . . . . . . . .  389 
linear regression model . . . . . . . . . 86 
nonlinear hypotheses . . . . . . . . . .  395 
one-sided tests . . . . . . . . . . . . . . . .  394 
percentile-t Wald test . . . . . . . . .  432 
power definition . . . . . . . . . . . . . . .  407 
power in more than one direction 

. . . . . . . . . . . . .  98 
power using noncentral chi-squared 

. . . . . . . . . . . . .  410 
power using simulation . . .  140, 408 
score test . . . . . . . . . . . . . . . . . . . . . 402 
size definition . . . . . . . . . . . . . . . . .  406 
size using simulation . . . . . . . . . .  139 
standard normal compared with t 

. . . . . . . . . .  386, 389 



682 

hypothesis tests, continued 

I 

test of cross-equation restrictions . .  
. . . . . . . . . . . . .  161 

test of heteroskedasticity . . . . .  152, 
213 

Wald statistic definition . .  391, 395 
Wald statistic examples . .  392, 395 

idcluster O option . . . . . . . . . . . . . . .  421 
if qualifier . . . . . . . . . . . . . . . . . . . . . . . . . .  6 
in qualifier . . . . . . . . . . . . . . . . . . . . . . . . . .  6 
indicator variables . . . . . . . . . . . . . . . . . .  47 
infile command . . . . . . . . . . . . . . . . . . .  36 
infix command . . . . . . . . . . . . . . . . . . . .  36 
infi.uential observations . . . . . . . . . . . . .  92 
information matrix test . . . . . . . . . . . .  see 

specification tests 
input command . . . . . . . . . . . . . . . . . . . .  34 
in sheet command . . . . . . . . . . . . . . . . . .  35 
instrumental variables . . . . . . . . . 171-204 

2SLS example . . . . . . . . . . . . . . . . .  180 
3SLS example . . . . . . . . . . . . . . . . .  202 
basic theory . . . . . . . . . . . . . . . . . . .  171 
bias due to weak instruments . .  190 
binary outcome model . . . . . . . .  465 
diagnostics for weak instruments . .  

. . . . . . . . . . . . .  189 
finite-sample properties . . . . . . .  188 
first-stage F statistic . . . . .  190, 193 
first-stage equation . . . . . . . . . . . .  173 
generalized method of moments 

(GMM) estimator . . . . . . . . .  175 
Hansen test . . . . . . . . . . . . . . . . . . .  185 
in binary outcome models . . . . .  4 71 
in count-data models . . . . . . . . . .  591 
inconsistency of OLS . . . . . . . . . .  172 IV estimator . . . . . . . . . . . . . . . . . .  17 4 
jackknife IV (JIVE) estimator . .  199, 

200 
just-identified model . . . . .  17 4, 180, 

191 
limited-information ML (LIML) es-

timator . . . . . . . . . . . . . . . . . .  199, 
200 

Subject index 

instrumental variables, continued 
optimal GMM estimator . .  175, 177 
optimal GMM example . . . . . . . .  181 
overidentified model . . . . .  17 4,  181, 

193 
panel Arellano-:l!ond estimator . . .  

. . . . . . . . . . . . .  287 
panel Hausman-Tayler estimator . .  

. . . . . . . . . . . . .  284 
panel IV estimator . . . . . . . . . . . . 281 
partial R2 . • . . • . • . • • • • . • . •  190, 193 
robust variance matrix . . . . . . . .  176 
Sargan test . . . . . . . . . . . . . . . . . . .  185 
simple example . . . . . . . . . . . . . . .  173 
size distortion due to weak instru-

ments . . . . . . . . . . . . . . . . . . . .  191 
structural equation . . . . . . . . . . . .  173 
test of endogeneity . . . . . . . . . . . .  182 
test of overidentifying restrictions 

. . . . . . . . . . . . .  185 
test of weak instruments . .  190, 193 
three-stage least-squares (ssLs) es-

timator . . . . . . . . . . . . . . . . . . .  201 
two-stage least-squares (2SLS) esti-

mator . . . . . . . . . . . . . . .  174, 177, 
289 

underidentifi.ed model . . . . . . . . .  17 4 
valid instruments . . . . . . . . . . . . .  175 
weak instruments . . . .  175, 188, 197 

interaction variables . . . . . . . . . . . . . . . .  49 
interactive use of Mata . . . . . . . . . . . .  648 
interactive use of Stata . . . . . . . . . . . . . . .  1 
intraclass correlation . . . . . . . . . . . . . . .  247 
in treg command . . . . . . . . . . . . . . . . . .  530 
invnormal 0 function . . . . . . . . . . . . .  116 
i pshin command . . . . . . . . . . . . . . . . . .  273 
iqreg command . . . . . · . . . . . . . . . . . . . .  208 
iterative methods . . . . . . . . . . . . .  351-384 

checking analytical derivatives . . . .  
. . . : . . . . . . . . .  366 

checking program . . . . . . . . . . . . .  364 
generalized method-of-moments 

example in Mata . . . . . . . . .  381 
gradient methods . . . . . . . . . . . . . 356 



Subject index 

iterative methods, continued 
linear program simplex method . . .  

. . . . . . . . . . . . .  207 
Mata example . . . . . . . . . . . . . . . . . 353 
Mata optimization . . . . . . . . . . . . 376 
maximization options . . . . . . . . . 355 
messages during iterations . . . .  357 
ml method dO . . . . . . . . . . . . . . . . . 373 
ml method· dl . . . . . . . . . . . . . . . . .  374 
ml method d2 . . . . . . . . . . . . . . . . . 375 
ml method lf . . . . . . . . . . . . . . . . . 360 
multicollinearity . . . . . . . . . . . . . . 367 
multiple _optimums . . . . . . . 357, 368 
Newton-Raphson algorithm . . . 352 
Newton-Raphson example in Mata 

. . . . . . . . . . . . .  353 
NLIV example in Mata . . . . . . . . 381 
NLS example . . . . . . . . . . . . . . . . . . 363 
numerical derivatives . . . . . . . . . . 358 
optimize( )  method d2 . . . . . . . 382 
optimize 0 method v2 . . . . . . . 377 
Poisson example in Mata . . . . . .  377 
Poisson gradient and Hessian . . 352 
robust estimate of the VCE . . . . 37 4 
single-index model example . . . 361 
stopping criteria . . . . . . . . . . . . . . 357 
two-index model example . . . . . 362 

ivprobit command . . . . . . . . . . . . . . .  467 
i vreg2 command . . . . . . . . . . . . . 200, 203 
ivregress command . . . . . . . . .  177, 471 
ivtobit command . . . . . . . . . . . . . . . . . 530 

J 
jackknife 

IV estimator . . . . . . . . . . . . . . . . . . 199 
definition . . . . . . . . . . . . . . . . . . . . . 441 

jackknife command . . . . . . . . . . . . . . 442 
jive command . . . . . . . . . . . . . . . . . . . .  200 

K 
kdensi ty command . . . . . . . . . . . . . 62, 78 
keep command . . . . . . . . . . . . . . . . . . . . . 52 
kernreg command . . . . . . . . . . . . . . . . . . 66 

683 

knnreg command . . . . . . . . . . . . . . . . . . . 66 
lpoly command . . . . . . . . . . . . . . . . . . . .  66 
kurtosis measure . . . . . . . . . . . . . . . . . . . .  74 

L 
label command . . . . . . . . . . . . . . . . . . . . 41 
Lagrange multiplier test . . . . . . . . . . . .  see 

hypothesis tests 
latent-class model . . . see finite-mixture 

model 
LEF . . . . . . see linear exponential family 
levinlin command . . . . . . . . . . . . . . . 273 
likelihood-ratio test . . . . . see hypothesis 

tests 
line om command . . . . . . . . . . . . . . . . . .  396 
linear exponential family 

definition . . . . . . . . . . . . . . . . . . . . . 321 
examples . . . . . . . . . . . . . . . . . . . . . . 316 
Poisson example . . . . . . . . . . . . . . 321 

linear regression model . . . . . . . . . 79-1.12 
basic theory . . . . . . . . . . . . . . . . . . . .  79 
Box-Cox transformation . . . . . . . 94 
cluster-robust variance matrix . . 82 
endogenous regl"essors . . . . 142, 171 
feasible G LS estimation . . . . . . . . 14 7 
FGLS heteroskedastic errors e..-xam-

ple . . . . . . . . . . . . . . . . . . . . . . .  154 
FGLS system of equations example 

. . . . . . . . . . . . .  158 
GLS estimation . . . . . . . . . . . . . . . .  147 
hypothesis tests . . . . . . . . . . . .  78, 86 
influential observations . . . . . . . . . 92 
information matrix test . . . . . . . .  97 
instrumental variables . . . . . . . . .  171 
linear constraints . . . . . . . . .. . . . . .  162 
linear versus log regression . . . . .  83 
marginal effects . . . . . . . . . . . . . . . 102 
measurement-error example . . . 142 
omnibus test . . . . . . . . . . . . . . . . . . .  97 
panel-data basics . . . . . . . . . . . . . . 229 
panel-data extensions . . . . . . . . . 281 

· prediction . . . . . . . . . . . . . . . . . . . . . 100 
. prediction in logs . . . . . . . . . . . . . 103 
quantile regression . . . . . . . . . . . . 205 
regression in logs . . . . . . . . . . . . . . .  83 



684 

linear regression model, continued 
residual analysis . . . . . . . . . . . . . . . .  91 
retransformation problem . . . . .  103 
robust variance matrix . . . . . . . . .  82 
sampling weights . . . . . . . . . . . . . .  105 
simulations to verify properties . . .  

. . . . . . . . . . . . .  135 
specification analysis . . . . . . . . . . .  90 
survey data . . . . . . . . . . . . . . . . . . .  167 
test interpretation . . . . . . . . . . . . . . 98 
test of heteroskedasticity . .  96, 152 
test of normality . . . . . . . . . . . . . . . 97 
test of omitted variables . . . . . . . .  94 
three-stage least squares . . . . . .  201 
two-stage least squares . . . . . . . . 17 4 
using Mata . . . . . . . . . . . . . . . . . . .  109 
variance matrix estimation . . . . .  82 
weighted marginal effects . . . . . . 109 
weighted prediction . . . . . . . . . . . 109 
weighted regression . .  106, 107, 167 

link test command . . . . . . . . . . . . . . . .  96 
list command . . . . . . . . . . . . . . . . . .  34, 42 
local command . . . . . . . . . . . . . . . . . . . . 20 
local macros . . . . . . .  20, 21, 24, 639, 642 
log command . . . . . . . . . . . . . . . . . . . . . .  12 
log file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12 
logical operators . . . . . . . . . . . . . . . . . . . . .  9 
logistic command . . . . . . . . . . . . . . . 448 
logi t command . . . . . . . . . . . . . . . . . . . 448 
legit model . . . . . . . .  see binru:y outcome 

models 
lognormal data 

linear regression model . . . . . . . . .  83 
to bit model . . . . . . . . . . . . . . . . . . .  531 

long command lines . . . . . . . . . . . . . . . . .  13 
long-form data . . . . . . . . . . .  27 4, 277, 489 
longitudinal data . . . . . . . see panel data 
looping commands 

foreach . . . . . . . . . . . . . . . . . . . . . . .  23 
forvalues . . . . . . . . . . . . . . . . . . . . .  23 
W'hile . . . . . . . . . . . . . . . . . . . . . . . . . . 24 

lo1o1ess command . . . . . . . . . . . . . . . . . . .  66 
lrtest command . . . . . . . . . . . . . . . . .  . 401 

Subject index 

M 

macros 
compared with scalars . . . . . . . . . .  21 
global . . . . . . . . . . . . . . . . . . . . . . . . . .  19 
local . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 

margeff command . . . . . . . . . . . .  339, 464 
mfx command . . . . . . . . . . . . . . . . . . . . .  463 
marginal effects . . . . . . . . . . . . . . .  333-345 

average marginal effect . . . . . . . .  339 
binary outcome models . . . . . . . .  462 
calculus method . . . . . . . . . . . . . . .  334 
comparison of calculus and finite-

cliff erences method . . . . . . . .  338 
count-data models . . . . . . . . . . . . 562 
elasticities . . . . . . . . . . . . . . . .  335, 340 
finite-differences method . . . . . .  334 
in linear regression model . . . . .  102 
in multinomial outcome models . . .  

. . . . . . . . . .  488, 494 
in panel logit model . . . . . . . . . . .  616 
interacted regressors . . . . . . . . . .  344 
log model . . . . : . . . . . . . . . . . . . . . . .  84 
marginal effect at representative 

value . . . . . . . . . . . . . . . . . . . . .  338 
marginal effect at the mean . . .  337 
polynomial regressors . . . . . . . . . 343 
summary . . . . . . . . . . . . . . . . . . . . . .  334 
weighted . . . . . . . . . . . . . . . . . . . . . .  109 

Mata . . . . . . . . . . . . . . . . . . . . . . . . .  647-660 
ado-files using Mata . . . . . . . . . . .  660 
colon operators . . . . . . . . . . . . . . .  652 
combining matrices . . . . . . . . . . . 655 
commands in Mata . . . . . . . . . . . .  647 
commands in Sta ta . . . . . . . . . . .  648 
declaration of program arguments 

. . . . . . . . . . . . .  658 
element-by-element operators . .  652 
generalized method of moments ex-

ample . . . . . . . . . . . . . . . . . . . . 381 
Gibbs sampler example . . . . . . .  131 
help command . . . . . . . . . . . . . . . .  649 
identity matrix . . . . . . . . . . . . . . . .  650 
matrix cross products . . . . . . . . .  655 
matrix functions . . . . . . . . . . . . . .  653 
matrix input . . . . . . . . . . . . . . . . . .  649 



Subject index 

Mata, continued 
matri.'C inversion . . . · . . . . . . . . . . .  654 
matrix of constants . . . . . . . . . . .  650 
matrix operators . . . . . . . . . . . . . . 652 
matrix subscripts . . . . . . . . . . . . . 655 
Newton-Raphson iterative 

example . . . . . . . . . . . . . . . . . . 353 
Newton-Raphson Poisson 

example . . . . . . . . . . . . . . . . . .  353 
OLS regression example . . . . . . . 109 
optimization in Mata . . . . . . . . . .  376 
overview . . . . . . . . . . . . . . . . . . . . . .  647 
Poisson example . . . . . . . . . . . . . . 377 
program example . . . . . . . . . . . . .  658 
programming in Mata . . . . . . . . . 658 
Stata commands in Mata . . . . .  648 
Stata interface functions . . . . . . 652 
Stata matrix from Mata matrix . . .  

. . . . . . . . . . . . .  657 
Stata variables from Mata matrix 

. . . . . . . . . . . . .  657 
ma ta command . . . . . . . . . . . . . . . . . . . . 64 7 
matrices in Mata . . . . . . . . . . . . .  see Mata 
matrices in Stata . . . . . . . . . . . . . . 631-637 

combining matrices . . . . . . . . . . .  634 
matrix cross products . . . . . . . . . 635 
matrix functions . . . . . . . . . . . . . .  634 
matrix input . . . . . . . . . . . . . . . . . .  631 
matrix operators . . . . . . . . . . . . . .  634 
matrix subscripts . . . . . . . . . . . . . 633 
OLS example . . . . . . . . . . . . . . . . . . 636 
overview . . . . . . . �: . . . . . . . . . . . . .  631 

matrix accum command . . . . . . . . . . . 635 
matrix algebra definitions . . . . . . . . . . .  80 
matrix command . . . . . . . . . . . . . . 15, 631 
matrix define command . . . . . . . . . . 631 
matrix rownames command . . . . . . . 632 
matrix vecaccum command . . . . . . . 635 
maximization options . . . . .  see iterative 

methods 
maximum likelihood estimator (MLE) 

definition . . . . . . . . . . . . . . . . . . . . .  316 
rnisspeci:fied density . . . . . . . . . . .  316 
pseudo-MLE . . . . . . . . . . . . . . . . . . . 316 
quasi-MLE . . . . . . . . . . . . . . . . . . . . .  316 

685 

mean command . . . . . . . . . . . . . . . . . . . . 137 
MEM . . . .  see marginal effects, marginal 

effect at the mean 
MER . . . . . see marginal effects, marginal 

effect at representative value 
merge command . . . . . . . . . . . . . . . . . . . . 54 
mfx command . . . . . . . . . . . . . . . . 102, 337 
missing-value codes . . . . . . . . . . . . . . . . . 43 
missing-values imputation . . . . . . . . . .  .45 
mixed linear models . . . .  see panel data 
mixlogi t command . . . . . . . . . . . . . . . 508 
ml check command . . . . . . . . . . . 361, 365 
ml maximize command . . . . . . . . . . . .  360 
ml model command· . . . . . . . . . . .  360, 371 
ml search command . . . . . . . . . . . . . . .  362 
ml trace command . . . . . . . . . . . . . . . . 36.5 
mleval command . . . . . . . . . . . . . 372, 373 
mlmatbysum command . . . . . . . . . . . . . 376 
mlmatsum command . . . . . . . . . . . 372, 376 
mlogi t command . . . . . . . . . . . . . . . . . .  484 
mlsum command . . . . . . . . . . . . . .  372, 373 
mlvecsum command . . . . . . . . . . . 372, 374 
model comparison . . . . . . . . . . . . . . . . .  346 
model diagnostics . . . . . . . . . . . . . 345-348 
moment-based tests . . . . . . . . . . . . . . .  . 4 1 1  
Monte Carlo methods . . .  see simulation 
mprobit command . . . . . . . . . . . . . . . . .  503 
multicollinearity . . . . . . . . . . . . . . . . . . . 367 
multinomial outcome models . . 477-519 

additive random-utility model 
(ARUM) . . . . . . . . . . . . . .  479, 496 

alternative-specific regressors . . . . .  
. . . . . . . .  4 79, 481, 483 

basic theory . . . . . . . . . . . . . . . . . . .  477 
bivariate probit model . . . . . . . .  515 
case-specific regressors . . .  4 79, 481, 

483, 490 
coefficient interpretation . .486, 493 
conditional legit modeL . . . . . . .  489 
conditional versus multinomial 

legit . . . . . . . . . . . . . . . . . . . . . .  493 
GHK simulator . . . . . . . . . . . . . . . . 504 
independence of irrelevant alterna-

tives . . . . . . . . . . . . . . . . . . . . . . 497 



686 

multinomial outcome models, continued 
marginal effects . . . . .  4 78, 488, 494, 

501,  507, 513 
maximum likelihood estimator . . . .  

. . . . . . . . . . . . .  478 
model comparison . . . . . . . . . . . . .  502 
multinomial legit model . . . . . . .  484 
multinomial probit model . . . . . 503 
multinomial regTession . . . . . . . . 477 
multivariate outcomes . . . . . . . . . 514 
nested legit 1r.odel . . . . . . . . . . . .  496 
ordered legit model . . . . . . . . . . . 512 
ordered outcome models . . . . . . 510 
ordered pro bit model. . . . . . . . . . 512 
predicted probabilities . . .  487, 494, 

501, 507, 513, 517 
prediction for new alternative . . 494 
probabilities . . . . . . . . . . . . . . . . . . 478 
random-parameters legit . . . . . . 508 
simulated ma--ximum likelihood es-

timator . . . . . . . . . . . . . . . . . . . 504 
Stata commands smnmary . . . .  480 

N 
nbreg command . . . . . . . . . . . . . . . . . . .  563 
nl command . . . . . . . . . . . . . . . . . . . . . . 319 
nlcom command . . . . . . . . . . . . . . . . . . .  397 
nlogi t command . . . . . . . . . . . . . . . . . .  499 
nlogi tgen command . . . . . . . . . . . . . .  498 
nlogi ttree command . . . . . . . . . . . . . 499 
nlsur command . . . . . . . . . . . . . . . . . . .  517 
nonlinear instrumental variables . . . 380 

count-data example . . . . . . . . . . .  596 
nonlinear least-squares estimator 

definition . . . . . . . . . . . . . . . . . . . . .  319 
example . . . . . . . . . . . . . . . . . . . . . . . 320 

nonlinear regression . . . . . . . . . . . 314-329 
nonlinear seemingly unrelated 

equations . . . . . . . . . . . . . . . . .  517 
nonparametric methods 

kernel density estimation . . . . . . . 62 
kernel regression . . . . . . . . . . . . . . . 66 
local polynomial regression . . . . . 66 
lowess regression . . . . . . . . . . . . . . . 66 
nearest-neighbor regression . . . . . 66 

Subject index 

0 
ologi t command . . . . . . . . . . . . . . . . . .  512 
operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
oprobit command . . . . . . . . . . . . . . . . . 514 
optimize ( )  Mata function . . . . . . . . 376 
order command . . . . . . . . . . . . . . . . . . . .  53 
outfile command . . . . . . . . . . . . . . . . . . 51 
out sheet command . . . . . . . . . . . . . . . . 51 
outsum command . . . . . . . . . . . . . . . . . . .  75 
overidentifying restrictions test . . . . . see 

specification tests 

p 
panel data . .  229-279, 281-305, 601-629 

Arellano-:l!ond estimator . . . . . .  287 
between estimator . . . . . . . . . . . . . 254 
between variation . . . . . . . . 258, 606 
binary outcome models . . . 607, 617 
cluster-robust inference . . . . . . . 233 
cointegration . . . . . . . . . . . . . . . . . . 273 
command summary . . . . . . . . . . . 234 
comparison of estimators . . . . . .  257 
count-data models . . . . . . . . . . . . 619 
dynamic model. . . . . . . . . . .  287, 298 
endogeneity . . . . . . . . . . . . . .  231, 607 
exogeneity . . . . . . . . . . . . . . . . . . . . 264 
first-difference estimator . .  263, 265 
first-difference model . . . . . . . . . .  288 
fi..-xed versus random effects . . . . 259 
fi..-xed-effects estimator . . . . 251,  613, 

624 
fixed-effects mode l .  . . 231, 251, 602 
generalized estimating equations . .  

. . . . . . . . . . . . .  603 
generalized method-of-moments es-

timator . . . . . . . . . . . . . . . . . . . 289 
Hausman test . . . . . . . . . . . .  260, 261 
Hausman-Tayler estimator . . .  284, 

287 
individual-effects model . .  231, 251, 

271, 298 
individual-invariant regressor . . . . . 

. . . . . . . .  230, 239, 254 
instrumental-variables estimator . . 

. . . . . . . .  281, 284, 288 



Subject index 

panel data, continued 
least-squares durnrlly-variable esti-

mator . . . . . . . . . . . . . . . . . . . . 253 
linear Stata commands summary . .  

. . . . . . . . . . . . .  234 
legit model . . . . . . . . . . . . . . . . . . . . 609 
long panel . . . . . . . . . . . 230, 265, 273 
management of data . . . . . . 274, 277 
marginal ·effects . . . . . . . . . . . . . . . 616 
mixed linear models . . . . . 233, 298, 

305 
mixed nonlinear model . . . . . . . . 616 
multiplicative-effects model . . .  601 
negative binomial model . . . . . . 627 
nonlinear models overview . . . . 601 
nonlinear Stata commands 

summary . . . . . . . . . . . . . . . . .  604 
Poisson model . . . . . . . . . . . . . . . .  619 
pooled estimator . . . . 244, 245, 248, 

250, 266, 270, 608, 620 
pooled model . . . . . . . . 232, 248, 602 
population-averaged estimator . . . . 

. . . . . . . . . .  610, 621 
population-averaged model . . . 2:32, 

249, 603 
prediction . . . . . . . . . . . . . . . . 262, 616 
R2 • . • . • . • . • . • . • • . • . • . • . • . • . . . •  258 
random-coefficients estimator . . 303 
random-coefficients model . . . . 233, 

303, 602 
random-effects estimator . . . . . 255, 

257, 612, 622 
random-effects model . . . . 232, 255, 

300, 602, 617 
random-intercept model . . . . . . . 300 
short panel . . . . . . . . . . 229, 287, 601 
spatial correlation . . . . . . . . . . . . . 268 
summary of data . . . . . . . . . 234, 24 7 
time-invariant regressor . . 230, 239, 

244, 245, 251, 252, 257, 259, 
264, 283, 284, 287, 292 

time-series autocorrelations . . . 245, 
247 

time-series plots . . . . . . . . . . . . . . . 241 

687 

panel data, continued 
two-stage least-squares estimator . .  

. . . . . . . . . . . . .  289 
two-way-effects model. . .  232, 266, 

304, 305 
unbalanced panel . . .  230, 237, 258, 

606 
unit roots . . . . . . . . . . . . . . . . . . . . .  273 
variance components . . . . . . . . . . 257 
within estimator . . . see panel data, 

fixed-effects estimator 
within scatterplot . . . . . . . . . . . . . 243 
within variation . . . . . 238, 240, 258, 

606 
percentiles . . . . . . . . . . . . . . . . . . . . . . . . . . 74 
poisson command . . . . . . . . . . . .  317, 559 
Poisson model . . see count-data models 
post command . . . . . . . . . . . . . . . . . . . .  124 
postclose command . . . . . . . . . . . . . . 124 
postestimation commands summary . . .  

. . . . . . . . . . . . .  318 
postfile command . . . . . . . . . . . 124, 145 
prchange command . . . . . . . . . . . . . . .  464 
prcounts command . . . . . . . . . . . . . . . 588 
predict command . . . . . . . 100, 262, 329 
prediction . . . . . . . . . . . . . . . . . . . . . 329-333 

at specified regressor value . . . . 332 
binary outcome models . . . . . . .  . 460 
in count-data models . . . . . . . . . . 567 
in levels from log model. . 1 03, 548, 

549 
in linear panel-data model . . . . 262 
in linear regression model . . . . . 100 
in panel logit model . . . . . . . . . . . 616 
of multinomial model probabilities 

. . . . . . . . . . . . .  487 
out of sample . . . . . . . . . . . . . . . . . 331 
summary . . . . . . . . . . . . . . . . . . . . . . 329 
weighted . . . . . . . . . . . . . . . . . . . . . . 109 

predictnl command . . . . . . . . . . . . . .  330 
preserve command . . 53, 105, 332, 342 
pro bit command . . . . . . . . . . . . . . . . . .  448 
probit modeL . . . . . . see binary outcome 

models 



688 

program define command . . . . . . . . . 637 
program drop command . . . . . . . . . . .  638 
programs . . . . . . . . . . . . . . . . . . . . . 637-645 

bootstrap example . .  427, 432, 435, 
436 

central limit theorem example . .  122 
checking . . . . . . . . . . . . . . . . . . . . . . 364 
checking parameter estimates . .  369 
checking standard-error estimates . .  

. . . . . . . . . . . . .  370 
debugging . . . . . . . . . . . . . . . . . . . . .  643 
in Mata . . . . . . . . . . . . . . . . . . . . . . . 658 
Monte Carlo integration example . .  

. . . .  . . . . . . . . . 134 
named positional arguments . . .  639 
OLS with chi-squared errors . . .  135 
overview . . . . . . . . . . . . . . . . . . . . . .  637 
parsing syntax . . . . . . . . . . . . . . . .  641 
positional arguments . . . . . . . . . . 639 
r-class example . . . . . . . . . . . . . . . . 640 
temporary variables . . . . . . . . . . .  639 

prvalue command . . . . . . . . . . . . 462, 567 
pseudo-R2 

. . . • . • . • . • . • . • • • . • . .  345, 457 
p-values 

bootstrap . . . . . . . . .  _ . . . . . . . . . . .  432 
chi-squared compared with F . .  386 
computation of . . . . . . . . . . . . . . . . 388 
standard normal compared with t 

. . . . . . . . . . . . .  386 
pwcorr command . . . . . . . . . . . . . . . . . . .  85 

Q 
qcount command . . . . . . . . . . . . . . . . . . 222 
qplot command . . . . . . . . . . . . . . . . . . . 209 
qreg command . . . . . . . . . . . . . . . . . . . .  208 
quadrature methods . . . . . .  133, 503, 611  
quantile regression . . . . . . . . . . . .  205-228 

bootstrap robust variance matrix . . 

. . . . . . . . . . . . .  208 
coefficient comparison across quan-

tiles . . . . . . . . . . . . . . . . . . . . . .  215 
coefficient interpretation . . . . . . 210 
computation . . . . . . . . . . . . . . . . . .  207 
conditional quantiles . . . . . . . . . .  205 
data example . . . . . . . . . . . . . . . . .  209 

Subject index 

quantile regression, continued 
defi11ition of quantiles . . . . . . . . . 205 
for count data . . . . . . . . . . . . . . . . .  220 
generated data example . . . . . . .  216 
loss functions . . . . . . . . . . . . . . . . .  206 
marginal effects . . . . . . . . . . . . . . . 211  
QR estimator . . . . . . . . . . . . . . . . . . 207 
retransformation . . . . . . . . . . . . . .  211 
test of equality . . . . . . . . . . . . . . . .  214 
test of heteroskedasticity . . . . . . 213 
variance matrix estimation . . . . 207 

query command . . . . . . . . . . . . . . . . . . . . 15 

R 
R2 

• . . . • • • • • . . . • . • • . • . • . • . • . • . • • . . .  345 
random effects . . . . . . . . . .  see panel data· 
random-number generation . . . . . . . . .  see 

simulation 
rbeta () function . . . . . . . . . . . . . . . . . .  118 
rbinomial O function . . . . . . . . . . . . .  118 
rchi2 0 function . . . . . . . . . . . . . . . . . .  117 
r-class commands . . . . . . . . .  16,  122, 640 
recede command . . . . . . . . . . . . . . . . . . .  47 
reformat command . . . . . . . . . . . . . . . . 90 
reg3 command . . . . . . . . . . . . . . . . . . . . 202 
regress command . . . . . . . . . . . 7, 17, 85 
relational operators . . . . . . . . . . . . . . . . . . 9 
rename command . . . . . . . . . . . . . . . . . . .  41 
replace command . . . . . . . . . . . . . . 43, 46 
reshape command . . .  54, 274, 277, 489 
residuals 

definitions of various residuals . . . . 

. . . . . . . . . . . . .  347 
residual plots . . . . . . . . . . . . . . . . . . .  91  

restore command . . . 53, 105, 332, 342 
return code . . . . . . . . . . . . . . . . . . , . 10, 645 
return command . . . . . . . . . . . . . . . . . .  136 
return list command . . . . . . . . . . . _ .  16 
rga.mmaO function . . .  _ . . . . . . . . 118, 555 
...rmcoll command . . . . . . . . . . . . . . . . .  368 
rnbinomial 0 function . . . . . . .  120, 556 
rnormal 0 function . . . . . . . . . . . . . . . . 116 
robust variance matrix . . . . . . . . .  82, 326 
rpoissonO function . . . . .  118, 554, 555 
rt () function . . . . . . . . . . . . . . . . . . . . . .  117 



Subject index 

runiform O function . . . . . . . . . . . . . .  114 
rvfplot command . . . . . . . . . . . . . . . . . . 91 

s 
sample-selection model. . . .  see selection 

model 
sampling weights in linear regression 

model . . . . . . . . . . . . . . . . . . . .  105 
save command . . . . . . . . . . . . . . . . . . . . . 5 1  
saveold command . . . . . . . . . . . . . . . . . .  5 1  
scalars . . . . . . . . . . . . . . . . . . . . . . . . . .  1 5 ,  2 1  
score test . . . . . . . . .  see hypothesis tests, 

Lagrange multiplier test 
search command . . . . . . . . . . . . . . . . . . . . 4 
seemingly unrelated regression 

equations . . . . . . . . . . . .  156-163 
feasible GLS estimation . . . . . . . .  157 
FGLS example . . . . . . . . . . . . . . . . . 158 
imposing cross-equation 

restrictions . . . . . . . . . . . . . . . 162 
robust variance matrh: . . . . . . . . 160 
SUR estimator . . . . . . . . . . . . . . . . . 157 
SUR model . . . . . . . . . . . . . . . . . . . . 156 
test of cross-equation restrictions . .  

. . . . . . . . . . . . .  161 
test of error independence . . . . .  160 

selection model . . . . . . . . .  · - . . . .  541-550 
exclusion restrictions . . . . . . . . . . 546 
identification . . . . . . .  : . . . . . . . . . .  .543 
inverse of the Mills' ratio . . . . . . 545 
model definition . . . . . . . . . . . . . . . .541 
model likelihood . . . . . . . . . . . . . . 542 
prediction . . . . . . . . . . . . . . . . . . . . .  549 
two-step estimation . . . . . .  428, 545 

set command . . . . . . . . . . . . . . . . . . . . . .  15 
set memory command . . . . . . . . . . . . . . .  32 
set more off command . . . . . . . . . . . . . 1 2  
set seed command . . . . . . 114, 208, 417 
simulate command . . . . . . . . . . . . . . .  123 
simulated maximum likelihood estima-

tor . . . . . . . . . . . . . . . . . . . . . . . 504 
simulation . . . . . . . . . . . . . . . . . . . . 1 13-145 

bias of estimator . . . . . . . . . . . . . . 138 
bias of standard-error estimator . .  

. . . . . . . . . . . . .  138 

689 

simulation, continued 
bootstrap example . . . . . . . . . . . . 435 
central limit theorem example . .  121 
Cholesky decomposition . . . . . . .  130 
comptlting integrals . . . . . . . . . . .  132 
direct transformation . . . . . . . . . .  127 
distribution of sample mean . . . 121 
draws from multivariate normal . .  

. . . . . . . . . . . . .  129 
draws from negative binomial . . 555 
draws from normal . . . . . . . . . . . . 116 
draws from Poisson . . . . . . . . . . . 554 
draws from truncated normal . .  128 
draws from unllorm . . . . . . . . . . .  114 
draws of continuous variates . . .  117 
draws of discrete variates . . . . . . 118 
draws using Markov chain Monte 

Carlo method . . . . . . . . . . . . 130 
endogenous regressors example . . .  

. . . . . . . . . . . . .  142 
FGLS heteroskedastic errors exam-

ples . . . . . . . . . . . . . . . . . . . . . . 150 
Gibbs sampler example . . . . . . . 131 
inconsistency of estimator . . . . . 142 
interpreting simulation output . . .  . 

. . . . . . . . . . . . .  138 
inverse probability transformation 

. . . . . . . . . . . . .  126 
measurement-error example . . . 142 
mixture of distributions . . . . . . . 127 
Monte Carlo integration example . .  

. . . . . . . . . . . . .  134 
Monte Carlo methods . . . . . . . . .  113 
OLS with chi-squared errors . . .  135 
power of test computation . . . .  140, 

408 
pseudorandom numbers . . . . . . .  114 
size of test computation . . . . . . . 139 
using postfile command . . . .  124, 

145 
using simulate command . . . . . 135 

single-index model 
coefficient interpretation . . . . . .  336 
definition . . . . . . . . . . . . . . . . . . . . .  336 
numerical derivatives for . . . . . . 359 



690 Subject index 

skewness measure . . . . . . . . . . . . . . . . . . .  74 survey data, continued 
sort command . . . . . . . . . . . . . . . . . . .. . .  53 weighted mean . . . . . . . . . . . . . . . . 167 
specification tests . . . . . . . . . . . . . 411�413 weighted regression . . . . . . . . . . . 167 

binary outcome models . . . . . . .  .454 weighting . . . . . . . . . . . . . . . . . . . . . 163 
chi-squared goodness-of-fit test . . .  svy prefix command . . . . . . . . . . . . . . .  164 

. . . . . . . . . . . . .  412 svy: regress command . . . . . . . . . . . 167 
classification test . . . . . . . . . . . . . . 459 svydescri be command . . . . . . . . . . . . 166 
for serially uncorrelated panel er- svymean command . . . . . . . . . . . . . . . . . 167 

rors . . .  � . . . . . . . . . . . . . . . . . . 294 svyset command . . . . . . . . . . . . . . . . . .  165 
goodness-of-fit test . . . . . . . . . . . .  458 syntax 
Hausman test . . . . . . .  260, 412, 429 basic command syntax . . . . . . . . . . 5 
information matrix test . . . . . . .  411 parsing synta"X . . . . . . . . . . . . . . . .  641 
moment-based tests . . . . . . . . . . .  411  syntax command . . . . . . . . . . . . . . . . . . 641 
RESET test . . . . . . . . . . . . . . . . . . . . . 95 systems of equations 
test for fi.."Xed effects . . . . . . . . . . .  260 linea.r regressions . . . . . . . . . . . . . . 156 
test of endogeneity . . . . . . .  182, 429 linear simultaneous equations . . 201 
test of heteroskedasticity . . 96, 152 nonlinear regressions . . . . . . . . . .  517 
test of omitted variables . . . . . . . . 94 
test of overidentifying restrictions T 

. . . . . . . .  185, 294, 412 tab2 comma.nd . . . . . . . . . . . . . . . . . . . . . 76 
test of weak instruments . . . . . . 190 table command . . . . . . . . . . . . . . . . . . . . 75 

sqreg command . . . . . . . . . . . . . . . .  : . .  208 tables for data . . . . . . . . . . . . . . . . . . . . . . 75 
st_addvarO Mata function . . . . . . . . 657 tables of output . . . . . . . . . . . . . . . . . . . . .  87 
st_dataO Mata function . . . . . . . . . . 651 in Word or Ib'IEX . . . . . . . . . . . . . .  89 
st_matrix ( )  Mata function . . 110,  651, ta bsta t command . . . . . . . . . . . . . . . . . . 77 

657 tabulate command .. . . . . . . . .  42, 48, 73 
st_store 0 Mata function . . . . . . . . . 657 tempvar command . . . . . . . . . . . . . . . . .  639 
st_viewO Mata function . . . . . 110,  651 test command . . . . . . . . . . . . . . . .  86, 391 
standard errors . . . . . . . . . . . . . . . . . . . . . see test of heteroskedasticity . . . . . . . . . . .  152 

variance�covariance rna trix test of overidentifying restrictions . . see 
Stata Journal . . . . . . . . . . . . . . . . . . . . . . . .  3 specification tests 
Stata manuals . . . . . . . . . . . . . . . . . . . . . . . 2 testnl command . . . . . . . . . . . . . . . . . .  395 
Stata Technical Bulletin . . . . . . . . . . . . .  3 tobcm command . . . . . . . . . . . . . . . . . . .  537 
stat a() Mata function . . . . . . . . . . . . 648 to bit comma.nd . . . . . . . . . . . . . . . . . . . 524 
statsby prefix command . . . . . . . . . . 270 tobit model . . . . . . . . . . . . . . . . . . .  521�538 
string data . . . . . . . . . . . . . . . . . . . . . . 3 1 ,  34 censored data . . . . . . . . . . . . . . . . . 521 
summarize command . . . . . . . . . 6, 16, 73 density . . . . . . . . . . . . . . . . . . . . . . . . 523 
SUR model . . . . see seemingly unrelated diagnostic tests . . . . . . . . . . . . . . . 535 

regression equations endogenous regressor . . . . . . . . . . 530 
sureg command . . . . . . . . . . . . . . . . . . .  157 generalized residuals . . . . . . . . . . 534 
survey data . . . . . . . . . . . . . . . . . . . 163�169 lognormal data . . . . . . . . . . . . . . . . 531 

clustering . . . . . . . . . . . . . . . . . . . . .  164 marginal effects . . . . . . . . . . . . . . . 527 
commands for survey data . . . .  165 panel-data estimators . . . . . . . . . 617 
complex survey data . . . . . . . . . .  163 partial observability . . . . . . . . . . . 521 
stratifi.cation . . . . . . . . . . . . . . . . . . 164 prediction . . . . . . . . . . . . . . . . 526, 548 



Subject index 

tobit model, continued 
selection model . . . . . . . . . . . . . . .  541 
test of heteroskedasticity . . . . . . 537 
test of normality . . . . . . . . . . . . . .  536 
truncated mean . . . . . . . . . . . . . . .  522 
two-limit tobit . . . . . . . . . . . . . . . .  534 
unknown censoring point . . . . . . 523 

tobit regression, two-part model . . . 538 
tokens () Mat'a function . . . . . . . . . . .  110 
tostring command . . . . . . . . . . . . . . . .  31 
trace command . . . . . . . . . . . . . . . . . . .  645 
trea treg command . . . . . . . . . . . . . . .  187 
tsset command . . . . . . . . . . . . . . . . . . .  115 
ttest command . . . . . . . . . . . . . . . . . . . .  78 
two-part model 

for count data . . . . .  see count-data 
models 

for log expenditure data . . . . . . .  538 
prediction . . . . . . . . . . . . . . . . . . . . .  548 

two-stage least-squares estimator . . .  see 
instrumental variables 

two.step estimator, bootstrap standard 
error . . . . . . . . . . . . . . . . . . . . .  427 

twoway command . . . . . . . . . . . . . . . . . . .  64 

u 
uniform() function . . . see runiform O 

function 
update command . . . . . . . . . . . . . . . . . . . .  2 
use command . . . . . . . . . . . . . . . . . . . . . .  33 

v 
variance-covariance rna trix . . . .  323-329 

bootstrap estimate . . . . . . . . . . . .  417 
cluster-robust variance matrix . . . .  

. . . . . . . . . . . . .  328 
default estimate . . . . . . . . . . .  81,  326 
definition . . . . . . . . . . . . . . . . . . . . . 323 
jackknife estimate . . . . . . . . . . . . .  441 
of two-step estimator . . . . . . . . . . 427 
panel data . . . . . . . . . . . . . . . . . . . .  233 
robust . . . . . . . . . . . . . . . . . . . . . . . .  326 
vee (bootstrap) option . .  233, 328, 

418 

691 

variance-covariance matrix, continued 
vce(cluster clustvar) option . . . .  

. . . . . . . . . . .  82, 328 
vee (hac kernel) option . . . . . . .  328 
vee (jackknife) option . .  329, 442 
vee (oim) option . . . . . . . . . . . . . .  326 
vee ( opg) option . . . . . . . . . . . . . .  326 
vee (robust) option . .  82, 233, 326 

VCE . . . .  see variance-covariance matrix 
vee ( )  option . .  see variance-covariance 

matrix 

w 
Wald confidence intervals . . . . . . . . . . see 

confidence intervals 
W ald test . . . . . . . . .  see hypothesis tests 
weak instruments test . . . . . . . . . . . . . .  see 

specification tests 
weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 
weighted mean . . . . . . . . . . . . . . . . . . . . 106 
weighted regression . . . . . . . . . . . . . . . .  107 
while command . . . . . . . . . . . . . . . . . . . .  24 
wide-form data . . . . . . . . . . .  27 4, 277, 489 
wildcards . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 

X 
xi prefix command . . . . . . . . . . . .  48, 254 
xta bond command . . . . . . . . . . . . 289, 295 
xtabond2 command . . . . . . . . . . . . . . .  295 
xtcloglog command . . . . . . . .. . . . . . . 607 
xtdata command . . . . . . . . . . . . . . . . . .  243 
xtdescribe command . . . . . . . . 237, 309 
xtdpd command . . . . . . . . . . . . . . . . . . .  297 
xtdpdsys command . . . . . . . . . . . . . . .  295 
xtfrontier command . . . . . . . . . . . . .  619 

. xtgee command . . . . . . . . .  250, 258, 610 
xtgls command . . . . . . . . . . . . . . 268, 269 
xthtaylor command . . . . . . . . .  285, 286 
xtintreg command . . . . . . . . . . . . . . . 618 
xtivreg command . . . . . . . . . . . .  282, 283 
xtline command . . . . . . . . . . . . . . . . . .  2 41 
xtlogit command . . . . . . . . . . . . . . . . .  609 
xtmixed command . . . . . . .  299, 305, 310 
xtnbreg command . . . . . . . . . . . . . . . . .  619 
xtpcse command . . . . . . . . . . . . . 267, 269 



692 

xtpmg command . . . . . . . . . . . . . . . . . . .  273 
xtpoisson command . . . . . . . . . . . . . .  619 
xtpqml command . . . . . . . . . . . . . . . . . .  624 
xt pro bit command . . . . . . . . . . . . . . .  607 
xtrc command . . . . . . . . . . . . . . . . . . . .  303 
xtreg command . . . . .  251, 263, 272, 309 
xtregar command . . . . . . . . . . . . 271, 272 
xtscc command . . . . . . . . .  268, 269, 272 
xtset command . . . . . . . . . . . . . . 237, 308 
xtsum command . . . . . . . . . . . . . . . . . . .  238 
xtta b command . . . . . . . . . . . . . . . . . . . 240 
xttobit command . . . . . . . . . . . . . . . . .  617 
xttrans command . . . . . . . . . . . . . . . . .  240 

z 
zero-inflated models . . . .  see count-data 

models 
zero-truncated models . .  see count-data 

mode�s 
zinb command . .. . . . . . . . . . . . . . . . . . .  587 
zip command . . . . . . . . . . . . . . . . . . . . .  587 
ztnb commaJJ.d . . . . . . . . . . . . . . . . . . . . 572 
ztp command . . . . . . . . . . . . . . . . . . . . . 572 

Subject index 


	Contents
	1 Stata basics
	2 Data management and graphics
	3 Linear regression basics
	4 Simulation
	5 GLS regression
	6 Linear instrumental-variables regression

	7 Quantile regression

	8 Linear panel-data models: Basics

	9 linear panel-data models: Extensions

	10 Nonlinear regression methods

	11 Nonlinear optimization methods
	12 Testing methods 
	13 Bootstrap methods
	14 Binary outcome models

	15 Multinomial Models

	16 Tobit and selection models
	17 Count-data models
	18 Nonlinear panel models
	Appendix A: Programming  in Stata
	Appendix B: Mata



