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Preface

This book explains how an econometrics computer package, Stata, can be used to per-
form regression analysis of cross-section and panel data. The term microeconometrics
is used in the book title because the applications are to economics-related data and be-
cause the coverage includes methods such as instrumental-variables regression that are
emphasized more in economics than in some other areas of applied statistics. However,
many issues, models, and methodologies discussed in this book are also relevant to other
social sciences.

The main audience is graduate students and researchers. For them, this book
can be used as an adjunct to our own Microeconometrics: Methods and Applications
(Cameron and Trivedi 2005), as well as to other graduate-level texts such as Greene
{2008) and Wooldridge (2002). By comparison to these books, we present little theory
and instead emphasize practical aspects of implementation using Stata. More advanced
topics we cover include quantile regression, weak instruments, nonlinear optimization,
bootstrap methods, nonlinear panel-data methods, and Stata’s matrix programming
language, Mata.

At the same time, the book provides introductions to topics such as ordinary least-
squares regression, instrumental-variables estimation, and logit and probit models so
that it is suitable for use in an undergraduate econometrics class, as a complement to
an appropriate undergraduate-level text. The following table suggests sections of the
book for an introductory class, with the caveat that in places formulas are provided
using matrix algebra.

Stata basics Chapter 1.1-1.4
Data management Chapter 2.1-2.4, 2.6
OLS Chapter 3.1-3.6
Simulation Chapter 4.6-4.7

GLS (heteroskedasticity) Chapter 5.3
Instrumental variables Chapter 6.2-6.3

Linear panel data Chapter 8
Logit and probit models Chapter 14.1-14.4
Tobit model Chapter 16.1-16.3

Although we provide considerable detail on Stata, the treatment is by no means
complete. In particular, we introduce various Stata commands but avoid detailed listing
and description of cornmands as they are already well documented in the Stata manuals
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and online help. Typically, we provide a pointer and a brief discussion and often an
example.

As much as possible, we provide template code that can be adapted to other prob-
lems. Keep in mind that to shorten output for this book, our examples use many fewer
regressors than necessary for serious research. Our code often suppresses intermedi-
ate output that is important in actual research, because of ectensive use of command
quietly and options nolog, nodots, and noheader. And we minimize the use of graphs
compared with typicai use in exploratory data analysis.

We have used Stata 10, including Stata updates.! Instructions on how to obtain
the datasets and the do-files used in this book are available on the Stata Press web
site at http://www.stata-presscom/data/mus.html. Any corrections to the book will
be documented at http://www.stata-press.com/books/mus.html.

We have learned a lot of econometrics, in addition to learning Stata, during this
project. Indeed, we feel strongly that an effective learning tool for econometrics is
hands-on learning by opening a Stata dataset and seeing the effect of using different
methods and variations on the methods, such as using robust standard errors rather than
default standard errors. This method is beneficial at all levels of ability in econometrics.
Indeed, an efficient way of familiarizing yourself with Stata’s leading features might be
to execute the commands in a relevant chapter on your own dataset.

We thank the many people who have assisted us in preparing this book. The project
grew out of our 2005 book, and we thank Scott Parris for his expert handling of that
book. Juan Du, Qian Li, and Abhijit Ramalingam carefully read many of the book
chapters. Discussions with John Daniels, Oscar Jorda, Guido Kuersteiner, and Doug
Miller were particularly helpful. We thank Deirdre Patterson for her excellent editing
and Lisa Gilmore for managing the IWIEX formatting and production of this book.
Most especially, we thank David Drukker for his extensive input and encouragement at
all stages of this project, including a thorough reading and critique of the final draft,
which led to many improvements in both the econometrics and Stata components of
this book. Finally, we thank our respective families for making the inevitable sacrifices
as we worked to bring this multiyear project to completion.

Davis, CA A. Colin Cameron
Bloomington, IN Pravin K. Trivedi
October 2008

1. To see whether you have the latest update, type update query. For those with earlier versions of
Stata, some key changes are the following: Stata 9 introduced the matrix programming language,
Mata. The syntax for Stata 10 uses the vce(robust) option rather than the robust option to
obtain robust standard errors. A mid-2008 update of version 10 introduced new random-number
functions, such as runiform({) and rnormal{).
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This chapter provides some of the basic information ‘about issuing commands in Stata.
Sections 1.1-1.3 enable a first-time user to begin using Stata interactively. In this book,
we instead emphasize storing these commands in atext file, called a Stata do-file, that is
then executed. This is presented in section 1.4. Sections 1.5-1.7 present more-advanced
Stata material that might be skipped on a first reading.

The chapter concludes with a summary of some commonly used Stata commands and
with a template do-file that demonstrates many of the tools introduced in this chapter.
Chapters 2 and 3 then demonstrate many of the Stata commands and tools used in
applied microeconometrics. Additional features of Stata are introduced throughout the
book and in appendices A and B.

1.1 Interactive use

Interactive use means that Stata commands are initiated from within Stata.

A graphical user interface (GUI) for Stata is available. This enables almost all Stata
commands to beselected from drop-down menus. Interactive useisthen especially easy,
as there is no need to know in advance the Stata command.

All implementations of Stata allow commands to be directly typed in; for exam-
ple, entering summarize yields summary statistics for the current dataset. This is the
primary way that Stata is used, as it is considerably faster than working through drop-
down menus. Furthermore, for most analyses, the standard procedure is to aggregate
the various commands needed into one file called a do-file (see section 1.4) that can be
run with or without interactive use. We therefore provide little detail on the Stata GUI.

For new Stata users, we suggest entering Stata, usually by clicking on the Stata icon,
opening one of the Stata example datasets, and doing some basic statistical analysis.
To obtain example data, select Fiile > Example Datasets..., meaning from the File
menuy, select the entry Example Datasets.... Then click on the link to Example
datasets installed with Stata. Work with the dataset auto.dta; this is used in
many of the introductory examples presented in the Stata documentation. First, select
describe to obtain descriptions of the variables in the dataset. Second, select use to
read the dataset into Stata. You can then obtain summary statistics either by typing
summarize in the Command window or by selecting Statistics > Summaries, tables,
and tests > Summary and descriptive statistics > Summary statistics. You
can run a simple regression by typing regress mpg weight or by selecting Statistics
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> Linear models and related > Linear regression and then using the drop-down
lists in the Model tab to choose mpg as the dependent variable and weight as the
independent variable.

The Stata manual [GS] Getting Started with Stata is very helpful, especially [GS]
3 A sample session, which uses typed-in commands, and [GS] 4 The Stata user
interface.

The extent to which you use Stata in interactive mode is really a personal preference.
There are several reasons for at least occasionally using interactive mode. First, it can
be useful for learning how to use Stata. Second, it can be useful for exploratory analysis
of datasets because you can see in real time the effect of, for example, adding or dropping
regressors. If you do this, however, be sure to first start a session log file (see section 1.4)
that saves the commands and resulting output. Third, you can use help and related
commands to obtain online information about Stata commands. Fourth, one way to
implement the preferred method of running do-files is to use the Stata Do-file Editor in
interactive mode.

Finally, components of a given version of Stata, such as version 10, are periodically
updated. Entering update query determines the current update level and provides the
option to install official updates to Stata. You can also install user-written commands
in interactive mode once the relevant software is located using, for example, the findit
command.

1.2 Documentation

Stata documentation is extensive; you can find it in hard copy, in Stata (online), or on
the web.

1.2.1 Stata manuals

For first-time users, see [GS] Getting Started with Stata. The most useful manual is [U]
User's Guide. Entries within manuals are referred to using shorthand suchas [U] 11.1.4
in range, which denotes section 11.1.4 of [U] User's Guide on the topic in range.

Many commands are described in [R] Base Reference Manual, which spans three
volumes. For version 10, these are A-H, I-P, and Q-Z. Not all Stata commands appear
here, however, because some appear instead in the appropriate topical manual. These
topical manuals are [D] Data Management Reference Manual, [G] Graphics Reference
Manual, [M] Mata Reference Mamal (two volumes), [MV] Multivariate Statistics Refer-
ence Manual, [P] Programming Reference Manual, [ST] Survival Analysis and Epidemio-
logical Tables Reference Manual, [SVY] Survey Data Reference Manual, [1S] Time-Series
Reference Manual, and [XT| Longitudinal/Panel-Data Reference Manual For example,
the generate command appears in [D] generate rather than in [R].

For a complete list of documentation, see [U] 1 Read this—it will help and also
[1] Quick Reference and Index.
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1.2.2 Additional Stata resources

The Stata Journal (8J) and its predecessor, the Stata Technical Bulletin (STB), present
examples and code that go beyond the current installation of Stata. SJ articles over
three years old and all STB articles are available online from the Stata web site at no
charge. You can find this material by using various Stata help commands given later in
this section, and you can often install code as a free user-written command.

The Stata web site has a lot of information. This includes a summary of what Stata
does. A good place to begin is http://www.stata.com/support/. In particular, see the
answers to frequently asked questions (FAQs). )

The University of California—~Los Angeles web site
http://www.ats.ucla.edu/STAT /stata/ provides many Stata tutorials.

1.2.3 The help command

Stata has extensive help available once you are in the program.

The help command is most useful if you already know the name of the command
for which you need help. For example, for help on the regress command, type

. help regress
(output omitted)

Note that here and elsewhere the dot (.) is not typed in but is provided to enable
distinction between Stata commands (preceded by a dot) and subsequent Stata output,
which appears with no dot.

The help command is also useful if you know the class of commands for which you
need help. For example, for help on functions, type

help functicn
(output omitted)

(Continued on next page)
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Often, however, you need to start with the basic help command, which will open
the Viewer window shown in figure 1.1.

. help

Viewer (#1) [Help Contents]

@@o@@mm AT

) Comonts, | (Wi New] (o_Nows ]

e

Top
HT i
s . :
. language syntax, expressions and functions,
B inputting, editing, creating new variables, ...
i statistics
i sumnary statistics, tables, estimation, ...
aratrics

scatterplots, bar chdrts, ...
Prograuring and oatsr-ices N

do-files, ado-files, Mata, matrices
|
f| Help file Jisrings
(] Language SyrrEax
U advice on what to type

ATELTS

download datasets from the Reference manuals

Copyrights

Figure 1.1. Basic help contents

For further details, click on a category and subsequent subcategories.

For help with the Stata matrix programming language, Mata, add the term mata
after help. Often, for Mata, it is necessary to start with the very broad command

. help mata
(output omitted )

and then narrow the results by selecting the appropriate categories and subcategories.

1.2.4 The search, findit, and hsearch commands

There are several search-related commands that do not require knowledge of command
names.

For example, the search command does a keyword search. It is especially useful if
you do not know the Stata command name or if you want to find the many places that
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a command or method might be used. The default for search is to obtain information
from official help files, FAQs, examples, the SJ, and the STB but not from Internet
sources. For example, for ordinary least squares (OLS) the command

. scarch ols
(output omitted)

finds references in the manuals [R], [MV], [SVY], and [XT]; in FAQs; in examples; and
in the SJ and the STB. It also gives help commands that you can click on to get
further information without the need to consult the manuals. The net search command
searches the Internet for installable packages, including code from the SJ and the STB.

The findit command provides the broadest possible keyword search for Stata-
related information. You can obtain details on this command by typing help findit.
To find information on weak instruments, for example, type

. findit weak instr
(output omitted)

This finds joint occurrences of keywords beginning with the letters “weak” and the
letters “instr”.

The search and findit commands lead to keyword searches only. A more detailed
search is not restricted to keywords. For example, the hsearch command searches all
words in the help files (extension .sthlp or .hlp) on your computer, for both official
Stata commands and user-written commands. Unlike the findit command, hsearch
uses a whole word search. For example,

. hsearch weak instrument

(output omitted)

actually leads to more results than hsearch weak instr.

The hsearch command is especially useful if you are unsure whether Stata can
perform a particular task. In that case, use hsearch first, and if the task is not found,
then use findit to see if someone else has developed Stata code for the task.

1.3 Command syntax and operators

Stata command syntax describes the rules of the Stata programming language.

1.3.1 Basic command syntax

The basic command syntax is almost always some subset of

[pﬂeﬁa::] command [varlist] [= e:r:p} [zf} [m} [weight]

[using filename] [, options |
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The square brackets denote qualifiers that in most instances are optional. Words in
the typewriter font are to be typed into Stata like they appear on the page. Italicized
words are to be substituted by the user, where

o prefiz denotes a command that repeats execution of command or modifies the
input or output of command,

e command denotes a Stata command,
o varlist denotes a list of variable names,
o erp is a mathematical expression,

o weight denotes a weighting expression,
e filename is a filename, and

e options denotes one or more options that apply to command.

The greatest variation across commands is in the available options. Commands
can have many options, and these options can also have options, which are given in
parentheses.

Stata is case sensitive. We generally use lowercase throughout, though occasionally
we use uppercase for model names.

Commands and output are displayed following the style for Stata manuals. For
Stata commands given in the text, the typewriter font is used. For example, for OLS,
we use the regress command. For displayed commands and output, the commands
have the prefix . (a period followed by a space), whereas output has no prefix. For
Mata commands, the prefix is a colon (:) rather than a period. Output from commands
that span more than one line has the continuation prefix > (greater-than sign). For a
Stata or Mata program, the lines within the program do not have a prefix.

1.3.2 Example: The summarize command

The summarize command provides descriptive statistics (e.g., mean, standard deviation)
for one or more variables.

You can obtain the syntax of summarize by typing help summarize. This yields
output including

summarize [varlist} [zf} [m] [weight} [, options}

It follows that, at the minimum, we can give the command without any qualifiers. Unlike
some commands, surmarize does not use [u ezp] or [using ﬁlename}.

As an example, we use a commonly used, illustrative dataset installed with Stata
called auto.dta, which has information on various attributes of 74 new automobiles.
You can read this dataset into memory by using the sysuse command, which accesses
Stata-installed datasets. To read in the data and obtain descriptive statistics, we type
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. sysuse auto.dta

(1978 Automobile Data)

. summarize

Variable Obs Mean Std. Dev. Min Max
make 0

price 74 6165.257 2949.496 3291 15906

mpg 74 21.2973 5.785503 12 41

rep78 69 3.405797 .9899323 1 5

headroom 74 2.993243 .8459948 1.5 5

trunk 74 13.75676 4.277404 5 23

weight 74 3019.459 777.1936 1760 4840

length 74 187.9324 22.26634 142 233

turn 74 39.64865 4,399354 31 51

displacement 74 197.2973 91.83722 79 425

gear_ratio 74 3. 014865 .4562871 2.19 3.89

foreign 74 .2972973 .4601885 0 1

The dataset comprises 12 variables for 74 automobiles. The average price of the au-
tomobiles is $6,165, and the standard deviation is $2,949. The column Obs gives the
number of observations for which data are available for each variable. The make vari-
able has zero observations because it is a string (or text) variable giving the make of the
automobile, and summary statistics are not applicable to a nonnumeric variable. The
rep78 variable is available for only 69 of the 74 observations.

A more focused use of summarize restricts attention to selected variables and uses
one or more of the available options. For example,

. summarize mpg price weight, separator(1)

Variable Obs Mean Std. Dev. Min Max
mpg 74 21,2973 5.785503 12 41
price 74 6165.257 2949.496 3291 15906
weight | 74 3019.459 777.1936 1760 4840

provides descriptive statistics for the mpg, price, and weight variables. The option

separator(l) inserts a line between the output for each variable.

1.3.3 Example: The regress command

The regress command implements OLS regression.

You can obtain the syntax of regress by typing help regress. This yields output

including

regress depvar [indepvars} [zf} [m] [weig‘ht} [, options]
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It follows that, at the minimum, we need to include the variable name for the dependent
variable (in that case, the regression is on an intercept only). Although not explicitly
stated, prefixes can be used. Many estimation commands have similar syntax.

Suppose that we want to run an OLS regression of the mpg variable (fuel economy in
miles per gallon) on price (auto price in dollars) and weight (weight in pounds). The
basic command is simply

. regress mpg price weight

Source sS df MS Number of obs = 74
F(C 2, 71) = 66.85

Model 1595.93249 2 797.966246 Prob > F = 0.0000
Residual 847.526967 71 11.9369995 R-squared = 0.6531
Adj R-squared = 0.6434

Total 2443.45946 73 33.4720474 Root MSE = 3.455
mpg Coef. Std. Err. t P>ltl (954 Conf. Intervall
price -.0000935 .0001627 -0.57 0.567 -.000418 .0002309
weight -.0058175 .0006175 -9.42 0.000 -.0070489 -.0045862
_cons 39.43966 1.621563 24.32 0.000 36.20635 42.67296

The coefficient of -.0058175 for weight implies that fuel economy falls by 5.8 miles per
gallon when the car’s weight increases by 1,000 pounds.

A more complicated version of regress that demonstrates much of the command
syntax is the following:

. by foreign: regress mpg price weight if weight < 4000, vce(robust)
(out put omitted)

Foreach value of the foreign variable, here either O or 1, this command fits distinct OLS
regressions of mpg on price and weight. The if qualifier limits the sample to cars with
weight less than 4,000 pounds. The vce(robust) option leads to heteroskedasticity-
robust standard errors being used.

Output from commands is not always desired. We can suppress output by using the
quietly prefix. For example,

. quietly regress mpg price weight

The quietly prefix does not require a colon, for historical reasons, even though it is
a command prefix. In this book, we use this prefix extensively to suppress extraneous
output.

The preceding examples used one of the available options for regress. From help
regress, we find that the regress command has the following options: noconstant,
hascons, tsscons, vce (vcetype), level(#), beta, eform(string), noheader, plus,
depname (varname), and msel.
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1.3.4 Abbreviations, case sensitivity, and wildcards

Commands and parts of commands can be abbreviated to the shortest string of charac-
ters that uniquely identify them, often just two or three characters. For example, we can
shorten summarize to su. For expositional clarity, we do not use such abbreviations in
this book; a notable exception is that we may use abbreviations in the options to graph-
ics commands because these commands can get very lengthy. Not using abbreviations
makes it much easier to read your do-files.

Variable names can be up to 32 characters long, where the characters can be A-Z,
a-z, 0-9, and _ (underscore). Some names, such as in, are reserved. Stata is case
sensitive, and the norm is to use lowercase.

We can use the wildcard * (asterisk) for variable names in commands, provided
there is no ambiguity such as two potential variables for a one-variable command. For
example, :

. summarize t*

Variable I Obs Mean Std. Dev. Min Max
trunk 74 13.75676 4,277404 5 23
turn 74 39.64865 4. 399354 31 51

provides summary statistics for all variables with names beginning with the letter t.
Where ambiguity may arise, wildcards arc not permitted.

1.3.5 Arithmetic, relational, and logical operators

The aritlunetic operators in Stata are + (addition), - (subtraction), * (multiplication),
/ (division), - (raised to a power), and the prefix: - (negation). For example, to compute
and display ~2 x {9/(8+ 2 — 7)}?, which simplifies to —2 x 32, we type

. display -2*(9/(8+2-7))"2
-18.

If the arithmetic 6peration is not possible, or data are not available to perform the
operation, then a missing value denote by . is displayed. For example,

. display 2/0

The relational operators are > (greater than), < (less than), >= (greater than or
equal), <= (less than or equal), == (equal), and != (not equal). These are the obvious
symbols, except that a pair of equal-signs is used for equality, and != denotes not equal.
Relational operators are often used in if qualifiers that define the sample for analysis.

Logical operators return 1 for true and O forfalse. The logical operators are & (and),
| (or), and ! (not). The operator ~ can be used in place of !. Logical operators are
also used to define the sample for analysis. For example, to restrict regression analysis
to smaller less expensive cars, type
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regress mpg price weight if weight <= 4000 & price <= 10000
(output omitted)

The string operator + is used to concatenate two strings into a single, longer string.

The order of evaluation of all operators is ! (or ~), -, - (negation), /, *, - (subtrac-
tion), +, '= (or "=), >, <, <=, >= == & and |.

1.3.6 Error messages

Stata produces error messages when a command fails. These messages are brief, but a
fuller explanation can be obtained from the manual or directly from Stata.

For example, if we regress mpg on notthere but the notthere variable does not
exist, we get

. regress mpg notthere

variable notthere not found
r(111);

Here r(111) denotes return code 111. You can obtain further details by clicking on
r(111); if in interactive mode or by typing

, search rc 111

(output omitted)

1.4 Do-files and log fites

For Stata analysis requiring many commands, or requiring lengthy commands, it is best
to collect all the commands into a program (or script) that is stored in a text file called
a do-file.

In this book, we perform data analysis using a do-file. We assume that the do-file
and, if relevant, any input and output files are in a common directory and that Stata
is executed from that directory. Then we only need to provide the filename rather than
the complete directory structure. For example, we can refer to a file asmus02data.dta
rather than c:\mus\chapter2\mus0O2data.dta.

1.4.1 Writing a do-file

A do-file is a text file with extension .do that contains a series of Stata commands.

As an example, we write a two-line program that reads in the Stata example dataset
auto.dta and then presents summary statistics for the mpg variable that we already
know is in the dataset. The commands are sysuse auto.dta, clear, where the clear
option is added to remove the current dataset from memory, and summarize mpg. The
two commands are to be collected into a command file called a do-file. The filename
should include no spaces, and the file extension is . do. In this example, we suppose this
file is given the name example.do and is stored in the current working directory.



1.4.2 Running do-files 11

To see the current directory, type cd without any arguments. To change to another
directory, cd is used with an argument. For example, in Windows, to change to the

directory c:\Program Files\StatalO\, we type

. cd "c:\Program Files\Stata10"
c:\Program Files\Statal0

The directory name is given in double quotes because it includes spaces. Otherwise, the
double quotes are unnecessary.

One way to create the do-file is to start Stata and use the Do-file Editor. Within
Stata, we select Window > Do-file Editor > New Do-file, type in the commands,
and save the do-file.

Alternatively, type in the commands outside Stata by using a preferred text editor.

Ideally, this text editor supports multiple windows, reads large files (datasets or output),
and gives line numbers and column numbers.

The type command lists the contents of the file. We have

. type example.do
sysuse auto.dta, clear
summarize mpg

1.4.2 Running do-files

You can run (or execute) an already-written do-file by using the Command window.
Start Stata and, in the Command window, change directory (cd) to the directory that
has the do-file, and then issue the do command. We obtain

. do example.do

. sysuse auto.dta.'clear
(1978 Automobile Data)

. summarize mpg
Variable [ Obs Mean Std. Dev. Min Max

opg l 74 21.2973 5.785503 12 41
end of do-file

where we assume that example.do is in directory c:\Program Files\Statal0\.

An alternative method is to run the do-file from the Do-file Editor. Select Window
> Do-file Editor > New Do-file, and then select File > Open... and the appropriate
file, and finally select Tools > Do. An advantage to using the Do-file Editor is that
you can highlight or select just part of the do-file.and then execute this part by selecting
Tools > Do Selection.

You can also run do-files noninteractively, using batch mode. This initiates Stata,
executes the commands in the do-file, and (optionally) exits Stata. The term batch
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mode is a throwback to earlier times when each line of a program was entered on a
separate computer card, so that a program was a collection or “batch” of computer
cards. For example, to run example.do in batch mode, double-click on example.do in
Windows Explorer. This initiates Stata and executes the file’s Stata commands. You
can also use the do command. (In Unix, you would use the stata -b example.do
command.)

It can be useful to include the set more off command at the start of a do-file so
that output scrolls continuously rather than pausing after each page of output.

1.4.3 Log files

By default, Stata output is sent to the screen. For reproducibiiity, you should save this
output in a separate Gle. Another advantage to saving output is that lengthy output
can be difficult to read on the screen; it can be easier to review results by viewing an
output file using a text editor.

A Stata output file is called a log file. It stores the commands in addition to the
output from these conimands. The default Stata extension for the file is .1og, but you
can choose an alternative extension, such as .txt. An extension name change may be
worthwhile because several other programs, such as JXTEX compilers, also create files
with the .log extension. Log files can be read as either standard text or in a special
Stata code called smci (Stata Markup and Control Language). We use text throughout
this book, because it is easier to read in a text editor. A useful convention can be to
give the log the same filename as that for the do-file. For example, for example.do, we
save the output as example.txt.

A log file is created by using the log command. In a typical analysis, the do-file will
change over time, in which case the output file will also change. The Stata default is
to protect against an existing log being accidentally overwritten. To create a log file in
text form named example.txt, the usual command is

. log using example. txt, text replace

The replace option permits the existing version of example.txt, if there is one, to be
overwritten. Without replace, Stata will refuse to open the log file if there is already
a file called example. txt.

In some cases, we may not want to overwrite the existing log, in which case we
would not specify the replace option. The most likely reason for preserving a log is
that it contains important results, such as those from final analysis. Then it can be
good practice to rename the log after analysis is complete. Thus example.txt might
be renamed example07052008. txt.

When a program is finished, you should close the log file by typing log close.

Thelog can be very lengthy. If you need a hard copy, you can edit the log to
include only essential results. The text editor you use should use a monospace font such
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as Courier New, where each character takes up the same space, so that output table
columns will be properly aligned.

The log file includes the Stata commands, with a dot (.) prefix, and the output.
You can use a log file to create a do-file, if a do-file does not already exist, by deleting
the dot and all lines that are command results (no dot). By this means, you can do
initial work using the Stata GUI and generate a do-file from the session, provided that
you created a log file at the beginning of the session.

1.4.4 A three-step process

Data analysis using Stata can repeatedly use the following three-step process:

1. Create or change the do-file.
2. Execute the do-file in Stata.

3. Read the resulting log with a text editor.

Theinitial do-file can be written by editing a previously written do-file that is a useful
template or starting point, especially if it uses the same dataset or the same commands
as the current analysis. The resulting log may include Stata errors or estimation results
that lead to changes in the original do-file and so on.

Suppose we have fitted several models and now want to fit an additional model. In
interactive mode, we would type in the new command, execute it, and see the results.
Using the three-step process, we add the new command to the do-file, execute the do-
file, and read the new output. Because many Stata programs execute in seconds, this
adds little extra time compared with using interactive mode, and it has the benefit of
having a do-file that can be modified for later use.

1.4.5 Comments and long lines

Stata do-files can include comments. This can greatly increase understanding of a
program, which is especially useful if you return to a program and its output a year or
two later. Lengthy single-line comments can be allowed to span several lines, ensuring
readability. There are several ways to include comments:

e For single-line comments, begin the line with an asterisk (*); Stata ignores such
lines.

o For a comment on the same line as a Stata command, use two slashes (//) after
the Stata command.

e For multiple-line comments, place the cornmented text between slash-star (/*)
and star-slash (*/).
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The Stata default is to view each line as a separate Stata command, where a line
continues until a carriage return (end-of-line or Enter key) is encountered. Some com-
mands, such as those for nicely formatted graphs, can be very long. For readability,
these commands need to span more than one line. The easiest way to break a line at,
say, the 70th columnn is by using three slashes (///) and then continuing the command
on the next line.

The following do-file code includes several comments to explain the program and
demonstrates how to allow a command to span more than one line.

* Demonstrate use of comments

* This program reads in system file auto.dta and gets simmary statistics
clear // Remove data from memory

* The next code shows how to allow a single command to span two lines
sysuse ///

auto.dta

summarize

For long commands, you can alternatively use the command #delimit command.
This changes the delimiter from the Stata default, which is a carriage return (i.e., end-
of-line), to a semicolon. This also permits more than one command on a single line.
The following code changes the delimiter from the default to a semicolon and back to
the default:

* Change delimiter from cr to semicolon and back to cr

#delimit ;

* More than one command per line and command spans more than one line;
clear; sysuse

auto.d ta; summarize;

#delimit cr

We recommend using /// instead of changing the delimiter because the comment
method produces more readable code.

1.4.6 Different implementations of Stata

The different platforms for Stata share the same command syntax; however, commands
can change across versions of Stata. For this book, we use Stata 10. To ensure that
later versions of Stata will continue to work with our code, we include the version 10
command near the beginning of the do-file.

Different implementations of Stata have different limits. A common limit encoun-
tered is the memory allocated to Stata, which restricts the size of dataset that can be
handled by Stata. The default is small, e.g., 1 megabyte, so that Stata does not occupy
too much memory, permitting other tasks to run while Stata is used. Another common
limit is the size of matrix, which limits the number of variables in the dataset.
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You can increase or decrease the limits with the set command. For example,
. set matsize 300

sets the maximum number of variables in an estimation command to 300.

The maximum possible values vary with the version of Stata: Small Stata, Stata/IC,
Stata/SE, or Stata/MP. The help limits command provides details on the limits for
the current implementation of Stata. The query and creturn list commands detail
the current settings.

1.5 Scalars and matrices

Scalars can store a single number or a single string, and matrices can store several
numbers or strings as an array. We provide a very brief introduction here, sufficient for
use of the scalars and matrices in section 1.6.

1.5.1 Scalars

A scalar can store a single number or string. You can display the contents of a scalar
by using the display command.

For example, to store the number 2 x 3 as the scalar a and then display the scalar,
we type

. * Scalars: Example
. scalar a = 2*3

. scalar b = "2 times 3 = "

. display b a
2 times 3 = 6

One common use of scalars, detailed in section 1.6, is to store the scalar results
of estimation commands that can then be accessed for use in subsequent analysis. In
section 1.7, we discuss the relative merits of using a scalar or a macro to store a scalar

quantity.

1.5.2 Matrices

Stata provides two distinct ways to use matrices, both of which store several numbers or
strings as an array. One way is through Stata commands that have the matrix prefix.
More recently, beginning with version 9, Stataincludes a matrix programming language,
Mata. These two methods are presented in, respectively, appendices A and B.

The following Stata code illustrates the definition of a specific 2 x 3 matrix, the
listing of the matrix, and the extraction and display of a specific element of the matrix.
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. * Matrix commands: Example
. matrix definme A = (1,2,3 \ 4,5,6)

..matrix list A

AL2,3]

cl c2 c3
ri 1 2 3
r2 4 5 6

. scalar c = A[2,3]

. display c
6

1.6 Using results from Stata commands

One goal of this book is to enable analysis that uses more than just Stata built-in com-
mandsand printed output. Much of thisadditional analysis entails further computations
after using Stata commands.

1.6.1 Using results from the r-class command summarize

The Stata commands that analyze the data but do not estimate parameters are r-class
commands. All r-class commands save their results in r(). The contents of r() vary
with the command and are listed by typing return list.

Asan example, we list the results stored after using summarize:

. » Illustrate use of return list for r-class command summarize
. summarize mpg

Variable 1 Obs Mean Std. Dev. Min Max
opg | 74 21.2973 5.785503 12 41
. return list
scalars:
r(N) = 74
r(sum.w) = 74
r(mean) = 21.2972972972973
r(Var) = 33.47204738985561
r(sd) = 5.785503209735141
r(min) = 12
r(max) = 41
r(sum) = 1576

There are eight separate results stored as Stata scalars with the names r(N), r(sum.w),
..., r(sum). These are fairly obvious aside from r(sum w), which gives the sum of the
weights. Several additional results are returned if the detail option to summarize is
used; see [R] summarize.
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The following code calculates and displays the range of the data:

* Illustrate use of r()
quietly summarize mpg

scalar range = r(max) - r(min)

display "Sample range = " range
Sample range = 29

The results in r() disappear when a subsequent r-class or e-class command is exe-
cuted. We can always save the value as a scalar. It can be particularly useful to save
the sample mean.

* Save a result in r() as a scalar
. scalar mpgmean = r(mean)

1.6.2 Using results from the e-class command regress

Estimation commands are e-class commands (or estimation-class commands), such as
regress. The results are stored in e(), the contents of which you can view by typing
ereturn list.

A leading example is regress for OLS regression. For example, after typing

. regress mpg price weight

Source SS df MS Number of obs = 74
F( 2, 71) = 66.85

Model 1595.93249 2 T797.966246 Prob > F = 0.0000
Residual 847.526967 71 11.9369995 R-squared = 0.6531
Adj R-squared = 0.6434

Total 2443.45946 73 33.4720474 Root MSE = 3.455
mpg . Coef. Std. Err. t P>lt! [95%4 conf. Intervall
price -.0000935 .0001627 -0.57 0.567 -.000418 .0002309
weight -.0058175 .0006175 -9.42 0.000 -.0070489 -.0045862
_cons 39.43966 1.621563 24.32 0.000 36.20635 42.67296

ereturn list yields

. * ereturn list after e-class command regress
. ereturn list

scalars:
e(N) = 74
e(df_m) = 2
e(df_r) = 71
e(F) = 66.84814256414501
e(r2) = .6531446579233134
e(rmse) = 3.454996314099513
e(mss) = 1595.932492798133
e(rss) = 847.5269666613265
e(r2_a) = ,6433740849070687
a(1ll) = -195.2169813478502
e(11_0) = -234.3943376482347
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macros:
e(cmdline) : "regress mpg price weight"
e(title) : "Linear regression"
e(vce) : "ols"
e(depvar) : "mpg"
e(cmd) : "regress"
e(properties) "b v
e(predict) : "regres_p"
e(model) "ols"
e(estat_cmd) : "regress_estat"
matrices:
e(b) : 1x3
e(v) : 3x3
functions:
e(sample)

The key numeric output in the analysis-of-variance table is stored as scalars. As
an example of using scalar results, consider the calculation of R2. The model sum of
squares is stored in e(mss), and the residual sum of squares is stored in e (rss), so that

. * Use of e() where scalar
. scalar r2 = e(mss)/(e(mss)+e(rss))

. display "r-squared = " r2
r-squared = .65314466

The result is the same as the 0.6531 given in the original rcgression output.

The remaining numeric output is stored as matrices. Here we present methods to
extract scalars from these matricesand manipulate them. Specifically, we obtain the OLS
coefficient of price from the 1 x 3 matrix e (b), the estimated variance of this estimate
from the 3 x 3 matrix e(Vv), and then we form the t statistic for testing whether the
coefficient of price is zero:

. * Use of e() where matrix
. matrix best = e(b)

. scalar bprice = best[1,1]
. matrix Vest = e(V)

. scalar Vprice = Vest[1,1]

. scalar tprice = bprice/sqrt(Vprice)

. display "t statistic for HO: b_price = 0 is " tprice
t statistic for KO; b_price = 0 is -.57468079

The result is the same as the —0.57 given in the original regression output.

The resultsin e () disappear when a subsequent e-class command is executed. How-
ever, you can save the results by using estimates store, detailed in section 3.4.4.
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1.7 Global and local macros

A macro is a string of characters that stands for another string of characters. For
example, you can use the macro x1list in place of "price weight". This substitution
can lead to code that is shorter, easier to read, and that can be easily adapted to similar
problems.

Macros can be global or local. A global macro is accessible across Stata do-files or
throughout a Stata session. A local macro can be accessed only within a given do-file
or in the interactive session.

1.7.1 Global macros

Global macros are the simplest macro and are adequate for many purposes. We use
global macros extensively throughout this book.

Global macros are defined with the global command. To access what wasstored in
a global macro, put the character $ immediately before the macro name. For example,
consider a regression of the dependent variable mpg on several regressors, where the
global macro x1ist is used to store the regressor list.

* Global macro definition and use
global xlist price weight

regress mpg $xlist, noheader // $ prefix is necessary
mpg Coef. Std. Err. t p>ltl [95%4 Conf. Intervall
price -.0000835 .0001627 -0.57 0.567 -.000418 .0002309
weight -.0058175 .0006175 -9.42 0.000 -.0070489 -.0045862
-cons 39.43966 1.621563 24.32 0.000 36.20635 42,67296

Globalmacrosare frequently used when fitting several different models with the same
regressor list because they ensure that the regressor list is the same in all instances and
they make it easy to change the regressor list. A single change to the global macro
changes the regressor list in all instances.

A second example might be where several different models are fitted, but we want to
hold a key parameter constant throughout. For example, suppose we obtain standard
errors by using the bootstrap. Then we might define the global macro nbreps for the
number of bootstrap replications. Exploratory data analysis might set nbreps to a
small value such as 50 to save computational time, whereas final results set nbreps to
an appropriately higher value such as 400.

A third example is to highlight key program parameters, such as the variable used
to define the cluster if cluster-robust standard errors are obtained. By gathering all
such global macros at the start of the program, it can be clear what the settings are for
key program parameters.
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1.7.2 Local macros

Local macros are defined with the local command. To access what was stored in the
local macro, enclose the macro name in single quotes. These quotes differ from how
they appear on this printed page. On most keyboards, the left quote is located at the

upper left, under the tilde, and the right quote is located at the middleright, under the
double quote.

As an example of a local macro, consider a regression of the mpg variable on several
regressors. We define the local macro x1ist and subsequently access its contents by
enclosing the name in single quotes as ~xlist".

. * Local macro definition and use
. local xlist "price weight"

. regress mpg ~xlist”, nokeader // single quotes are necessary
mpg Coef. Std. Err. t P>ltl [95% Conf. Intervall
price -.0000935 .0001627 -0.57 0.567 -.000418 .0002309
weight -.0058175 .0006175 -9.42 0.000 -.0070489 -.0045862
.cons 39.43966 1.621563 24.32 0.000 36.20635 42.67296

The double quotes used in defining the local macro as astringare unnecessary, which
is why we did not use them in the earlier global macro example. Using the double quotes
does emphasize that a text substitution has been made. The single quotes in subsequent
references to x1ist are necessary.

We could also use a macro to define the dependent variable. For example,

. * Local macro definition without double quotes

. local y mpg
. regress "y~ “xlist”, noheador
mpg Coef. Std. ErT. t P>ltl [95% Conf. Intervall
price -.0000935 .0001627 -0.57 0.567 -.000418 .0002309
weight -.0058175 .0006175 -9.42 0.000 -.0070489 -.0045862
_cons 39.43966 1.621563 24.32 0.000 36.20635 42.67296

Note that here "y~ is not a variable with N observations. Instead, it is the string mpg.
The regress command simply replaces “y~ with the text mpg, which in turn denotes a
variable that has N observations.

We can also define a local macro through evaluation of a function. For example,

* Local macro definition through function evaluation
local z = 2+2
display ‘=z~

4
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leadsto ‘z’ being the string 4. Using the equality sign when defining a macro causes the
macro to be evaluated as an expression. For numerical expressions, using the equality
sign stores the result of the expression and not the characters in the expression itself
in the macro. For string assignments, it is best not to use the equality sign. This is
especially true when storing lists of variables in IMacros. Strings in Stata expressions
can contain only 244 characters, fewer characters than many variable lists. Macros
assigned without an equality sign can hold 165,200 characters in Stata/I1C and 1,081,511
characters in Stata/MP and Stata/SE.

Local macros are especially useful for programming in Stata; see appendix A. Then,
for example, you can use "y~ and “x~ as generic notation for the dependent variable
and regressors, making the code easier to read.

Local macros apply only to the current program and have the advantage of no
potential conflict with other programs. They are preferred to. global macros, unless
there is a compelling reason to use global macros.

1.7.3 Scalar or macro?

A macro can be used in place of a scalar, but a scalar is simpler. Furthermore, [P] scalar
points out that using a scalar will usually be faster than using a macro, because a macro
requires conversion into and out of internal binary representation. This reference also
gives an example where macros lead to a loss of accuracy because of these conversions.

One drawback of a scalar, however, is that the scalar is dropped whenever clear
all is used. By contrast, a macro is still retained. Consider the following example:

. * Scalars disappear after clear all but macro does not
. global b 3 N

. local c 4
. scalar d = 5

. clear

. display $b..skip(3) “c¢c” // display macros

3 4

. display d // display the scalar
5

. clear all

. display $b _.skip(3) “c¢° // display macros

3 4

. display d // display the scalar
d not found

r(111);

Here the scalar d has been dropped after clear all, though not after clear.
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We use global macros in this text because there are cases in which we want the
contents of our macros to be accessible across do-files. A second reason for using global
macros is that the required $ prefix makesit clear that a global parameter is being used.

1.8 Looping commands

Loops provide a way to repeat the same command many times. We use loops in a
variety of contexts throughout the book.

Stata has three looping constructs: foreach, forvalues, and while. The foreach
construct loops over items in a list, where the list can be a list of variable names (possibly
given in a macro) or a .ist of numbers. The forvalues construct loops over consecutive
values of numbers. A while loop continues until a user-specified condition is not met.

We illustrate how to use these three looping constructs in creating the swn of four
variables, where each variable is created from the uniform distribution. There are many
variations in the way you can use these loop commands; see [P] foreach, [P] forvalues,
and [p] while.

The generate command is used to create a new variable. The runiform() function
provides a draw from the uniform distribution. Whenever random numbers are gener-
ated, we set the seed to a specific value with the set seed command so that subsequent
runs of the same program lead to the same random nun:bers being drawn. We have, for
example,

* Make artificial dataset of 100 observations on 4 uniform variables
clear

set obs 100
obs was 0, now 100

set seed 10101

generate xivar = runiform()
generate x2var = runiform()
generate x3var = runiform()

generate xdvar = runiform()

We want to sum the four variables. The obvious way to do this is

* Manually obtain the sum of four variables
generate sum = xivar + x2var + x3var + x4var

summarize sum
Variable l Obs Mean Std. Dev. Min Max

sum ! 100 2.093172 .594672 .5337163  3.204005

We now present several ways to use loops to progressively sum these variables.
Although only four variables are considered here, the same methods can potentially be
applied to hundreds of variables.
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1.8.1 The foreach loop

We begin by using foreach to loop over items in a list of variable names. Here the list
is x1var, x2var, x3var, and x4var.

The variable ultimately created will be called sum. Because sum already exists, we
need to first drop sum and then generate sum=0. The replace sum=0 command collapses
these two steps into one step, and the quietly prefix suppresses output stating that
100 observations have been replaced. Following this initial line, we use a foreach loop
and additionally use quietly within the loop to suppress output following replace.
The program is

* foreach loop with a variable list
quietly replace sum = 0

foreach var of varlist xlvar x2var x3var xdvar {

2. quietly replace sum = sum + "var’
3.}
summarTze sum
Variable Obs Mean Std. Dev. Min Max

sum | 100 2.093172 .594672 .5337163  3.204005

The result is the same as that obtained manually.

The preceding code is an example of a program (see appendix A) with the { brace
appearing at the end of the first line and the } brace appearing on its own at the last
line of the program. The numbers 2. and 3. do not actually appear in the program but
are produced as output. In the foreach loop, we refer to each variable in the variable
list varlist by the local macro named var, so that “var” with single quotes is needed
in subsequent uses of var. The choice of var as the local macro name is arbitrary and
other names can be used. The word varlist is necessary, though types of lists other
than variable lists ere possible, in which case we use numlist, newlist, global, or
local; see [P] foreach.

An attraction of using a variable list is that the method can be applied when
variable names are not sequential. For example, the variable names could have been
incomehusband, incomewife, incomechildl, and incomechild?2.

1.8.2 The forvalues loop

A forvalues loop iterates over consecutive values. In the following code, we let the
index be the local macro i, and i~ with single quotes is needed in subsequent uses of
i. The program

¥ forvalues loop to create a sum of variables
quietly replace sum = 0

forvalues i = 1/4 {

2. quietly replace sum = sum + x i’var

3.}
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summarize sum

Variable J sum { Obs Mean Std. Dev. Min Max

100 2.093172 .594672 .5337163  3.204005

produces the same result.

The choice of the name i for the local macro was arbitrary. In this example, the
increment is one, but you can use other increments. For example, if we use forvalues
i = 1(2)11, then the index goes from 1 to 11 in increments of 2.

1.8.3 The while loop

A while loop continues until a condition is no longer met. This method is used when
foreach and forvalues cannot be used. For completeness, we apply it to the summing
example.

In the following code, the local macro i is initialized to 1 and then incremented by
1 in each loop; looping continues, provided that i < 4.

. * While loop and local macros to create a sum of variables
. quietly replace sum = 0

. local i 1
. while "i° <= 4 {
2. quietly replace sum = sum + x'i‘var
3. local i = "i” + 1
4.}
. summarize sum
Variable E Obs Mean Std. Dev. Min Max
sum ! 100 2.093172 .594672  .5337163  3.204005

1.8.4 The continue command

The continue cominand provides a’way to prematurely cease execution of the current
loop iteration. This :nay be useful if, for example, the loop includes taking the log of
a number and we want to skip this iteration if the number is negative. Execution then
resumes at the start of the next loop iteration, unless the break option is used. For
details, see help continue.

1.9 Some useful commands

We have mentioned only a few Stata commands. See (U] 27.1 43 commands for a list
of 43 commands that everyone will find useful.
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1.10 Template do-file

The following do-file provides a template. It captures most of the features of Stata
presented in this chapter, aside from looping commands.

* 1. Program name

» musOlp2template.do written 2/15/2008 is a template do~file
* 2. Write output to a log file

log using musOlp2template.txt, text replace

* 3. Stata version

version 10.1 // so will still run in a later version of Stata
* 4., Program explanation

* This illustrative program creates 100 uniform variates

* 5. Change Stata default settings - two examples are given
set more off // scroll screen output by at full speed
set mem 20m // set aside 20 mb for memory space

* 6. Set program parameters using global macros

global numobs 100

local seed 10101

local xlist xvar

* 7. Generate data and summarize

set obs $numobs

set seed “seed”

generate xvar = runiform()

generate yvar = xvar-2

summarize

* 8. Demonstrate use of results stored in r()

summarize xvar

display "Sample range = " r(max)-r(min)

regress yvar “xlist~

scalar r2 = e(mss)/(e(mss)+e(rss))

display "r-squared = " r2
* 9. Close output file and exit Stata
log close

exit, clear -

1.11 User-written commands

We make extensive use of user-written commands. These are freely available ado-files
(see section A.2.8) that are easy to install, provided you are connected to the Internet
and, for computer lab users, that the computer lab places no restriction on adding
components to Stata. They are then executed in the same way as Stata commands.

As an example, consider instrumental-variables (IV) estimation. In some cases, we
know which user-written commands we want. For example, a leading user-written
command for IV is ivreg2, and we type findit ivreg2 to get it. More generally, we
can type the broader command

findit instrumental variables
(output omitted )

This gives information on IV commands available both within Stata and packages avail-
able on the web, provided you are connected to the Internet.
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Many entries are provided, often with several potential user-written commands and
several versions of a given user-written command. The best place to begin can be a
recent Stata Journal article because this code is more likely to have been closely vetted
for accuracy and written in a way suited to a range of applications. The listing from
the findit command includes

SJ-7-4 st0030_3 . . . . Enbanced routines for IV/GMM estimation and testing
............. C. F. Baum, M. E. Schaffer, and S. Stillman
(belp ivactest, ivendog, ivhettest, ivreg2, ivreset,

overid, rapktest if installed)

Q4/07  SJ 7(4):465--506

extension of IV and GMM estimation addressing hetero-

skedasticity- and autocorrelation-consistent standard

errors, weak instruments, LIML and k-class estimation,

tests for endogeneity and Ramsey s regression

specification-error test, and autocorrelation tests

for IV estimates and panel-data IV estimates

Theentry means that it is the third revision of the package (st0030_3), and the package
is discussed in detail in Stata Journal, volume 7, number 4 (SJ-7-4).

By left-clicking on the highlighted text st0030_3 onthe first line of the entry, you will
see a new window with title, description/author(s), and installation files for the package.
By left-clicking on the help files, you can obtain information on the commands. By left-
clicking on the (click here to install), you will install the files into an ado-directory.

1.12 Stata resources

For first-time users, [GS] Getting Started with Stata is very helpful, along with analyzing
an example dataset such as auto .d ta interactively in Stata. The next source is [U] Users
Guide, especially the early chapters.

1.13 Exercises

1. Find information on the estimation method clogit using help, search, findit,
and hsearch. Comment on the relative usefulness of these search commands.

2. Download the Stata example dataset auto.dta. Obtain summary statistics for
mpg and weight according to whether the car type is foreign (use the by foreign:
prefix), Comment on any differences between foreign and domestic cars. Then
regress mpg on weight and foreign. Comment on any difference for foreign
cars.

3. Write a do-file to repeat the previous question. This do-file should include a log
file. Run the do-file and then use a text editor to view the log file.

4. Using auto.dta, obtain summary statistics for the price variable. Then use the
results stored in r O to compute a scalar, cv, equal to the coefficient of variation
(the standard deviation divided by the mean) of price.
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5. Using auto.dta, regressmpgon price and weight. Then usethe results stored
in e () to compute a scalar, r2adj, equal to B’ The adjusted R? equals R —(1—
R?)(k—1)/(N —k), where N is the number of observations and k is the number of
regressors including the intercept. Also use the results stored in e () to calculate
a scalar, tweight, equal to the ¢ statistic to test that the coefficient of weight is
zero.

6. Using auto.dta, define a global macro named varlist for a variable list with mpg,
price, and weight, and then obtain summary statistics for varlist. Repeat this
exercise for a local macro named varlist.

7. Using auto.dta,use a foreach loop to create a variable, total, equal to the sum
of headroom and length. Confirm by using summarize that total has a mean
equal to the sum of the means of headroom and length.

8. Create a simulated dataset with 100 observations on two random variables that
are each drawn from the uniform distribution. Use a seed of 12345. In theory,
these random variables have a mean of 0.5 and a variance of 1/12. Does this
appear to be the case here?
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2.1 Introduction

The starting point of an empirical investigation based on microeconomic data is the col-
lection and preparation of a relevant dataset. The primary sources are often government
surveys and administrative data. We assume the researcher has such a primary dataset
and do not address issues of survey design and data collection.- Even given primary
data, it is rare that it will be in a form that is exactly what is required for ultimate
analysis.

The process of transforming original data to a form that is suitable for econometric
amalysisis referred to as data management. This is typically a time-intensive task that
has important implications for the quality and reliability of modeling carried out at the
next stage.

This process usually begins with a data file or files containing basic information
extracted from a census or a survey. They are often organized by.data record for a
sampled entity such as an individual, a household, or a firm. Each record or observation
is a vector of data on the qualitative and quantitative attributes of each individual.
Typically, the data need to be cleaned up and recoded, and data from multiple sources
may need to be combined. The focus of the investigation might be a particular group
or subpopulation, e.g., employed women, so that a series of criteria need to be used
to determine whether a particular observation in the dataset is to be included in the
analysis sample.

In this chapter, we present the tasks involved in data preparation and management.
These include reading in and modifving data, transforming data, merging data, checking
data, and selecting an analysis sample. The rest of the book focuses on analyzing a given
sample, though special features of handling panel data and multinomial data are given
in the relevant chapters.

2.2 Types of data

All data are ultimately stored in a computer as a sequence of Os and 1s because comput-
ers operate on binary digits, or bits, that are either 0 or 1. There are several different
ways to do this, with potential to cause confusion.
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2.2.1 Text or ASCII data

A standard text formas: is ASCII, an acronym for American Standard Code for Infor-
mation Interchange. Regular ASCII represents 2° = 128 and extended ASCII represents
95 = 256 different digits, letters (uppercase and lowercase), and common symbols and
punctuation marks. In either case, eight bits (called a byte) are used. As examples, 1
is stored as 00110001, 2 is stored as 00110010, 3 is stored as 00110011, A is stored as
01010001, and a is stored as 00110001. A text file that is readable on a computer screen
is stored in ASCIL

A leading text-file example is a spreadsheet file that has been stored as a “comma-
separated values” fille, usually a file with the .csv extension. Here a comma is used to
separate each data value; however, more generally, other separators can be used.

Text-file data can also be stored as fixed-width data. Then no separator is needed
provided we use the knowledge that, say, columns 1-7 have the first data entry, columns
8-9 have the second data entry, and so on.

Text data can be numeric or nonnumeric. The letter a is clearly nonnumeric, but
depending on the context, the number 3 might be numeric or nonnumeric. For example,
the number 3 might represent the number of doctor visits (numeric) or be part of a street
address, such as 3 Main Street (nonnumeric).

2.2.2 Internal numeric data

When data are numeric, the computer stores them internally using a format different
from text to enable application of arithmetic operations and to reduce storage. The
two main types of numeric data are integer and floating point. Because computers work
with Os and 1s (a binary digit or bit), data are stored in base-2 approximations to their
base-10 counterparts.

For integer data, the exact integer can be stored. The size of the integer stored
depends on the number of bytes used, where a byte is eight bits. For example, if one
byte is used, then in theory 28 = 256 different integers could be stored, such as —127,
-126, ..., 127, 128.

Noninteger data, or often even integer data,are stored as floating-point data. Stan-
dard floating-point data are stored in four bytes, where the first bit may represent the
sigm, the next 8 bits may represent the exponent, and the remaining 23 bits may rep-
resent the digits. Although all integers have an exact base-2 representation, not all
base-10 numbers do. For example, the base-10 number 0.1 is 0.00011 inbase 2. For this
reason, the more bytes in the base-2 approximation, the more precisely it approximates
the base-10 number. Double-precision floating-point data use eight bytes, have about
16 digits precision (in base 10), and are sufficiently accurate for statistical calculations.
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Stata has the numeric storage types listed in table 2.1: three are integer and two
are floating point.

Table 2.1. Stata’s numeric storage types

Storage type Bytes Minimum Maximum
byte 1 =127 100
int 2 —-32,767 32,740
long 4 —2,147, 483, 647 2,147,483,620
float 4 —1.7014117:3319 x 10°®  1.70141173319 x 107
double 8 —8.9984656743 x 10%97  8.9984656743 x 10707

These internal data types have the advantage of taking fewer bytes to store the
same amount of data. For example, the integer 123456789 takes up 9 bytes if stored
as text but only 4 bytes if stored as an integer (long) or floating point (float). For
large or long numbers, the savings can clearly be much greater. The Stata default is for
floating-point data to be stored as float and for computations to be stored as double.

Data read into Stata are stored using these various formats, and Stata data files
(.dta) use these formats. One disadvantage is that numbers in internal-storage form
cannot be read in the same way that tcxt can; we need to first reconvert them to a text
format. A second disadvantage is that it is not easy to transfer data in internal format
across packages, such as transferring Excel’'s .x1s to Stata’s .dta, though commercial
software is available that transfers data across leading packages.

It is much easier to transfer data that is stored as text data. Downsides, however,
are an increase in the size of the dataset compared with the same dataset stored in
internal numeric form, and possible loss of precision in converting floating-point data
to text format.

2.2.3 String data

Nonnumeric data in Stata are recorded as strings, typically enclosed in double quotes,
such as “3 Main Street”. The format command str20, for example, states that the data
should be stored as a string of length 20 characters.

In this book, we focus on numeric data and seldom use strings. Stata has many com-
mands for working with strings. Two useful commands «e destring, which converts
string data to integer data, and tostring, which does the reverse.

2.2.4 Formats for displaying numeric data

Stata output and text files written by Stata format data for readability. The format is
automatically chosen by Stata but can be overridden.
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The most commonly used format is the £ format, or the fixed format. An example
is %7 .2£, which means the number will be right-justified and fill 7 columns with 2 digits
after the decimal point. For example, 123.321 is represented as 123.32.

The format type always begins with %. The default of right-justification is replaced
by left-justification if an optional - follows. Then follows an integer for the width
(number of columns), a period (.), an integer for the number of digits following the
decimal point, and an e or f or g for the format used. An optional c at the end leads
to comma format.

The usual format is the f format, or fixed format, e.g., 123.32. The e, or exponential,
format (scientific notation) is used for very large or small numbers, e.g., 1.23321e+02.
The g, or general format, leads to e or £ being chosen by Stata in a way that will
work well regardless of whether the data are verylarge or very small. In particular, the
format %#. (#-1)g will vary the number of columns after the decimal point optimally.
For example, %8.7g will present a space followed by the first six digits of the number
and the appropriately placed decimal point.

2.3 Inputting data

The starting point is the computer-readable file that contains the raw data. Where
large datasets are involved, this is typically either a text file or the output of another
computer program, sucli as Excel, SAS, or even Stata.

2.3.1 General principles

For a discussion of initial use of Stata, see chapter 1. We generally assume that Stata
is used in batch mode.

To replace any existing dataset in memory, you need to first clear the current dataset.

. * Remove current dataset from memory
. clear

This removes data and any associated value labels from memory. If you are reading in
data from a Stata dataset, you can instead use the clear option with the use command.
Various arguments of clear lead to additional removal of Mata fiinctions, saved results,
and programs. The clear all command removes all these.

Some datasets are large. In that case, we need to assign more memory than the
Stata default by using the set memory command. For example, if 100 megabytes are
needed, then we type

* Set’ memory to 100 mb
. set memory 100m
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Various commands are used to read in data, depending on the format of the file
being read. These commands, discussed in detail in the rest of this section, include the
following;

o use to read a Stata dataset (with extension .dta)
o edit and input to enter data from the keyboard or the Data Editor

o insheet to read comma-separated or tab-separated text data created by a spread-
sheet -

e infile to read unformatted or fixed-format text data

o infix to read formatted data

As soon as data are inputted into Stata, you should save the data as a Stata dataset.
For example,

* Save data as a Stata dataset
save mydata.dta, replace

(output omitted)

The replace option will replace any existing dataset with the same name. If you do
not want this to happen, then do not use the option.

To check that data are read in correctly, list the first few observations, use describe,
and obtain the summary statistics.

* Quick check that data are read in correctly
list in 1/5 // list the first five observations
(output omitted)

describe J/ describe the variables
(output omitted)

summarize .// descriptive statistics for the variables
(output omitted)

Examples illustrating the output from describe and summarize are given in sec-
tions 2.4.1 and 3.2.

2.3.2 Inputting data already in Stata format

Data in the Stata format are stored with the .dta extension, e.g., mydata.dta. Then
the data can be read in with the use command. For example,

. * Read in existing Stata dataset
. use c:\research\mydata.dta, clear

The clear option removes any data currently in memory, even if the current data have
not been saved, enabling the new fle to be read in to memory.
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If Stata is initiated from the current directory, then we can more simply type

* Read in dataset in current directory
use mydata.dta, clear

The use command also works over the Internet, provided that your computer is con-
nected. For example, you can obtain an extract from the 1980 U.S. Census by typing

. * Read in dataset from an Internet web site
. use http://wwuw.stata-press.com/data/r10/census.dta, clear
(1980 Census data by state)

. clear

2.3.3 Inputting data from the keyboard

The input command enables data to be typed in from the keyboard. It assumes that
data are numeric. If instead data are character, then input should additionally define
the data as a string and give the string length. For example,

* Data input from keyboard
input str20 name age female income

name age female incore
1 "Barry" 25 0 40.890
2 "Carrie" 30 1 37.000
3. "Gary" 31 0 48.000
4. end

The quotes here are not necessary; we could use Barry rather than "Barry". If the
name includes a space, such as "Barry Jr", then double quotes are needed; otherwise,
Barry would be read as a string, and then Jr would be read as a number, leading to a
program error.

To check that the data are read in correctly, we use the list command. Here we
add the clean option, which lists the data without divider and separator lines.

list, clean

name age female income

1. Barry 25 0 40.99
2. Carrie 30 1 37
3. Gary 31 0 48

In interactive mode, you can instead use the Data Editor to type in data (and to
edit existing data).

2.3.4 Inputting nontext data

By nontext data, we mean datathatare stored in the internal code of a software package
other than Stata. It is easy to establish whether a file is a nontext file by viewing the
file using a text editor. If strange characters appear, then the file is a nontext file. An
example is an Excel .x1s file.
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Stata supports several special formats. The fdause command reads SAS XPORT
Transport format files; the haver command reads Haver Analytics database files; the
odbc command reads Open Database Connectivity (ODBC) data files; and the xmluse
command reads XML files.

Other formats such as an Excel .x1s file cannot be read by Stata. One solution is to
use the software that created the data to write the data out into one of the readable text
format files discussed below, such as a comma-separated values text file. For example,
just save an Excel worksheet as a .csv file. A second solution is to purchase software
such as Stat/Transfer that will change data from one format to another. For conversion
programs, see http://www.ats.ucla.edu/stat/Stata/faq/convert_pkg.htm.

2.3.5 Inputting text data from a spreadsheet

The insheet command reads data that are saved by a spreadsheet or database program
as comma-separated or tab-separated text data. For example, mus02filel.csv, a file
with comma-separated values, has the following data:

name,age,female, income
Barry,25,0,40.990
Carrie,30,1,37.000
Gary,31,0,48.000

To read these data, we use insheet. Thus

* Read data from a csv file that includes variable names using insheet
clear

insheet using mus02filel.csv
(4 vars, 3 obs) .

list, clean

name age female income

1. Barry 25 0 40.99
2. Carrie 30 1 37
3. Gary 31 0 48

Stata automatically recognized the name variable to be a string variable, the age and
female variables to be integer, and the income variable to be floating point.

A major advantage of insheet is that it canread in a text file that includes variable
names as well as data, making mistakes less likely. There are some limitations, however.
The insheet command is restricted to files with a single observation per line. And the
data must be comma-separated or tab-separated, but not both. 1t cannot be space-
separated, but other delimiters can be specified by using the delimiter option.

The first line with variable names is optional. Let mus02file2.csv be the same as
the original file, except without the header line:"

Barry,25,0,40.990
Carrie, 30,1,37.000
Gary,31,0,48.000
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The insheet command still works. By default, the variables read in are given the names
vi, v2, v3, and v4. Alternatively, you can assign more meaningful names in insheet.
For example,

. * Read data from a csv file without variable names and assign names
. clear

. insheet name age female income using mus02file2.csv
(4 vars, 3 obs)

2.3.6 Inputting text data in free format

The infile command reads free-format text data that are space-separated, tab-
separated, or conina-separated.

We again consider mus02file2.csv, which has no header line. Then

. * Read data from free-format text file using infile
. clear

. infilo str20 name age female income using mus02file2.csv
(3 observations read)

. list, clean

name age female income

1. Barry 25 0 40.99
2. Carrie 30 1 37
3. Gary 31 0 48

By default, infile reads in all data as numbers that are stored as floating point. This
causes obvious problems if the original data are string. By inserting str20 before name,
the first variable is instead a string that is stored as a string of at most 20 characters.

For infile, a single observation is allowed to span more than one line, or there can
be more than one observation per line. Essentially every fourth entry after Barry will
be read as a string entry for name, every fourth entry after 25 will be read as a numeric
entry for age, and so on.

The infile command is the most flexible command to read in data and will also
read in fixed-format data.

2.3.7 Inputting text data in fixed format

The infix command reads fixed-format text data that are in fixed-column format. For
example, suppose mus02file3. txt contains the same data as before, except without
the header line and with the following fixed format:

Barry 250 40.990
Carrie 301 37.000
Gary 310 48.000

Here columns 1-10 store the name variable, colwnns 11-12 store the age variable,
colwn 13 stores the female variable, and columns 14-20 store the income variable.
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Note that a special feature of fixed-format data is that there need be no sgparator
between data entries.: For example, for the first observation, the sequence 250 is not
age of 250 but is instead two variables: age = 25 and female = 0. It is easy to make
errors when reading fixed-format data.

To use infix, we need to define the columns in which each entry appears. There
are a number of ways to do this. For example,

. * Read data from fixed-format text file using infix
. clear’

. infix str20 name 1-10 age 11-12 female 13 income 14-20 using mus02file3.txt
(3 observations read)

. list, clean

name age female income

1. Barry 25 0 40.99
2. Carrie 30 1 37
3. Gary 31 0 48

Similarly to infile, we include str20 to indicate that name is a string rather than a
number.

A single observation can appear on more than one line. Then we use the symbol
/ to skip a line or use the entry 2:, for example, to switch to line 2. For example,
suppose mus02file4.txt is the same as mus02file3.txt, except that income appears
on a separate second line for each observation in columns 1-7. Then

. * Read data using infix where an observation spans more than one line
. clear

. infix str20 name 1-10 age 11-12 female 13 2: income 1-7 using mus02file4.txt
(3 observations read)

2.3.8 Dictionary files

For more complicated text datasets, the format for the data beingread in can be stored
in a dictionary file, @ te.xt file created by a word processor, or editor. Details are provided
in [D] infile (fixed format). Suppose this file is called mus02dict.dct. Then we simply

type

. * Read in data with dictiomary file
. infile using musO2dict

where the dictionary file mus02dic t. dct provides variable names and formats as well
as the name of the file containing the data.

2.3.9 Common pitfalls

It can be surprisingly difficult to read in data. With fixed-format data, wrong column
alignment leads to errors. Data can unexpectedly include string data, perhaps with
embedded blanks. Missing values might be coded as NA, causing problems if a nu-
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meric value is expected. An observation can span several lines when a single line was
erroneously assumed.

It is possible to read a dataset into Stata without Stata issuing an error message;
no error message does not mean that the dataset has been successfully read in. For
example, transferring data from one computer type to another, such as a file transfer
using File Transfer Protocol (FTP), can lead to an additional carriage return, or Enter,
being typed at the end of each line. Then infix reads the dataset as containing one
line of data, followed by a blank line, then another line of data, and so on. The blank
lines generate extraneous observations with missing values.

You should always perform checks, such as using 1ist and summarize. Always view
the data before beginning analysis.

2.4 Data management

Oncethedataare read in, there canbe considerable work in cleaning up the data, trans-
forming variables, and selecting the final sample. All data-management tasks should
be recorded, dated, and saved. The existence of such a record makes it easier to track
changes in definitions and eases the task of replication. By far, the easiest way to do
this is to have the data-management manipulations stored in a do-file rather than to
use commands interactively. We assume that a do-file is used.

2.4.1 PSID example

Data management is best illustrated using a real-data example. Typically, one needs
to download the entire original dataset and an accompanying document describing the
dataset. For some major commonly used datasets, however, there may be cleaned-up
versions of the dataset, simple data extraction tools, or both.

Here we obtain a very small extract from the 1992 Individual-Level data from the
Panel Study of Income Dynamics (PSID), a U.S. longitudinal survey conducted by the
University of Michigan. The extract was downloaded from the Data Center at the
web site http://psidonline.isr.umich.edu/, using interactive tools to select just a few
variables. The extracted sample was restricted to men aged 30-50 years. The output
conveniently included a Stata do-file in addition to the text data file. Additionally, a
codebook describing the variables selected was provided. The data download included
several additional variables that enable unique identifiers and provide sample weights.
These should also be included in the final dataset but, for brevity, have been omitted
below.

Reading the text dataset mus02psid92m. txt using a text editor reveals that the first
two observations are

4" 37 17 27 17 2482" 1 10" 40" 97 22000" 2340
4~ 170" 1~ 2° 1° 6974~ 1" 10" 37" 12" 31468~ 2008

The data are text data delimited by the symbol .
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Several methods could be used toread the data, but the simplest is to use insheet.
This is especially simple here given the provided do-file. The mus02psid92m.do file
contains the following information:

. * Commands to read in data from PSID extract !
. type mus02psidS2m.do
* mus02psid92m.do

clear
#delimit ;
*  PSID DATA CENTER ok ook ok s ok sk ok ok s ok sk ok ok ok ok ok ook ik ok ik 0k ook Ok ROk ok KOk KOk ook K K 0ROk 0k
JOBID : 10654
DATA_DOMAIN : PSID
USER_WHERE : ER32000=1 and ER30736 ge 30 and ER
FILE_TYPE : All Individuals Data
OUTPUT_DATA_TYPE : ASCII Data File
STATEMENTS : STATA Statements
CODEBOOK_TYPE : PDF
N_OF_VARIABLES : 12
N_OF_OBSERVATIONS: 4290
MAX_REC_LENGTH : 56
DATE & TIME 1 November 3, 2003 @ 0:28:35

s kb ok ok ok ok kK R ok R RO ok R oK Rk R R ok R RO RO R R ok R R R R oK R RO R R ok Rk R R R R ROR R R R R K KR KR K

insheet
ER30001 ER30002 ER32000 ER32022 ER32049 ER30733 ER30734 ER30735 ER30736
ER30748 ER30750 ER30754

using mus02psid92m.txt, delim("~") clear

destring, replace ;

label variable er30001 "1968 INTERVIEW NUMBER"

label variable er30002 "PERSON NUMBER 68" ;

label variable er32000 "SEX OF INDIVIDUAL" ;

label variable er32022 "# LIVE BIRTHS TO THIS INDIVIDUAL" ;

label variable er32049 "LAST KNOWN MARITAL STATUS" ;

label variable cr30?33 "1992 INTERVIEW NUMBER"

label variable er30734 "SEQUENCE NUMBER 92"
label variable er30735 "RELATION TO HEAD 92"
label variable er30736 "AGE OF INDIVIDUAL 92"
label variable er30748 "COMPLETED EDUCATION 92"
label variable er30750 "TOT LABOR INCOME 92"
label variable -er30754 "ANN WORK HRS 92" ;
#delimit cr; // Change delimiter to default cr

To read the data, only insheet is essential. The code separates commands using
the delimiter ; rather than the default cr (the Enter key or carriage return) to enable
comments and commands that span several lines. The destring command, unnecessary
here, converts any string data into numeric data. For example, $1,234 would become
1234. The label variable command provides a longer description of the data that will
be reproduced by using describe.

Executing this code yields output that includes the following:

(12 vars, 4290 obs)

. destring, replace ;

er30001 already numeric; no replace
(output omitted).

er30754 already numeric; no replace
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The statement already numeric is output for all variables because ali the data in

mus02psid92m. txt are numeric.

The describe command provides a description of the data:

. * Data description

. describe

Contains data
obs:
vars:
size:

4,290
12

98,670 (99.1%4 of memory free)

storage display value
variable name typo format label variable label
er30001 int 48.0g 1968 INTERVIE'W NUMBER
er30002 int 48.0g PERSON NUMBER 68
er32000 byte 48.0g SEX OF INDIVIDUAL
er32022 byte 48.0g # LIVE BIRTHS TO THIS INDIVIDUAL
er32049 byte 48.0g LAST KNOWN MARITAL STATUS
er30733 int %8.0g 1992 INTERVIEW NUMBER
er30734 byte 48.0g SEQUENCE NUMBER 92
er30735 byte 48.0g RELATION TO HEAD 92
er30736 byte %48.0g AGE OF INDIVIDUAL 92
er30748 byte 48.0g COMPLETED EDUCATION 92
er30750 long 412.0g TOT LABOR INCOME 92
er30754 int 48.0g AVN WORK HRS 92
Sorted by:

Note: dataset has changed since last saved

The summarize command provides descriptive statistics:

. * Data summary

. summarize

Variable Obs Mean Std. Dev. Min Max
er30001 4290 4559.2 2850.509 4 9308
er30002 4290 60.66247 79.93979 1 227
er32000 4290 1 0 1 1
er32022 4290 21.35385 38.20765 1 99
er32049 4290 1.699534 1.391921 1 9
er30733 4290 4911.015 2804.8 1 9829
er30734 4290 3.179487 11.4933 1 81
er30735 4290 13.33147 12.44482 10 98
er30736 4290 38.37995 5. 650311 30 50
er30F48——43590—+4-8F245— 5 BF46— H— 55—
er30750 ﬁ290 27832.68 31927.35 0 999999
er30754 290 1929.477 899.5496 0 5840

Satisfied that the original data have been read in carefully, we proceed with cleaning

the data.
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The first step is to give more meaningful names to variables by using the rename com-
mand. We do so just for the variables used in subsequent analysis.

* Rename variables

rename er32000
rename er30736

rename er30748 education
rename er30750 earnings

rename er30754

sex

age

hours

The renamed variables retain the descriptions that they were originally given. Some
of these descriptions are unnecessarily long, so we use label variable toshortenoutput
from commands, such as describe, that give the variable labels.

*x Relabel some
label variable

label variable
label variable

label variable

of the variables

age "AGE OF INDIVIDUAL"

education "COMPLETED EDUCATION"
earnings "TOT LABOR INCOME"

hours "ANN WORK HRS"

For categorical variables, it can be useful to explain the meanings of the variables.
For example, from the codebook discussed in section 2.4.4, the er32000 variable takes
on the value 1 if male and 2 if female. We may prefer that the output of variable values
uses a label in place of the number. These labels are provided by using label define
together with label values.

* Define the label gender for the values taken by variable sex

label define gender 1 male 2 female

label values sex gender

list sex in 1/2, clean

sex
1. male
2. male

After renaming, we obtain

* Data summary of key variables after renaming
. summarize sex age education earnings hours

Variable Obs Mean Std. Dev. Min Max
sex 4290 1 0 1 1

age 4290 38.37995 5.650311 30 50
educaftion 4290 14.87249 15.07546 0 99
earnfings 4290 27832.68 31927.35 0 999999
Hours 4290 1929.477 899.5496 0 5840

Data exist for these variables for all 4,290 sample observations. The data have 30 <
age < 50 and sex = 1 (male) for all observations, as expected. The maximum value
for earnings is $999,999, an unusual value that most likely indicates top-coding. The
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maximum value of hours is quite high and may also indicate top-coding (365 x 16 =
5840). The maximum value of 99 for education is clearly erroneous; the most likely
explanation is that this is a missing-value code, because numbers such as 99 or —99 are

often used to denote a missing value.

2.4.3 Viewing data

The standard commands for viewing data are summarize, list, and tabulate.

We have already illustrated the summarize command. Additional statistics, includ-
ing key percentiles and the five largest and smallest observations, can be obtained by
using the detail option; see section 3.2.4.

The 1list command can list every observation, too many in practice. But you could

list just a few observations:

. » List first 2 observations of two of the variables

. list age hours in 1/2, clean

age hours
1. 40 2340
2. 37 2008

The 1ist conunand with no variable list provided will list all the variables. The clean
option eliminates dividers and separators.

The tabulate command lists each distinct value of the data and the number of
times it occurs. It is useful for data that do not have too many distinctive values. For

education, we have

. * Tabulate all values taken by a single variable

. tabulate education
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COMPLETED

EDUCATION Freq. Percent Cum.
0 82 1.91 1.91

1 7 0.16 2.07

2 20 0.47 2.54

3 32 0.75 3.29

4 26 0.61 3.89

5 30 0.70 4.59

6 123 2.87 7.46

7 35 0.82 8.28

8 78 1.82 10.09

9 117 2.73 12,82

10 167 3.89 16.71

11 217 5.06 21.77

12 1,510 35.20 56.97

13 263 6.13 63.10

14 432 10.07 73.17

15 172 4.01 77.18

16 535 12.47 89.65

17 317 7.39 97.04

99 127 2.96 100.00

Total 4,290 100.00
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Note that the variable label rather than the variable name is used as a header. The
values are generally plausible, with 35% of the sample having a highest grade completed
of exactly 12 years (high school graduate). The 7% of observations with 17 years most
likely indicates a postgraduate degree (a college degree is only 16 years). The value 99
for 3% of the sample most likely is a missing-data code. Surprisingly, 2% appear to
have completed no years of schooling, As we explain next, these are also observations
with missing data.

2.4.4 Using original documentation

At this stage, it is really necessary to go to the original documentation.

The mus02psid92mcb.pdf file, generated as part of the data extraction from the
PSID web site, states that for the er30748 variable a value of 0 means “inappropriate”
for various reasons given in the codebook; the values 1-16 are the highest grade or year
of school completed; 17 is at least some graduate work; and 99 denotes not applicable
(NA) or did not know (DK).

Clearly, the education values of both 0 and 99 denote missing values. Without
using the codebook, we may have misinterpreted the value of 0 as meaning zero years
of schooling.

2.4.5 Missing values

It is best at this stage to flag missing values and to keep all observations rather than
to immediately drop observations with missing data. In later analysis, only those ob-
servations with data missing on variables essential to the analysis need to be dropped.
The characteristics of individuals with missing data can be compared with those having
complete data. Data with a missing value are recoded with a missing-value code.

For education, the missing-data values 0 or 99 are replaced by . (a period), which
is the default Stata missing-value code. Rather than create a new variable, we modify
the current variable by using replace, as follows:

. * Replace missing values with missing-data code
. replace education = . if education == 0 | education == 99
(209 real changes made, 209 to missing)

Using the double equality and the symbol | for the logical operator or is detailed in
section 1.3.5. As an example of the results, we list observations 46-43:

* Listing of variable including missing value
. list education in 46/48, clean ’

educat-n
46. .12
47.
48. 16

Evidently, the original data on education for the 47th observation equaled 0 or 99.
This has been changed to missing,.
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Subsequent commands using the education variable will drop observations with
missing values. For example,

. * Example of data analysis with some missing values
. summarize education age

Variable I Obs Mean Std. Dev. Min Max
education 4081 12.5533 2.963696 1 17
age 4290 38.37995 5.650311 30 50

For education, only the 4,081 nonmissing values are used, whereas for age, all 4,290 of
the original observations are available.

If desired, you can use more than one missing-value code. This can be useful if you
want to keep track of reasons why a variable is missing. The extended missing codes
are .a, .b, ..., .z. For example, we could instead have typed

. * Assign more than one missing code
. replace education = .a if education =
. replace education = .b if education =

0
99

When we want to apply multiple missing codes to a variable, it is more convenient
to use the mvdecode command, which is similar to the recode command (discussed
in section 2.4.7), which changes variable values or ranges of values into missing-value
codes. The reverse command, mvencode, changes missing values to numeric values.

Care is needed once missing values are used. In particular, missing values are treated
as large numbers, higher than any other number. The ordering is that all numbers are
less than ., which is less than .a, and so on. The command

. * This command will include missing values
list education in 40/60 if education > 16, clean

educat-n
45. 17
47. .
60. 17

lists the missing value for observation 47 in addition to the two values of 17. If thisis
not desired, we should instead use

. * This command will not include missing values

list education in 40/60 if education > 16 & education < . , clean
educat-n

45. 17

60. 17

Now observation 47 with the missing observation has been excluded.

The issue of missing values also arises for earnings and hours. From the codebook,
we see that a zero value may mean missing for various reasons, or it may be a true zero
if the person did not work. True zeros are indicated by er30749=0 or 2, but we did
not extract this variable. For such reasons, it is not unusual to have to extract data
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several times. Rather than extract this additional variable, as a shortcut we note that
earnings and hours are missing for the same reasons that education is missing. Thus

. * Replace missing values with missing-data code
. replace earnings = . if education >= .
(209 real changes made, 209 to missing)

. replace hours = . if education >= .
(209 real changes made, 209 to missing)

2.4.6 Imputing missing data

The standard approach in microeconometrics is to drop observations with missing val-
ues, called listwise deletion. The loss of observations generally leads to less precise
estimation’ and inference. More importantly, it may lead to sample-selection bias in
regression if the retained observations have unrepresentative values of the dependent
variable conditional on regressors.

An alternative to dropping observations is to impute niissing values. The impute
command uses predictions from regression to impute. The ipolate command uses
interpolation methods. We do not cover these commands because these imputation
methods have limitations, and the norm in microeconometrics studies is to use only the
original data.

A more promising approach, though one more advanced, is multiple imputation.
This produces M different imputed datasets (e.g., M = 20), fits the model A/ times,
and performs inference that allows for the uncertainty in both estimation and data
imputation. For implementation, see the user-written ice and hotdeck commands. You
can find more information in Cameron and Trivedi (2005) and from findit multiple
imputation. -

2.4.7 Transforming data (generate, replace, egen, recode)

After handling missing values, we have the following for the key variables:

* Summarize cleaned up data
summarize sex age education earmings

Variable | Obs Mean Std. Dev. Min Max
sex 4290 1 0 1 1

age 4290 38.37995 5.650311 30 50
education 4081 12.5533 2.963696 1 17
earnings 4081 28706.65 32279.12 0 999999

We now turn to recoding existing variables and creating new variables. The basic
commands are generate and replace. It can be more convenient, however, to use the
additional commancsrecode, egen, and tabulate. These are often used in conjunction
with the if qualifier and the by: prefix. We present many examples throughout the
book.
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The generate and replace commands

The generate command is used to create new variables, often using standard mathe-
matical functions. The syntax of the command is

generate [type] newvar = €eIp [zf] [m]

where for numeric clata the default type is float, but this can be changed, for example,
to double.

It is good practice to assign a unique identifier to each observation if one does not
already exist. A natural choice is to use the current observazion number stored as the
system variable .

. * Create identifier using generate command
. generate id = .n

We use this identifier for simplicity, though for these data the er30001 and er30002
variables when combined provide a unique PSID identifier.

The following command creates a new variable for the nat.ral logarithm of earnings:

. % Create new variable using generate command
. generate lnearns = ln(earnings)
(495 missing values generated)

Missing values for 1n(earnings) are generated whenever earnings data are missing.
Additionally, missing values arise when earnings < 0 because it is then not possible to
take on the logarithm.

The replace command is used to replace some or all values of an existing variable.
We already illustrated this when we created missing-values codes.

The egen command

The egen command is an extension to generate that enables creation of variables that
would be difficult to create using generate. For example, suppose we want to create a
variable that for each observation equals sample average earnings provided that sample
earnings are nonmissing. The command

. x Create new variable using egen command
. egon aveearnings = mean(earnings) if earnings < .
(209 missing values generated)

creates a variable equal to the average of earnings for those observations not missing
data on earnings.
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The recode command

The recode command is an extension to replace. thatrecodes categorical variables and
generates a new variable if the generate() option is used. The comunand

. * Replace existing data using the recode command .
. recode education (1/11=1) (12=2) (13/15=3) (16/17=4), generate(edcat)
(4074 differences between education and edcat)

creates a new. variable, edcat, that takes on a value of 1, 2, 3, or 4 corresponding to,
respectively, less than high school graduate, high school graduate, some college, and
college graduate or higher. The edcat variable is set to missing if education does not
lie in any of the ranges given in the recode command.

The by prefix

The by varlist: prefix repeats a command for each group of observations for which the
variables in varlist are the same. The data must first be sorted by wvarlist. This can
be done by using the sort command, which orders the observations in ascending order
according to the variable(s) given in the command.

The sort command and the by prefix are more compactly combined into the bysort
prefix. For example, suppose we want to create for each individual a variable that equals
the sample average earnings for all persons with that individual's years of education.
Then we type

. * Create new variable using bysort: prefix
. bysort education: egen aveearnsbyed = mean(earnings)
(209 missing values generated)

. sort id -

The final command, one that returns the ordering of the observation to the original
ordering, is not required. But it could make a difference in subsequent analysis if, for
example, we were to work with a subsample of the first 1,000 observations.

Indicator variables

Consider creating a variable indicating whether earnings are positive. While there are
several ways to proceed, we only describe our recommended method.

The most direct way is to use generate with logical operators:

. * Create indicator variable using generate command with logical operators
. generate dl = earnings > 0 if earnings < .
(209 missing values generated)

The expression d1 = earnings > 0 creates an indicator variable equal to 1 if the con-
dition holds and O otherwise. Because missing values are treated as large numbers, we
add the condition if earnings < . so that in those cases d1 is set equal to missing.
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Using summarize,

summarize di
Variable | Obs Mean Std. Dev. Min Max

d1 l 4081 .929184 .2565486 C 1

we can see that about 93% of the individuals in this sample had some earnings in 1992,
We can also see that we have 0.929184 x 4081 = 3792 observations with a value of 1,
289 observations with a value of 0, and 209 missing observations.

Set of indicator variables

A complete set of mutually exclusive categorical indicator dummy variables can be
created in several ways.

For example, suppose we want to create mutually exclusive indicator variables for
less than high school graduate, high school gracluate, some college, and college graduate
or more. The starting point is the edcat variable, created earlier, which takes on the
values 1-4.

We can usetabulate with the generate() option.

. * Create a set of indicator variables using tabulate with generate() option
. quietly tabulate edcat, generate(eddummy)

- summarize eddummy*

Variable Obs Mean Std. Dev. Min Max
eddummyl 4081 .2087724 .4064812 0 1
eddummy? 4081 .3700074 .4828655 Q 1
eddummy3 4081 .2124479 .4090902 0 1
eddummy4 4081 .2087724 .4064812 0 1

The four means sum to one, as expected for four mutually exclusive categories. Note
that if edcat had taken on values 4, 5, 7, and 9, rather than 1-4, it would still generate
variables numbered eddummy1-eddummy4.

An alternative method is to use the xi command. For example,

. * Create a set of indicator variables using command xi
- xi i.edcat, noomit

. summarize _Ix* .
Variable Obs Mean Std. Dev. Min Max

_Iedcat_1 4081 .2087724 .4064812 0 1
_Iedcat_2 4081 .3700074 .4828655 0 1
_Iedcat_3 4081 .2124479 .4090902 0 1
_Iedcat_4 4081 .2087724 .4064812 0 1

The created categorical variablesaregiven the name edcat with the prefix _I. The suffix
numbering corresponds exactly to the distinct values taken by edcat, here 1-4. The
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noomit option is added because the default is to omit the lowest value category, so here
_Tedcat_1 would have been dropped. The prefix option allows a prefix other than _I
to be specified. This is necessary if xi will be used again.

More often, xi is used as a prefix to a command, in.which case the variable list
includes i.vam™mame, where varname is a categorical variable that is to appear as a set
of categorical indicators. For example,

* Command with a variable list that includes indicators created using xi:
xi: summarize i.edcat

i.edcat - Iedcat_1-4 (naturally coded; _Iedcat_l omitted)
Vaziiable Obs Mean  Std. Dev. Min Max
_Iedcat_2 4081 .3700074 .4828655 0 1
_Iedcat_3 4081 .2124479 .4090902 0 1
- Iedcat_4 4081 2087724 .4064812 0 1

This is especially convenient in regression commands. We can simply include i.edcat
in the regressor list, so there is no need to first create the set of indicator variables; see
chapter 8.5.4 for an example.

interactions

Interactive variables can be created in the obvious manner. For example, to create
an interaction between the binary earnings indicator d1 and the continuous variable
education, type

. * Create interactive variable using generate commands
. generate dleducation = dl*education
(209 missing values generated)

It can be much simpler to use the xi command, especially if the categorical variable
takes on more than two values. For example, we can generate a complete set of in-
teractions between the categorical variable edcat (with four categories) and earnings
(continuous) by typing

. * Create set of interactions between cat variable and set of indicators
. drop _Iedcat_=

. xi i.edcat*earnings, noomit

i.edcat*earni-s

. summarize _I*

_IedcXearni_#

(coded as above)

Variable Obs Mean Std. Dev. Min Max
_Iedcat_1 4081 .2087724 .4064812 0 1
_Iedcat_2 4081 .3700074 . 4828655 0 1
_Iedcat_3 4081 .2124479 .4090902 0 1
_Iedcat_4 4081 .2087724 . 4064812 0 1

_IedcXearn-1 4081 3146.368 8286.325 0 80000
_IedcXearn-2 4081 8757.823 15710.76 0 215000
_IedcXearn-3 4081 6419.347 16453.14 0 270000
_IedcXearn-4 4081 10383.11 32316.32 0 999999
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Another example is to interact a categorical variable with another set of indicators.
For example, to interact variable d1 with edcat, type

* Create a set of interactions between a categorical and a set of indicators

drop _I=
xi i.edcat*i.d1, noomit
i.edcat*i.d1 IedcXdl_#_# (coded as above)
summarize _I*
Variable Obs Mean Std. Dev. Min Max
Iedcat_1 4081 .2087724 .4064812 0 1
_Iedcat.2 4081 .3700074 .4828655 0 1
Iedcat_3 4081 .2124479 .4090902 0 1
Iedcat_4 4081 .2087724 .4064812 0 1
Id1_Q 4081 .070816 .2565486 0 1
Idi_1 4081 .929184 .2565486 0 1
IedcXdl1 1 0 _ _ 4081 .0316099 .1749806 0 1
IedcXdl 11 _ _ 4081 .1771625 .3818529 0 1
_ledcXd1_2_0 4081 .0279343 . 1648049 0 1
IedcXdl 2 1 _ _ 4081 .342073 .474462 0 1
IedcXdt 3 0 _ _ 4081 .0098015 .0985283 0 1
IedcXdl 3 1 _ _ 4081 .2026464 .4020205 0 1
_IedcXdl 4 0 _ _ 4081 .0014702 .03832 0 1
_IedcXdi_4.1 4081 . 2073021 .4054235 0 1

Again this is especially convenient in regression commands because it can obviate
the need to first create the set of interactions.

Demeaning

Suppose we want to include a quadratic in age as a regressor. The marginal effect of age
is much easier to interpret if we use the demeaned variables (age—4g€) and (age—agé)?
as regressors.

* Create demeaned variables
egen double aveage = mean(age)

generate double agedemean = age - aveage
generate double agesqdemean = agedemean~”2

summarize agedemean agesqdemean

Variable l Obs Mean Std. Dev. Min Max
agedemean 4290 2.32e-15 5.650311 -8.379953 11.62005
agesqdemean 4290 31.91857 32.53392 .1443646 135.0255

We expect the agedemean variable to have an average of zero. We specified double
to obtain additional precision in the floating-point calculations. In the case at hand,
the mean of agedemean is on the order of 1075 instead of 1078, which is what single-
precision calculations would yield.
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2.4.8 Saving data

At this stage, the dataset may beready for saving. The save command creates a Stata
data file. For example,

. * Save as Staza data file
. save mus02psid92m.dta, replace
file musO2psid92m.dta saved

The replace option meansthat an existingdataset with the same name, if it exists, will
be overwritten. The .dta extension is unnecessary because it is the default extension.

The related command saveold saves a data file that can be read by versions 8 and
9 of Stata.

The data can also be saved in another format that can be read by programs other
than Stata. The outsheet command allowssaving as a text file in a spreadsheet format.
For example,

* Save as comma-separated values spreadsheet
outsheet age education eddummy* earmings dl hours using mus02psid92m.csv,
> comma replace

Note the use of the wildcard * in eddummy. The outsheet command expands this
to eddummyl ~eddummy4 per the rules for wildcards, given in section 1.3.4. The comma
option leads to a .csv file with comma-separated varlable names in the first line. The
first two lines in mus02psid92m. csv are then

age,education,eddummyl,eddunmy 2, eddummy 3,eddummy4,earnings ,d 1, hours
40,9,1,0,0,0,22000,1,2340

A space-delimited formatted text file can also be created by using the outfile
command:

. * Save as formatted text (ascii) file
. outfile age education edaummy* earmings d1 hours using musO2psid92m.asc,
> replace

The first line in mus02psid92m.asc is then

40 9 1 0 0 0 22000
1 2340

This file will take up a lot of space; less space is taken if the comma option is used. The
format of the file can be specified using Stata’s dictionary format.
2.4.9 Selecting the sample

Most commands will automatically drop missing values in implementing a given com-

mand. We may want to drop additional observations, for example, to restrict analysis
to a particular age group.
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This can be done by adding an appropriate if qualifier after the command. For
example, if we want to summarize data for only those individuals 35-44 years old, then

* Select the sample used in a single command using the if qualifier
summarize earnings lnearns if age >= 35 & age <= 44

Variable Obs Mean Std. Dev. Min Max
earnings 2114 30131.05 37660.11 0 999999
lnearns 1983 10.04658 .9001594  4.787492 13.81551

Different samples are being used here for the two variables, because for the 131 obser-
vations with zero earnings, we have data on earnings but not on lnearns. The if
qualifier uses logical operators, defined in section 1.3.5.

However, for most purposes, we would want to use a consistent sample. For example,
if separate earnings regressions were run in levels and in logs, we would usually want to
use the same sample in the two regressions.

The drop and keep commands allow sample selection for the rest of the analysis.
The keep command explicitly selects the subsample to be retained. Alternatively, we
can use the drop command, in which case the subsample retained is the portion not
dropped. The sample dropped or kept can be determined by using an if qualifier, a
variable list, or by defining a range of observations.

For the current example, we use

. * Select the sample using command keep
. keep if (lnearms != .) & (age >= 35 & age <= 44)
(2307 observations deleted)

summarize earnings lnearns

Variable | Obs Mean Std. Dev. Min Max
earnings 1983 32121.55 38053.31 120 999999
lnearns 1983 10.04658 .9001594 4.787492 13.81551

This command keeps the data provided: lnearns is nonmissing and 35 < age < 44.
Note that now earnings and lneatns are summarized for the same 1,983 observations.

As a second example, the commands

* Select the sample using keep and drop commands
use mus02psid92m.dta, clear

keep.lnearns age

drop.in 1/1000
(1000 observations deleted)

will lead to a sample that contains data on all but the first one thousand observations
for just the two variables lnearns and age. The use mus02psid92m.dta command is
added because the previous example had already dropped some of the data.
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2.5 Manipulating datasets

Usefiul manipulations of datasetsinclude reordering observations or variables, temporar-
ily changing the dataset but then returning to the original dataset, breaking one obser-
vation into several observations (and vice versa), and combining more than one dataset.

2.5.1 Ordering observations and variables

Some commands, such as those using the by prefix, require sorted observations. The
sort command orders observations in ascending order according to the variable(s) in
the command. The gsort command allows ordering to be in descending order.

You can also reorder the variables by using the order command. This can be useful
if, for example, you want to distribute a dataset to others with the most important
variables appearing as the first variables in the dataset.

2.5.2 Preserving and restoring a dataset

In some cases, it is desirable to temporarily change the dataset, perform some calcu-
lation, and then return the dataset to its original form. An example involving the
computation of marginal effects is presented in section 10.5.4. The preserve command
preserves the data, and the restore command restores the data to the form it had
immediately before preserve.

* Commands preserve and restore illustrated
use mus02psid92m.dta, clear

list age in 1/1

age

1. 40

. pre’serve

. replace age = age + 1000

age was byte mow int

(4290 real changes made)
list age in 1/1

age

1. 1040

restore

list age in 1/1

age

1. 40

Asdesired, the data have been returned to original values.
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2.5.3 Wide and long forms for a dataset

Somedatasets may combineseveral observationsinto asingle observation. For example,
a single household observation may contain data for several household members, or a
single individual observation may have data for each of several years. This format for
data is called wide form. If instead these data are broken out so that an observation
is for a distinct household member, or for a distinct individual-year pair, the data are
said to be in long form.

The reshape command is detailed in section 8.11. It converts data from wide form
to long form and vice versa. This is necessary if an estimation command requires data
to be in long form, say, but the original dataset is in wide form. The distinction is
important especially for analysis of panel data and multinomial data.

2.5.4 Merging datasets

Themerge command combines two datasets to create a wider dataset, i.e., new variables
from the second dataset are added to existing variables of the first dataset. Common
examples are data on the same individuals obtained from two separate sources that then
need to be combined, and data on supplementary variables or additional years of data.

Merging two datasets involves adding information from a dataset on disk to a dataset
in memory. The dataset in memory is known as the master dataset.

Merging two datasets is straightforward if the datasets have the same number of
observations and the merge is a line-to-line merge. Then line 10, for example, of one
dataset is combined with line 10 of the other dataset to create a longer line 10. We
consider instead a match-merge, where observations in the two datasets are combined
if they have the same values for one or more identifying variables that are used to
determine the match. In either case, when a match is made if a variable appears in
both datasets, then the master dataset value is retained unless it is missing, in which
case it is replaced by the value in the second dataset. If a variable exists only in the
second dataset, then it is added as a variable to the master dataset.

To demonstrate a match-merge, we create two datasets from the dataset used in
this chapter. The first dataset comprises every third observation with data on id,
education, and earnings:

* Create first dataset with every third observation
. use mus02psid92m.dta, clear

. keep if mod(_n,3) == 0
(2860 observations deleted)

keep id education earnings
list in 1/4, clean

educat-n  earnings id

1. 16 38708 3
2. 12 3265 6
3. 11 19426 9
4. 11 30000 12

quietly save mergel.dta, replace
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The keep if mod(.n,3) == 0 command keeps an observation if the observation number
(-n) is exactly divisible by 3, so every third observation is kept. Because id=_n for these
data, by saving every third observation we are saving observations with id equal to 3,
6,9,....

The second dataset comprises every second observation with data on id, education,
and hours:

* Create second dataset with every second observation
use mus02psid92m.dta, clear
keep if mod(_n,2) == 0

(2145 observations deleted)

keep id education hours
list in 1/4, clean

educat-n hours id
12 2008 2
12 2200 4
12 552 6
17 3750 8

quietly save merge2.dta, replace

S wN -

Now we are saving observations with id equal to 2, 4, 6, ....
Now we merge the two datasets by using the merge command.

In our case, the clatasets differ in both the observations included and the variables
included, though there is considerable overlap. We perform a match-merge on id to
obtain

* Merge two datasets with some observations and variables different
clear }

use mergel.dta

sort id

merge id using merge2.dta

sort id

list in 1/4, clean

educat-n  earnings id hours _merge

1. 12 . 2 2008 2

2. 16 38708 3 . 1

3. 12 .4 2200 2

4. 12 3265 6 552 3
Recall that observations from the master dataset have id equal to 3, 6, 9, ..., and
observations from the second dataset have id equal to 2, 4, 6, .... Data for education

and earnings are always available because they are in the master dataset. But obser-
vations for hours come from the second dataset; they are available when id is 2, 4, 6,
and are missing otherwise.

merge creates a variable. .merge, that takes on a value of 1 if the variables for an
observation all come from the master dataset, a value of 2 if they all come from only
the second dataset, and a value of 3 if for an observation some variables come from
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the master and some from the second dataset. After using merge, you should tabulate
.merge and check that the results match your expectations. For the example, we obtain
the expected results:

. tab _merge

.merge Freq. Percent Cum.
1 715 25.00 25.00
2 1,430 50.00 75.00
3 715 25.00 100.00
Total 2,860 100.00

There are several options when using merge. The update option varies the action
merge takes when an observation is matched. By default, the master dataset is held
inviolate—if update is specified, values from the master dataset are retained if the same
variablesare found in both datasets. However, the values from the merging dataset are
used in cases where the variable is missing in the master dataset. The replace option,
allowed only with the update option, specifies that even if the master dataset contains
nonmissing values, they are to be replaced with corresponding values from the merging
dataset when corresponding values are not equal. A nonmissing value, however, will
never be replaced with a missing value.

2.5.5 Appending datasets

The append command creates a longer dataset, with the observations from the second
dataset appended after all the observations from the first dataset. If the same variable
has different names in the two datasets, the variable name in one of the datasets should
be changed by using the rename command so that the names match.

* Append two datasets with some observations and variables different
clear

use mergel.dta

append using merge2.dta
sort.id

list.in 1/4, clean

educat-n earnings id  hours
1. 12 . 2 2008
2. 16 38708 3 .
3. 12 . 4 2200
4. 12 3265 6

Now merge2.dta is appended to the end of mergel.dta. The combined dataset has
observations 3, 6, 9, ..., 4290 followed by observations 2, 4, 6, ..., 4290. We then sort
on id. Now both every second and every third observation is included, so after sorting
wehave observations 2, 3, 4, 6, §, 9, .... Note, however, that no attempt has been made
to merge the datasets. In particular, for the observation with id = 6, the hours data
are missing. This is because this observation comes from the master dataset, which did
not include hours as a variable, and there is no attempt to inerge the data.
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In this example, to take full advantage of the data, we would need to merge the two
datasets using the first dataset as the master, merge the two datasets using the second
dataset as the master, and then append the two datasets.

2.6 Graphical display of data

Graphs visually demonstrate important features of the data. Different types of data
require distinct graph formats to bring out these features. We emphasize methods for
numerical data taking many values, particularly, nonparametric methods.

2.6.1 Stata graph commands

The Stata graph commands begin with the word graph (in some cases, this is optional)
followed by the graph plottype, usually twoway. We cover several leading examples
but ignore the plottypes bar and pie for categorical data.

Example graph commands

The basic graph commands are very short and simple to use. For exaniple,

use mus02psid$2m.dta, clear

twoway scatter lnearns hours

produces a scatterplot of 1nearns on hours, shown in figure 2.1. Most graph commands
support the if and in qualifiers, and some support weights.

& g
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Figure 2.1. A basic scatterplot of log earnings on hours

In practice, however, customizing is often desirable. For example, we may want to
display the relationship between lnearns and hours by showing both the data scatter-
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plot and the ordinary least-squares (OLS) fitted line on the same graph. Additionally,
we may want to change the size of the scatterplot data points, change the width of the
regression line, and provide a title for the graph. We type

. * More advanced graphics command with two plots and with several options
. graph twoway (scatter lnearms hours, msize(small))

> (1fit lnearns hours, lwidth(medthick)),

> title("Scatterplot and OLS fitted line")

The two separate components scatter and 1fit are specified separately within paren-
theses. Each of these commands is given with one option, after the comma but within
the relevant parentheses. The msize(small) option makes the scatterplot dots smaller
than the default, and the lwidth(medthick) option makes the OLS fitted line thicker
than the default. The title() option for twoway appears after the last comma. The
graph produced is shown in figure 2.2.

Scatterplot and OLS fitted line
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Figure 2.2. A more elaborate scatterplot of log earnings on hours

We often use lengthy graph commands that span multiple lines to produce template
graphs that are better looking than those produced with default settings. In particular,
these commands add titles and rescale the points, lines, and axes to a suitable size
because the graphs printed in this book are printed in a much smaller space than a full-
page graph in landscape mode. These templates can be modified for other applications
by changing variable names and title text.

Saving and exporting graphs

Once a graph is created, it can be saved. Stata uses the term save to mean saving the
graph in Stata’s internal graph format, as a file with the .gph extension. This can be
done by using the saving() option in a graph command or by typing graph save after
the graph is created. When saved in this way, the graphs can be reaccessed and further
manipulated at a later date.
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Two or more Stata graphs can be combined into a single figure by using the graph
combine command. For example, we save the first graph as graphi. gph, save the second
graph as graph2.gpk, and type the command

* Combine graphs saved as graphl.gph and graph?2.gph
graph combine graphl graph2

(output omitted )

Section 3.2.7 provides an example.

The Stata internal graph format (.gph) is not recognized by other programs, such
as word processors. To save a graph in an external format, you would use the graph
export command. For example,

* Save graph as a Windows meta-file
graph export mygraph.wmf

(output omitted)

Various formats are available, including PostScript (.ps), Encapsulated PostScript
(.eps), Windows Metafile (.wnf), PDF (.pd£), and Portable Network Graphics (.png).
The best format to select depends in part on what word processor is used; some trial
and error may be needed.

Learning how to use graph commands

The Stata graph commands are extremely rich and provide an exceptional range of user
control through a multitude of options.

A good way to learn the possibilities is to create a graph interactively in Stata. For
example, from the menus, select Graphics > Twoway graph (scatter, line, etc.).
In the Plots tab of the resulting dialog box, select Create..., choose Scatter, provide
a Y variable and an X variable, and then click on Marker properties. From the
Symbol drop-down list, change the default to, say, Triangle. Similarly, cycle through
the other options and change the default settings to something else.

Once an initial graph is created, the point-and-click Stata Graph Editor allows
further customizing of the graph, such as adding text and arrows wherever desired.
This is an exceptionally powerful tool that we do not pursue here; for a summary, see
[G] graph editor. The Graph Recorder can even save sequences of changes to apply
to similar graphs created from different samples.

Even given familiarity with Stata’s gréph commands, you may need to tweak a graph
considerably to make it useful. For example, any graph that analyzes the earnings
variable using all observations will run into problems because one observation has a
large outlying value of $999,999. Possibilities in that case are to drop outliers, plot with
the yscale (log) option, or use log earnings instead.
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2.6.2 Box-and-whisker plot

The graph box command produces a box-and-whisker plot that is a graphical way
to display data on a single series. The boxes cover the interquartile range, from the
lower quartile to the upper quartile. The whiskers, denoted by horizontal lines, extend
to cover most or all the range of the data. Stata places the upper whisker at the
upper quartile plus 1.5 times the interquartile range, or at the maximum of the data
if this is smaller. Similarly, the lower whisker is the lower quartile minus 1.5 times the
interquartile range, or the minimum should this be larger. Any data values outside the
whiskers are represented with dots. Box-and-whisker plots can be especially useful for
identifying outliers.

The essential command for a box-and-whisker plot of the hours variable is

* Simple box-and-whisker plot
graph-box hours

(output omitted)

We want to present separate box plots of hours for each of four education groups
by using the over () option. To make the plot more intelligible, we first provide labels
for the four education categories as follows:

. use mus02psid92m.dta, clear

. label define edtype 1 "< High School" 2 "High School" 3 "Some College"
> 4 "College Degree"

. label values edcat edtype

The scale(1.2) graph option is added for readability; it increases the size of text,
markers, and line widths (by a multiple 1.2). The marker{) option is added to reduce
the size of quantities within the box; the ytitle () option is used to present the title;
and the yscale(titlegap(*5)) option is added to increase the gap between the y-axis
title and the tick labels. We have

. * Box and whisker plot of single variable over several categories
. graph box hours, over(edcat) scale(l.2) marker(l,msize(vsmall))
> ytitle("Annual hours worked by education") yscale(titlegap(*5))

The result is given in figure 2.3. The labels for edcat, rather than the values, are
automatically given, making the graph much more readable. The filled-in boxes present
the interquartile range, the intermediate line denotes the median, and data outside the
whiskers appear as dots. For these data, annual hours are clearly lower for the lowest
schooling group, and there are quite a few outliers. About 30 individuals appear to
work in excess of 4,000 hours per year.
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Annual hours worked by education

o] -

< High School  High School Some College College Degree

Figure 2.3. Box-and-whisker plots of annual hours for four categories of educational
attainment

2.6.3 Histogram

The probability mass function or density function can be estimated using a histogram
produced by the histogram command. The command can be used with if and in
qualifiers and with weights. The key options are width(#) to set the bin width,
bin(#) to set the number of bins, start(#) to set the lower limit of the first bin,
and discrete to indicate that the data are discrete. The default number of bins is
min(v/N, 101ln N/ In 10). Other options overlay a fitted normal density (the normal
option) or a kernel density estimate (the kdensity option).

For discrete date taking relatively few values, there is usually no need to use the
options. '

For continuous data or for discrete data taking many values, it can be necessary
to use options because the Stata defaults set bin widths that are not nicely rounded
numbers and the number of bins might also not be desirable. For example, the output
from histogram lnearns states that there are 35 bins, a bin width of 0.268, and a start
value of 4.43. A better choice may be

. » Histogram with bin width and start value set
. histogram lnearns, width(0.25) start(4.0)
(bin=40, start=4, width=.25)

(Continued on next page)
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Density

Incarng

Figure 2.4. A histogram for log earnings

2.6.4 Kernel density plot

For continuous data taking many values, a better alternative to the histogram is a kernel
density plot. This provides a smoother version of the histogram in two ways: First, it
directly connects the midpoints of the histogram rather than forming the histogram
step function. Second, rather than giving each entry in a bin equal weight, it gives more
weight to data that are closest to the point of evaluation.

Let f(z) denote the density. The kernel density estimate of f(z) at z = zg is

F(zo) tha— (xl_mo) , (1)

where K(-) is a kernel function that places greater weight on points z: close to zp.
More precisely, K(z) is symmetric around zero, integrates to one, and either K(z) =0
if |2| > zp (for some z0) or z — 0 as z — oo. A histogram with a bin width of
2h evaluated at zp can be shown to be the special case K (z) = 1/2 if |z| < 1, and
K (z) = 0 otherwise.

A kernel density plot is obtained by choosing a kernel function, K(-); choosing a
width, h; evaluating f(zo) at a range of values of zo; and plotting f(zo) against these
zp values.

The kdensity command produces a kernel density estimate. The command can
be used with if and in qualifiers and with weights. The default kernel function is
the Epanechnikov, which sets K (z) = (3/4)(1 — 22/5)/v’5 if |z| < V/5, and K (z) =
otherwise. The kernel() option allows other kernels to be chosen, but unless the width
is relatively small, the choice of kernel makes little difference. The default window
width or bandwidth is h = 0.9m/n/5, where m = min(s,, iqr./1.349) and igr, is
the interquartile range of z. The bwidth (#) option allows a different width (k) to be
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specified, with larger choices of A leading to smoother density plots. The n(#) option
changes the number of evaluation points, zg, from the default of min(#V, 50). Other
options overlay a fitted normal density (the normal option) or a fitted ¢t density (the
student (#) option).

The output from kdensity lnearns states that the Epanechnikov kernelis used and
the bandwidth equals 0.1227. If wedesirea smoother density estimate with a bandwidth
of 0.2, one overlaid by a fitted normal density, we type the command

* Kernel density plot with bandwidth set and fitted normal density overlaid
kdensity lnearns, bwidth(0.20) normal n(4000)

which produces the graph in figure 2.5. This graph shows that the kernel density is
more peaked than the normal and is somewhat skewed.

Kernel density estimate
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Figure 2.5. The estimated density of log earnings

The following code instead presents a histogram overlaid by a kernel density estimate.
The histogram bin width is set to 0.25, the kernel density bandwidth is set to 0.2 using
the kdenopts () option, and the kernel density plot line thickness is increased using the

lwidth(medthick) option. Other options used here were explained in section 2.6.2. We
have

* Histogram and nonparametric kermel density estimate

histogram lnearms if lnearms > 0, width(0.25) kdensity
> kdenopts(bwidth(0.2) lwidth(medtkick))
> plotregion(style(none)) scale(1.2)
> title("Histogram and density for log earnings")
> xtitle("Log annual earmings", size(medlarge)) xscale(titlegap(*5))
> ytitle("Histogram and density", size(medlarge)) yscale(titlegap(+5))
(bin=38, start=4.4308167, width=.25)
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Histogram and density for log earnings

Histogram and density

Log annual earnings

Figure 2.6. Histogram and kernel density plot for natural logarithm of earnings

The result is given in figure 2.6. Both the histogram and the kernel density estimate
indicate that the natural logarithm of earnings has a density that is mildly left-skewed.
A similar figure for the level of earnings is very right-skewed.

2.6.5 Twoway scatterplots and fitted lines

As we saw in figure 2.1, scatterplots provide a quick look at the relationship between
two variables.

For scatterplots with discrete data that take on few valtes, it can be necessary to
use the jitter() option. This option adds random noise so that points are not plotted
on top of one another; see section 14.6.4 for an example.

It can be useful to additionally provide a fitted curve. Stata provides several pos-
sibilities for estimating a global relationship between y against z, where by global we
mean that a single relationship is estimated for all observations, and then for plotting
the fitted values of y against z.

The twoway 1fit command does so for a fitted OLS regression line, the twoway
qfit command does so for a fitted quadratic regression curve, and the twoway fpfit
command does so for a curve fitted by fractional polynomial regression. The related
twoway commands 1fitci, qfitci, and fpfitci additionally provide confidence bands
for predicting the conditional mean E(y|z) (by using the stdp option) or for forecasting
of the actual value of y/z (by using the stdf option).

For example, we may want to provide a scatterplot and £tted quadratic with confi-
dence bands for the forecast value of y|z (the result is shown in figure 2.7):
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. » Two-way scatterplot and quadratic regression curve with 954 ci for ylx
. twoway (qfitci lnearms hours, stdf) (scatter lnearns hours, msize(small))
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Figure 2.7. Twoway scatterplot and fitted quadratic with confidence bands

2.6.6 Lowess, kernel, local linear, and nearest-neighbor regression

An alternative curve-fitting approach is to use nonparametric methods that fit a local
relationship between y and z, where by local we mean that separate fitted relationships
are obtained at different values of z. There are several methods. All depend on a
bandwidth parameter or smoothing parameter. There are well-established methods
to automatically select the bandwidth parameter, but these choices in practice can
undersmooth or oversmooth the data so that the bandwidth then needs to be set by
using the bwidth() option.

An easily understood example is a median-band plot. The range of z is broken
into, say, 20 intervals; the medians of y and z in each interval are obtained; and the
20 medians of y are plotted against the 20 medians of z, with connecting lines between
the points. The twoway mband command does this, and the related twoway mspline
command uses a cubic spline to obtain a smoother version of the median-band plot.

Most nonparametric methods instead use variants of local regression. Consider the
regression model y = m(z) + u, where z is a scalar and the conditional mean function
m(-) is not specified. A local regression estimate of m(z) at z = o is a local weighted
average of y;, 1 = 1,..., NV, that places great weight on observations for which z; is close
to zp and little or no weight on observations for which z; is far from zg. Formally,

R N
M(zo) = Za=1 w(Ti, To, h)Yi

where the weights w(z.;,zo, h) sum over ¢ to one and decrease as the distance between
z; and zg increases. As the bandwidth parameter % increases, more weight is placed on
observations for which z, is close to zo.
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A plot is obtained by choosing a weighting function, w(z ;, zo, ); choosing a band-
width, ; evaluating 7m.(zo) at a range of values of zo; and plotting (o) against these
o values.

The kth-nearest-neighbor estimator uses just the & observations for which x is clos-
est to zg and equally weights these & closest values. Tlis estimator can be obtained by
using the user-written xnnreg command (Salgado-Ugarte, Shimizu, and Taniuchi 1996).

Kernel regression uses the weight w(z;,z0,k) = K{(z: — zo)/R}/ Zﬁl K{(z; —
zo)/k}, where K(-) is a kernel function defined after (2.1). This estimator can be
obtained by using the user-written kernreg command (Salgado-Ugarte, Shimizu, and
Taniuchi 1996). It can also be obtained by using the 1poly command, which we present
next.

The kernel regression estimate at £ = zo can equivalently be obtained by minimizing
> K{(z:—z0)/ h} (¥;—ap)?, which is weighted regression on a constant where the kernel
weights are largest for observations with z; close to zo. The local linear estimator
additionally includes a slope coefficient and at z = zg minimizes

N Ty — X -
Z-i.:] K ( n. 0> {yi — ag — Bo(zi -2z0)}° (

The local polynomial estimator of degree p more generally uses a polynomial of degree p

n (z: — o) in (2.2). This estimator is obtained by using 1poly. The degree(#) option
specifies the degree p, the kernel() option specifies the kernel, the bwidth (#) option
specifies the kernel bandwidth &, and the generate() option saves the evaluation points
zo and the estimates #(zy). The local linear estimator with p > 1 does much better
than the preceding methods at estimating m(z¢) at values of zo near the endpoints of
the range of z, as it allows for any trends near the endpoints.

[©
o
=

The locally weighted scatterplot smoothing estimator (lowess) is a variation of the
local linear estimator that uses a variable bandwidth, a tricubic kernel, and downweights
observations with large residuals (using a method that greatly increases the computa-
tional burden). This estimator is obtained by using the lowess command. The band-
width gives the fraction of the observations used to calculate 7m.(zo) in the middle of the
data, with a smaller fraction used towards the endpoints. The default value of 0.8 can
‘be changed by using the bwidth(#) option, so unlike the other methods, a smoother
plot is obtained by increasing the bandwidth.

The following example illustrates the relationship between log earnings and hours
worked. The one graph includes a scatterplot (scatter), a fitted lowess curve (lowess),
and a local linear curve (1poly). The command is lengthy because of the detailed
formatting commands used to produce a nicely labeled and formatted graph. The
msize(tiny) option is used to decrease the size of the dots in the scatterplot. The
1lwidth (medthick) option is used to increase the thickness of lines, and the clstyle(p1)
option changes the style of the line for lowess. The title() option provides the overall
title for the graph. The xtitle() and ytitle() options provide titles for the z axis
and y axis, and the size(medlarge) option defines the size of the text for these titles.
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The legend () options place the graph legend at four o’clock (pos(4)) with text size
small and provide the legend labels. We have

. * Scatterplot with lowess and local linear nonparametric regression

. graph twoway (scatter lmearns hours, msize(tiny))

(lowess lnearms hours, clstyle(pl) lwidth(medtbick))

(1poly lnearms hours, kermel(epan2) degree(l) lwidth(medthick)
bwidth(500)), plotregion(style(none))

title("Scatterplot, lowess, and local linear regression")
xtitle("Annual hours", size(medlarge))

ytitle("Natural logarithm of annual earnings", size(medlarge))
legend(pos(4) ring(0) col(1)) legend(size(small))

legend(labe(1 "Actual Data") label(2 "Lowess") label(3 "Local linear"))
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Figure 2.8. Scatterplot, lowess, and local linear curves for natural logarithm of earnings
plotted against hours

From figure 2.8, the scatterplot, fitted OLS line, and nonparametric regression all in-
dicate that log earnings increase with hours until about 2,500 hours and that a quadratic
relationship may be appropriate. The graph uses the default bandwidth setting for
lowess and greatly increases the 1poly bandwidth from its automatically selected value
of 84.17 to 500. Even so, the local linear curve is too variable at high hours where the
data are sparse. At low hours, however, the lowess estimator overpredicts while the
local linear estimator does not.

2.6.7 Multiple scatterplots

The graph matrix command provides separate bivariate scatterplots between several
variables. Here we produce bivariate scatterplots (shown in figure 2.9) of lnearms,
hours, and age for each of the four education categories:

* Multiple scatterplots
label variable age "Age"

label variable' lnearms "Log earnings"
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. label variable hours "Annual hours"

. gravh matrix loearns hours age. bv(edcat) msize(small)
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Figure 2.9. Multiple scatterplots for each level of education

Stata does not provide three-dimensional graphs, such as that for a nonparametric
bivariate density estimate or for nonparametric regression of one variable on two other
variables.

2.7 Stata resources

The key data-management references are [U] Users Guide and [D] Data Management
Reference Manual. Useful online help categories include 1) double, string, and
format for data types; 2) clear, use, insheet, infile, and outsheet for data in-
put; 3) summarize, list, label, tabulate, generate, egen, keep, drop, recode, by,
sort, merge, append, and collapse for data management; and 4) graph, graph box,
histogram, kdensity, twoway, lowess, and graph matrix for graphical analysis.

The Stata graphics commands were greatly enhanced in version 8 and are still rel-
atively underutilized. The Stata Graph Editor is new to version 10; see [G] graph
editor. A Visual Guide to Stata Graphics by Mitchell (2008) provides many hundreds
of template graphs with the underlying Stata code and an explanation for each.

2.8 Exercises

1. Type the command display %10.5f 123.321. Compare the results with those
you obtain when you change the format %10.5f to, respectively, %10.5e, %10.5g,
%-10. 5%, %#10,5f, and when you do not specify a format.
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2. Consider the example of section 2.3 except with the variables reordered. Specif-
ically, the variables are in the order age, name, income, and female. The three
observations are 29 "Barry" 40.990 0; 30 "Carrie" 37.000 1;and 31 "Gary"
48.000 0. Use input to read these data, along with names, into Stata and list
the results. Use a text editor to create a comma-separated values file that includes
variable names in the first line, read this file into Stata by using insheet, and
list the results. Then drop the first line in the text file, read in the data by using
insheet with variable names assigned, and list the results. Finally, replace the
corumas in the text file with blanks, read the data in by using infix, and list the
results.

3. Consider the dataset in section 2.4. The er32049 variable is the last known
marital status. Rename this variable as marstatus, give the variable the label
“marital status”, and tabulate marstatus. From the codebook, marital status is
married (1), never married (2), widowed (3), divorced or annulment (4), separated
(5), not answered or do not know (8), and no marital history collected (9). Set
marstatus to missing where appropriate. Use label define and label values to
provide descriptions for the remaining categories, and tabulate marstatus. Create
a binary indicator variable equal to 1 if the last known marital status is married,
and equal to 0 otherwise, with appropriate handling of any missing data. Provide
a summary of earnings by marital status. Create a set of indicator variables for
marital status based on marstatus. Create a set of variables that interact these
marital status indicators with earnings.

4. Consider the dataset in section 2.6. Create a box-and-whisker plot of earnings (in
levels) for all the data and for each year of educational attainment (use variable
education). Create a histogram of earnings (in levels) using 100 bins and a
kernel density estimate. Do earnings in levels appear to be right-skewed? Create
a scatterplot of earnings against education. Provide a single figure that uses
scatterplot, 1fit, and lowess of earnings against education. Add titles for
the axes and graph heading.

5. Consider the dataset in section 2.6. Create kernel density plots for 1nearns using
the kernel (épan2) option with kernel &'(z) = (3/4)(1 — 22/5) for |z| < 1, and
using the kernel (epan2) option with kernel K (z) = 1/2 for |2| < 1. Repeat with
the bandwidth increased from the default to 0.3. What makes a bigger difference,
choice of kernel or choice of bandwidth? The comparison is easier if the four
graphs are saved using the saving() option and then combined using the graph
combine command.

6. Consider the dataset in section 2.6. Perform lowess regression of 1nearns on hours
using the default bandwidth and using bandwidth of 0.01. Does the bandwidth
make a difference? A moving average of y after data are sorted by z is a simple
case of nonparametric regression of y on z. Sort the data by hours. Create a
centered 15-period moving average of lnearns with ith observation yma; = 1/25
Zi—ilfm Yo+5. This is easiest using forvalues. Plot this moving average against
hours using the twoway connected graph command. Compare to the lowess plot.






3 Linear regression basics

3.1 introduction

Linear regression analysis is often the starting point of an empirical investigation. Be-
cause of its relative simplicity, it is useful for illustrating the different steps of a typical
modeling cycle that involves an initial specification of the model followed by estimation,
diagnostic checks, and model respecification. The purpose of such a linear regression
analysis may be to summarize the data, generate conditional predictions, or test and
evaluate the role of specific regressors. We will illustrate these aspects using a specific
data example.

This chapter is limited to basic regression analysis on cross-section data of a contin-
uous dependent variable. The setup is for a single equation and exogenous regressors.
Some standard complications of linear regression, such as misspecification of the condi-
tional mean and model errors that are heteroskedastic, will be considered. In particular,
we model the natural logarithm of medical expenditures instead of the level We will
ignore other various aspects of the data that can lead to more sophisticated nonlinear
models presented in later chapters.

3.2 Data and data summary

The first step is to decide what dataset will be used. In turn, this decision depends on
the population of interest and the research question itself. We discussed how to convert
a raw dataset to a form amenaole to regression analysis in chapter 2. In this section.
we present ways to summarize and gain some understanding of the data, a necessary
step before any regression analysis.

3.2.1 Data description

We analyze medical expenditures of individuals 65 years and older who qualify for
health care under the U.S. Medicare program. The original data source is the Medical
Expenditure Panel Survey (MEPS).

Medicare does not cover all medical expenses. For example, copayments for medical
services and expenses of prescribed pharmaceutical drugs were not covered for the time
period studied here. About half of eligible individuals therefore purchase supplementary
insurance in the private market that provides insurance coverage against various out-
of-pocket expenses. :

71
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In this chapter, we consider the impact of this supplementary insurance on total an-
medical expenditures of an individual, measured in dollars. A formal investigation
must conditol for the influence of other factors that also determine individual medical
expenditure, notably, sociodemographic factors such as age, gender, education and in-
come, geographical location, and health-status measures such as self-assessed health
presence of chronic or limiting conditions. In this chapter, as in other chapters,
insterd deliberately use a short list of regressors. This permits shorter output and
simplemdiscussion of the results, an advantage because our intention is to simply explain

methods and tools available in Stata. -

the

Variable description

Given the Stata dataset for analysis, we begin by using the describe command to list
various features of the variables to be used in the linear regression. The command with-
a variable list describes all the variables in the dataset. Here we restrict attention

the watiables used in this chapter.

to
. * Variable description for medical expenditure dataset
. use musO3data.dta

. describe totexp ltotexp posexp suppins phylim actlim totchr age female income

storage display value
variable name type format label variable label
totexp double %412.0g Total medical expenditure
ltotexp float 49.0g 1n(totexp) if totexp > 0
posexp float 49.0g =1 if total expenditure > O
suppins float 49.0g =1 if has supp priv insurance
phylim double 412.0g =1 if has functional limitation
actlim double 412.0g =1 if has activity limitation
totchr double %412.0g # of chronic problems
age double %12.0g Age
female double 412.0g =1 if female
income double %412.0g annual household income/1000

variable types and format columns indicate that all the data are numeric. In this
case, sFhe variables are stored in single precision (f1loat) and some in double precision
ble). From the variable labels, we expect totexp to be nonnegative; 1totexp to
miséingn if totexp equals zero; posexp, suppins, phylim, actlim, and female to
0 obé; totchr to be a nonnegative integer; age to be positive; and income to be
negativeeor positive. Note that the integer variables could have been stored much more
compactly as integer or byte. The variable labels provide a short description that is
helpful but may not fully describe the variable. For example, the key regressor suppins
created by aggregating across several types of private supplementary insurance. No
labels feaghe values taken by the categorical variables have been provided.
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3.2.3 Summary statistics

It is essential in any data analysis to first check the data by using the summarize
command,

. * Summary stat:istics for medical expenditure dataset
. summarize totexp ltotexp posexp suppins phylim actlim totchr age female income

Variable Obs Mean Std. Dev. Min Max
totexp ‘3064 7030.889 11852.75 0 125610
ltotexp 2955 8.059866 1.367592 1.098612 11.74094
posexp 3064 .9644256 .1852568 0 1
suppins 3064 .5812663 .4934321 0 1
phylim 3064 .4255875 .4945125 0 1
actlim 3064 .2836162 .4508263 0 1
totchr 3064 1.754243 1.307197 0 7
age 3064 74.17167 6.372938 65 90
female 3064 .5796345 .4936982 0 1
income 3064 22.47472 22.53491 -1 312.46

On average, 96% of individuals incur medical expenditures during a year; 58% have
supplementary insurance; 43% have functional limitations; 28% have activity limita-
tions; and 58% are female, as the elderly population is disproportionately female be-
cause of the greater longevity of women. The only variable to have missing data is
ltotexp, the natural logarithm of totexp, which is missing for the (3064 — 2955) = 109
observations with totexp = 0.

All variables have the expected range, except that income is negative. To see how
many observations on income are negative, we use the tabulate commniand, restricting
attention to nonpositive observations to limit output.

. * Tabulate variable
. tabulate income if income <= 0

annual
household
income/1000 | Freq. Percent Cum.
-1 1 1.14 1.14
0 87 98.86 100.00
Total 88 100.00

Only one observation is negative, and negative income is possible for income from self-
employment or investment. We include the observation in the analysis here, though
checking the original data source may be warranted.

Much of the subsequent regression analysis will drop the 109 observations with zero
medical expenditures, so in a research paper, i_t would be best to report summary
statistics without these observations.
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3.2.4 More-detailed summary statistics

Additional descriptive analysis of key variables, especially the dependent variable, is
useful. For totexp, the level of medical expenditures, summarize, detail yields

* Detailed summary statistics of a single variable
sumhbarize totexp, detail

Total medical expenditure

Percentiles Smallest

14 0 0

LY 112 0
10%4 393 0 Obs 3064
25% 1271 0 Sum of Wgt. 3064
50% 3134.5 Mean 7030.889
Largest Std. Dev. 11852.75

75% 7151 104823
90% 17050 108256 Variance 1.40e+08
95% 27367 123611 Skewness 4.165058
99% 62346 125610 Kurtosis 26.26796

Medical expenditures vary greatly across individuals, with a standard deviation of
11,853, which is almost twice the mean. The median of 3,134 is much smaller than
the mean of 7,031, reflecting the skewness of the data. For variable z, the skewness
statistic is a scale-free measure of skewness that estimates E{(z — u)*}/0®/?, the third
central moment standardized by the second central moment. The skewness is zero for
symmetrically distributed data. The value here of 4.16 indicates considerable right
skewness. The kurtosis statistic is an estimate of E{(z — p)*}/o*, the fourth central
moment standardized by the second central moment. The reference value is 3, the value
for normally distributed data. The much higher value here of 26.26 indicates that the
tails are much thicker than those of a normal distribution. You can obtain additional
summary statistics by using the centile command to obtain other percentiles and by
using the table command, which is explained in section 3.2.5.

We conclude that the distribution of the dependent variable is considerably skewed
and has thick tails. These complications often arise for commonly studied individual-
level economic variables such as expenditures, income, earnings, wages, and house prices.
It is possible that including regressors will eliminate the skewness, but in practice, much
of the variation in the data will be left unexplained (R? < 0.3 is common for individual-
level data) and skewness and excess kurtosis will remain.

Such skewed, thick-tailed data suggest a model with multiplicative errors instead of
additive errors. A standard solution is to transform the dependent variable by taking
the natural logarithm. Here this is complicated by the presence of 109 zero-valued
observations. We take the expedient approach of dropping tne zero observations from
analysis in either logs or levels. This should make little difference here because only
3.6% of the sample is then dropped. A better approach, using two-part or selection
models, is covered in chapter 16.

The output for tabstat in section 3.2.5 reveals that taking the natural logarithm
for these data essentially eliminates the skewness and excess kurtosis.
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The user-written fsum command (Wolfe 2002) is an enhancement of summarize that
enables formatting the output and including additional information such as percentiles
and variable labels. The user-written outsum command (Papps 2006) produces a text
file of means and standard deviations for one or more subsets of the data, e.g., one
column for the full sample, one for a male subsample, and one for a female subsample.

3.2.5 Tables for data

One-way tables can be created by using the table command, which produces just
frequencies, or the tabulate command, which additionally produces percentages and
cumulative percentages; an example was given in section 3.2.3.

Two-way tables can also be created by using these commands. For frequencies, only
table produces clean output. For example,

*» Two-way table of frequencies
table female totchr

=1 if # of chronic problems
femald 0 1 2 3 4 S 6 7
0 239 415 323 201 82 23 4 1
1 313 466 493 305 140 46 11 2

provides frequencies for a two-way tabulation of gender against the number of chronic
conditions. The tabulate command is much richer. For example,

* Two-way table with row and column percentages and Pearson chi-squared
tabulate female suppins, row col chi2

Key

frequency
row percenta
column percen%ge

=1 if has supp priv

=1| if insurance
fegale 0 ! : Total
0 288 800 1,288
37.89 62.11 100.00
38.04 44.92 42.04
795 981 1,776
1 44.76 54.24 100.00
61.96 s9.08 57.96
Tdtal 1,283 1,781 3,064
41.87 54.13 100.00,
100.00 109.00 100.00

Pearson chi2(1) = 14.4991 Pr = 0.000
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Comparing the row percentages for this sample, we see that while a woman is more
likely to have supplemental insurance than not, the probability that a woman in this
sample has purchased supplemental insurance is lower than the probability that a man
in this sample has purchased supplemental insurance. Although we do not have the
information to draw these inferences for the population, the results for Pearson’s chi-
squared test soundly reject the null hypothesis that these variables are independent.
Other tests of association are available. The related command tab2 will produce all
possible two-way tables that can be obtained from a list of several variables.

For multiway tables, it is best to use table. For the example at hand, we have

. * Three-way table of frequencies
. table female totchr suppins

=1 if bas supp priv insurance and # of chromnic
problems
=1 if 0
female 0 1 2 3 4 S 6 7
0 102 165 121 68 25 6 1
1 135 212 233 134 56 22 1 2
#1 if has supp priv insurance and # of chronic
problems
=1 if 1
female 0 1 2 3 4 S 6 7
0 137 250 202 133 57 17 3 1

1 178 254 260 171 84 24 10

An alternative is to use tabulate with the by prefix, but the results are not as neat as
those from table.

The preceding tabulations will produce voluminous output if one of the variables
being tabulated takes on many values. Then it is much better to use table with the
contents() option to present tables that give key summary statistics for that variable,
such as the mean and standard deviation. Such tabulations can be useful even when
variables take on few values. For example, when summarizing the number of chronic
problems by gender, table yields

* One-way table of summary statistics
. table female, contents(N totchr mean totchr sd totchr p50 totchr)

=1 if
female N(totchr) mean(totchr) sd(totchr)  med(totchr)

0 1,288 1.659937888 1.261175 1
1,776 1.822635135 1.335776 2
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Women on average have more chronic problems (1.82 versus 1.66 for men). The option
contents() can produce many other statistics, including the minimum, maximum, and
key percentiles.

The table command with the contents() option can additionally produce two-way
and multiway tables of summary statistics. As an example,

* Two-way table of summary statistics
table female suppins, contents(N totchr mean totchr)

=1 if has supp priv
=1 if insurance
femald 0 1
0 488 800
1.530737705 1.73875
1 795 981
1.803773585 1.837920489

shows that those with supplementary insurance on average have more chronic problems.
This is especially so for males (1.74 versus 1.53).

The tabulate, summarize() command can be used to produce one-way and two-
way tables with means, standard deviations, and frequencies. This is a small subset of
the statistics that can be produced using table, so we might as well use table.

The tabstat command provides a table of summary statistics that permits more
flexibility than summarize. The following output presents summary statistics on medical
expenditures and the natural logarithm of expenditures that are useful in determining
skewness and kurtosis.

. * Summary statistics obtained using command tabstat
. tabstat totexp ltotexp, stat (count mean p50 sd skew kurt) col(stat)

variable N mean pSO sd skewness kurtosis
tofexp 3064 7030.889 3134.5 11852.75 4.165058 26.26796
ltotjexp 2955 8.059866 8.111928 1.367592 -.3857887 3.842263

This reproduces infor:nation given in section 3.2.4 and shows that taking the natural
logarithm eliminates most skewness and kurtosis. The col(stat) option presents the
results with summary statistics given in the columns and each variable being given in
a separate row. Without this option, we would have summary statistics in rows and
variables in the columns. A two-way table of summary statistics can be obtained by
using the by() option.

(Continued on next page)
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3.2.6 Statistical tests

The ttest command can be used to test hypotheses about the population mean of a
single variable (Hg: ¢ = p* for specifed value (¢*) and to test the equality of means
(Ho: m = pg). For more general analysis of variance and analysis of covariance, the
oneway and anova commands can be used, and several other tests exist for more special-
ized examples such as testing the equality of proportions. These commands are rarely
used in microeconometrics because they can be recast as a special case of regression
with an intercept and appropriate indicator variables. Furthermore, regression has the
advantage of reliance on less restrictive distributional assumptions, provided samples
are large enough for asymptotic theory to provide a good approximation.

For example, consider testing the equality of mean medical expenditures for those
with and without supplementary health insurance. The ttest totexp, by(suppins)
unequal command performs the test but makes the restrictive assumption of a com-
mon variance for all those with suppins=0 and a (possibly different) common variance
for all those with suppins=1. An alternative method is to perform ordinary least-
squares (OLS) regression of totexp on an intercept and suppins and then test whether
suppins has coefficient zero. Using this latter method, we can permit. all observations
to have a different variance by using the vce(robust) option for regress to obtain
heteroskedastic-consistent standard errors; see section 3.3.4.

3.2.7 Data plots

It is useful to plot a histogram or a density estimate of the dependent variable. Here
we use the kdensity command, which provides a kernel estimate of the density.

The data are highly skewed, with a 97th percentile of approximately $40,000 and a
maximum of $1,000,000. The kdensity totexp command will therefore bunch 97% of
the density in the first 4% of the z axis. One possibility is to type kdensity totexp
if totexp < 40000, but this produces a kernel density estimate assuming the data
are truncated at $40,000. Instead, we use command kdensity totexp, we save the
evaluation points in kx1 and the kernel density estimates in kdl, and then we line-plot
kdl against kx1.

We do this for both the level and the natural logarithm of medical expenditures, and

we use graph combine to produce a figure that includes both density graphs (shown in
figure 3.1). We have

* Kernel density plots with adjustment for highly skewed data
kdensity totexp if posexp==1, genmerate (kx1 kd1) n(S00)

graph. twoway (line kdl kx1) if kxl1 < 40000, name(levels)
kdensity ltotexp if posexp==1, generate (kx2 kd2) n(500)
graph. twoway (line kd2 kx2) if kx2 < 1n(40000), name(logs)
graph. combine levels logs, iscale(1.0)
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Figure 3.1. Comparison of densities of level and natural logarithm of medical expendi-
tures

Only positive experditures are considered, and for graph readahility, the very long
right tail of totexp has been truncated at $40,000. In figure 3.1, the distribution of
totexp is very right-skewed, whereas that of 1totexp is fairly symmetric.

3.3 Regression in levels and logs

We present the linear regression model, first in levels and then for a transformed de-
pendent variable, here in logs.

3.3.1 Basic regression theory

We begin by introducing terminology used throughout the rest of this book. Let 6
denote the vector of parameters to be estimated, and let 6 denote an estimator of 6.
Ideally, the distribution of 0 is centered on @ with small variance, for precision, and a
known distribution, to permit statistical inference. We restrict analysis to estimators
that are consistent for 6, meaning that in infinitely large samples, 6 equals 0 aside
from negligible random variation. This is denoted by 8 2 0 or more formally by G
6o, where 6o denotes the unknown “true” parameter value. A necessary condition for
consistency is correct model specification or, in some leading cases, correct specification
of key components of the model, most notably the conditional mean.
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Under additional assumptions, the estimators considered in this book are asymptot-
ically normally distributed, meaning that their distribution is well approximated by the
multivariate normal in large samples. This is denoted by

6 2 N{6, Var(8)}
where Var(6) denotes the (asymptotic) variance-covariance matrix of the estimator
(VCE). More efficient estimators have smaller VCEs. The VCE depends on unknown
parameters, so we use an estimate of the VCE, denoted by 17(5). Standard errors of the
parameter estimates are obtained as the square root of diagonal entries in 17(5) Differ-
ent assumptions about the data-generating process (DGP), such as heteroskedasticity,
can lead to different estimates of the VCE.

Test statistics based on asymptotic normal results lead to the use of the standard
normal distribution and chi-squared distribution to compute critical values and p-values.
For some estimators, notably, the OLS estimator, tests are instead based on the t dis-
tribution and the F distribution. This makes essentially no difference in large samples
with, say, degrees of freedom greater than 100, but it may provide a better approxima-
tion in smaller samples.

3.3.2 OLS regression and matrix algebra

The goal of linear regression is to estimate the parameters of the linear conditional mean
E(ylx) = x'8 = fiz1 +Poza+ - + Orzx (3.1)

where usually an intercept is included so that x; = 1. Here x is a A’ x 1 column vector
with the jth entry—the jth regressor 2;,—and 8 is a X x 1 column vector with the jth
entry (;.

Sometimes E(y|x) is of direct interest for prediction. More often, however, econo-
metrics studies are interested in one or more of the associated marginal effects (MEs),
OE(ylx) _ 3,

ij J
for the jth regressor. For example, we are interested in the marginal effect of supple-
mentary private health insurance on medical expenditw-es. An attraction of the linear
model is that estimated MEs are given directly by estimates of the slope coefficients.

The linear regression model specifies an additive error so that, for the typical ith
observation,
¥ =%XB+ u; i=1,...,N

The OLS estimator minimizes the sum of squared errors, Z,ﬂ;l(% - x/8)*

Matrix notation provides a compact way to represent the estimator and variance
matrix formulas that involve sums of products and cross products. We define the V x 1



3.3.3 Properties of the OLS estimator 81

coluinn vector y to nave theith entry y;, and we define the N x K regressor matrix X
to have the ith row x;. Then the OLS estimator can be written in several ways, with

B= (XX Xy

N A"
E L KiX E XY
qe ] =1

Y 2 N N 4 =1
Z-iﬂ Ty, Zvﬁ:l X1iT2e 7 2»5_:1 TR Zf"zl Tl
N N 2 : N s
B D IARE SV VR PARE. ‘ Eim B2iYs
. N
N N ) .
2:‘=1 TRiT1a et Zi:l Trs o Zl:l LK Y

We define all vectors as column vectors, with a transpose if row vectors are desired.
By contrast, Stata commands and Mata commands define vectors as row vectors, so in
parts of Stata and Mata code, we need to take a transpose to conform to the notation
in the book.

3.3.3 Properties of the OLS estimator

The properties of any estimator vary with the assumptions made about the DGp. For
the linear regression model, this reduces to assumptions about the regression error u..

The starting point for analysis is to assume that u, satisfies the following classical
conditions:

1. E(u,|x;) = O (exogeneity of regressors)
2. E(u?x;) = 02 (conditional homoskedasticity)

3. B(uiuj|x;.x;) = 0, i # j, (conditionally uncorrelated observations)

Assumption 1 is essential for consistent estimation of 8 and implies that the condi-
tional mean given in (3.1) is correctly specified. This means that the conditional mean is
linear and that all relevant variables have been included in the regression. Assumption 1
is relaxed in chapter 6.

_ Assumptions 2 and :3 determine the form of the VCE of EJ Assumptions 1-3 lead to
B being asymptotically normally distributed with the default estimator of the VCE

";dcfanlt(:’é) = SQ(XlX) -1
where

= (N=R)TDY A7 (3.2)

and T; =y; — xﬁB Under assumptions 1-3, the OLS estimator is fully efficient. If,
additionally, u, is normally distributed, then “t statistics” are exactly t distributed. This



82 Chapter 3 Linear regression basics

fourth assumption is not made, but it is common to continue to use the ¢ distribution
in the hope that it provides a better approximation than the standard normal in finite
samples.

When assumptions 2 and 3 are relaxed, OLS is no longer fully efficient. In chapter 5,
we present examples of more-efficient feasible generalized least-squares (FGLS) estima-
tion. In the current chapter, we continue to use the OLS estimator, as is often done in
practice, but we use alternative estimates of the VCE that are valid when assumption
2, assumption 3, or both are relaxed.

3.3.4 Heteroskedasticity-robust standard errors

Given assumptions 1 and 3, but not 2, we have heteroskedastic uncorrelated errors.
Then a robust estimator, or more precisely a heteroskedasticity-robust estimator, of the
VCE of the OLS estimator is

Voot (B) = (/%) 7 (7 52, ) (x13) (3:3)

For cross-section data that are independent, this estimator, introduced by White (1980),
has supplanted the default variance matrix estimate in most applied work because het-
eroskedasticity is the norm, and in that case, the default estimate of the VCE is incorrect.

In Stata, a robust estimate of the VCE is obtained by nsing the vce (robust) option
of the regress command, as illustrated in section 3.4.2. Related options are vce (hc2)
and vce(hc3), which may provide better heteroskedasticity-robust estimates of the VCE
when thesamplesize is small; see [R] regress. The robust estimator of the VCE has been
extended to other estimators and models,and a feature of Stata is the vce (robust) op-
tion, which is applicable for many estimation commands. Some user-written commands
use robust in place of vce(robust).

3.3.5 Cluster—rgbust standard errors

When errors for different observations are correlated, assumption :3 is violated. Then
both default and robust estimates of the VCE are invalid. For time-series data, this is
the case if errors are serially correlated, and the newey command should be used. For
cross-section data, this can arise when errors are clustered.

Clustered or grouped errors are errors that are correlated within a cluster or group
and are uncorrelated across clusters. A simple example of clustering arises when sam-
pling is of independent units but errors for individuals within the unit are correlated.
For example, 100 independent villages may be sampled, wita several people from each
village surveyed. Then, if a regression model overpredicts ¥ for one village member,
it is likely to overpredict for other members of the same village, indicating positive
correlation. Similar comments apply when sampling is of households with several indi-
viduals in each household. Another leading example is panel data with independence
over individuals but with correlation over time for a given individual.



3.3.6 Regression in logs 83

Given assumption 1, but not 2 or 3, a cluster-robust estimator of the VCE of the
OLS estimator is

5 = - G N -1 o _
Vclustcr (ﬁ% (er) 1 (G——].]VT g;ﬂ,l,lléXQ) (X'X) 1

where g = 1,...,G denotes the cluster (such as village), U, is the vector of residuals
for the observations in the gth cluster, and X, is a matrix of the regressors for the
observations ‘in the gth cluster. The key assumptions made are error independence
across clusters and that the number of clusters G — oa.

Cluster-robust standard errors can be computed by using the vce(cluster clust-
var) option in Stata, where clusters are defined by the different values taken by the
clustvar variable. The estimate of the VCE is in fact heteroskedasticity-robust and
cluster-robust, because there is no restriction on Cov(ug;,%;). . The cluster VCE esti-
mate can be applied to many estimators and models; see section 9.6.

Cluster—robust standard errors must be used when data are clustered. For a scalar
regressor z, a rule of thumb is that cluster-robust standard errorsare /1 + p.p, (A — 1)
times the incorrect. default standard errors, where p. is the within-cluster correlation
coefficient of the regressor, p, is the within-cluster correlation coefficient of the error,
and N/ is the average cluster size.

It can be necessary to use cluster-robust standard errors even where it is not im-
mediately obvious. This is particularly the case when a regressor is an aggregated or
macro variable, because then p, = 1. For example, suppose we use data from the U.S.
Current Population Survey and regress individual earnings on individual characteristics
and a state-level regressor that does not vary within a state. Then, if there are many
individuals in each state so M is large, even slight error correlation for individuals
in the same state can lead to great downward bias in default standard errors and in
heteroskedasticity-robust standard errors. Clustering can also be induced by the design
of sample surveys. This topic is pursued in section 5.5.

3.3.6 Regression in logs

The medical expenditure data are very right-skewed. Then a linear model in levels can
provide very poor predictions because it restricts the effects of regressors to be additive.
For example, aging 10 years is assumed to increase medical expenditures by the same
amount regardless of observed health status. Instead, it is more reasonable to assume
that aging 10 years has a multiplicative effect. For example, it may increase medical
expenditures by 20%.

We begin with an exponential mean model for positive expenditures, with error
that is also multiplicative, so y, = exp(x;B)s;. Defining €; = exp(u:), we havey,
exp(xiB +u;), and taking the natural logarithm, we fit the log-linear model

ny, =xiB + u;
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by OLS regression of Iny on x. The conditional mean of lny is being modeled, rather
than the conditional mean of y. In particular,

B(lnylx) =x'8

assuming v, is independent with conditional mean zero.

Parameter interpretation requires care. For regression of Iny on x, the coeflicient j3;
measures the effect of a change in regressor r; on E(Iny|x), but ultimate interest lies
instead on the effect on E(y|x). Some algebra shows that §; measures the proportionate
change in E(y|x) as z; changes, called a semielasticity, rather than the level of change
in E(y|x). For example, if 3; = 0.02, then a one-unit change in ; is associated with a
proportionate increase of 0.02, or 2%, in E(y|x).

Prediction of B(y|x) is substantially more difficult because it can be shown that
E(Iny|x) # exp(x’B). This is pursued in section 3.6.3.

3.4 Basic regression analysis

We use regress to run an OLS regression of the natural logarithm of medical expendi-
tures, 1totexp, on suppins and several demographic and health-status measures. Using
Iny rather than y as the dependent variableleads to no changein the implementation of
OLS but, as already noted, will change the interpretation of coefficients and predictions.

Many of the details we provide in this section are applicable to all Stata estimation
commands, not just to regress.

3.4.1 Correlations

Before regression, it can be useful to investigate pairwise correlations of the dependent
variables and key regressor variables by using correlate. We have

* Pairwise correlations for dependent variable and regressor variables
. correlate ltotexp suppins phylim actlim totchr age female income

(obs=2955)

ltotexp suppins phylim actlim  totchr age

ltotexp 1.0000

suppins 0.0941  1.0000

phylim 0.2924 -0.0243 1.0000

actlim 0.2888 -0.0675 0.5804 1.0000

totchr 0.4283 0.0124 0.333¢ 0.3260 1.0000

age 0.0858 -0.1226 0.2538 0.2394 0.0904 1.0000

female -0.0058 -0.0796 0.0943 0.0499 0.0557 0.0774

0.

income 0023 0.1943 -0.1142 -0.1483 -0.0816 -0.1542

female income

female 1.0000
income -0.1312  1.0000
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Medical expenditures are most highly correlated with the health-status measures phylim,
actlim, and totchr. The regressors are only weakly correlated with each other, aside
from the health-status measures. Note that correlate restricts analysis to the 2,955
observations where data are available for all variables in the variable list. The related
command pwcorr, not demonstrated, with the sig option gives the statistical signifi-
cance of the correlations.

3.4.2 The regress command

The regress command performs OLS regression and yields an analysis-of-variance table,
goodness-of-fit statistics, coefficient estimates, standard errors, ¢ statistics, p-values, and
confidence intervals. The syntax of the command is

regress depvar [z’ndep'vars} [zf} [m] [weight] [, optionsJ

Other Stata estimation commands have similar syntaxes. The output from regress
is similar to that from many linear regression packages.

For independent cross-section data, the standard approach is to use the vce (robust)
option, which gives standard errors that are valid even if model errors are heteroskedas-
tic; see section 3.3.4. In that case, the analysis-of-variance table, based on the assump-
tion of homoskedasticity, is dropped from the output. We obtain

. * OLS regression with heteroskedasticity-robust standard errors
. regress ltotexp suppins phylim actlim totchr age female income, vce(robust)

Linear regression Number of obs = 2955
F( 7, 2947) = 126.97
Prob > F = 0.0000
R-squared = 0.2289
Root MSE = 1.2023

Robust
ltotexp Coef. Std. Err. t P>lt| [957. Conf. Intervall
suppins -+  .2556428  .0465982 5.49 0.000 .1642744 3470112
phylim .3020598 .057705 5.23 0.000 . 1889136 415206
actlim .3560054 .0634066 5.61 0.000 .2316797 4803311
totchr .3758201  .0187185 20.08 0.000 .3391175 .4125228
age .0038016  .0037028 1.03 0.305 ~.0034587 .011062
female -.0843275 . 045654 -1.85 0.065 -.1738444 .0051894
income .0025498  .0010468 2.44 0.015 .0004973 .0046023
cons 6.703737  .2825751 23.72 0.000 6.149673 7.257802

The regressors are jointly statistically significant, because the overall F' statistic of
126.97 has a p-value of 0.000. At the same time, much of the variation is unexplained
with R? = 0.2289. The root MSE statistic reports s, the standard error of the regression,
defined in (3.2). By using a two-sided test at level 0.0.5, all regressors are individually
statistically significant because p < 0.05, aside from age and female. The strong
statistical insigmificance of age may be due to sample restriction to elderly people and
the inclusion of several health-status measures that capture well the health effect of age.
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Statistical significance of coefficients is easily established. More important is the eco-
nomic significance of coefficients, meaning the measured impact of regressors on medical
expenditures. This is straightforward for regression in levels, because we can directly
use the estimated coefficients. But here the regression is in logs. From section 3.3.6, in
thelog-linear model, parameters need to be interpreted as semielasticities. For example,
the coefficient on suppins is 0.256. This means that private supplementary insurance
is associated with a 0.256 proportionate rise, or a 25.6% rise, in medical expenditures.
Similarly, large effects are obtained for the health-status measures, whereas health ex-
penditures for women are 8.4% lower than those for men after controlling for other
characteristics. The income coefficient of 0.0025 suggests a very small effect, but this
is misleading. The standard deviation of income is 22, so a 1-standard deviation in
income leads to a 0.055 proportionate rise, or 5.5% rise, in medical expenditures.

MEs in nonlinear models are discussed in more detail in section 10.6. The preceding
interpretations are based on calculus methods that consider very small changes in the
regressor. For larger changes in the regressor, the finite-difference method is more
appropriate. Then the interpretation in the log-linear model is similar to that for the
exponential conditional mean model; see section 10.6.4. For example, the estimated
effect of going from no supplementary insurance (suppins=0) to having supplementary
insurance (suppins=1) is more precisely a 100 x (e%%%¢ — 1), or 29.2%, rise.

The regress command provides additional results that are not listed. In particular,
the estimate of the VCE is stored in the matrix e (V). Ways to access this and other
stored results from regression have been given in section 1.6. Various postestimation
commands enable prediction, computation of residuals, hypothesis testing, and model
specification tests. Many of these are illustrated in subsequent sections. Two useful
commands are

. * Display stored results and list available postestimation commands
. ereturn list

(output omitted )
. help regress postestimation
(output omrtted)

3.4.3 Hypothesis tests

The test command performs hypothesis tests using the Wald test procedure that uses
the estimated model coefficients and VCE. We present some leading examples here, with
a more extensive discussion deferred to section 12.3. The F statistic version of the Wald
test is used after regress, whereas for many other estimators the chi-squared version
is instead used.

A common test is one of equality of coefficients. For example, consider testing that
having a functional limitation has the same impact on medical expenditures as having
an activity limitation. The test of Hp: Ophy1in = Bacelin 382INSt Ha® Ppryriz 7 Bacerin 1S
implemented as
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* Wald test of equality of coefficients

quietly regress ltotexp suppins phylim actlim totchr age female
> income, vce(robust)

test phylim = actlim
( 1) phylim - actlim = 0
F( 1, 2947)
Prob > F

0.27
0.6054

Because p = 0.61 > 0.05, we do not reject the null hypothesis at the 5% significance
level. There is no statistically significant difference between the coefficients of the two
variables.

The model can also be fitted subject to constraints. For example, to obtain the
least-squares estimates subject to Bpnyiin = Bactiim; We define the constraint using
constraint define and then fit the model using cnsreg for constrained regression
with the constraints() option. See exercise 2 at the end of this chapter for an exam-
ple.

Another common test is one of the joint statistical significance of a subset of the
regressors. A test of the joint significance of the health-status measures is one of Hp:
Bonyrin = 0, Facerin = 0, Brorcr = 0 against H,: at least one is nonzero. This is
implemented as

. * Joint test of statistical significance of several variables
. test phylim actlim totchr

(1) phylim = 0
(2) actlim =0
( 3) totchr =0
F( 3, 2947) = 272.36
Prob > F = 0.0000

These three variables are jointly statistically significant at the 0.0.5 level because p =
0.000 < 0.05.

3.4.4 Tables of cutput from several regressions

It is very useful to be able to tabulate key results from multiple regressions for both
one’s own analysis and final report writing,

The estimates store command after regression leads to results in e () being as-
sociated with a user-provided model name and preserved even if subsequent models
are fitted. Given one or more such sets of stored estimates, estimates table presents
a table of regression coefficients (the default) and, optionally, additional results. The
estimates stats command lists the sample size and several likelihood-based statistics.

We compare the original regression model with.a variant that replaces income with
educyr. The example usesseveral of the available options for estimates table.
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. * Store and then tabulate results from multiple regressions

. quietly regress ltotexp suppins phylim actlim totchr age female income,
> vce(robust)

. estimates store REG1

. quietly regress ltotexp suppins phylim actlim totchr age female educyr,
> vce(robust)

. estimates store REG2

. estimates table REG! REG2, b(%49.4f) se stats(N r2 F 11)
> keep(suppins income educyr)

Variable REG1 REG2
suppins 0.2556 0.2063
0.0466 0.0471
income 0.0025
0.0010
educyr 0.0480
0.0070

N | 2955.0000 2955.0000
r2 0.2289 0.2406
F 126.9723 132.5337
11 | -4.73e+03  -4.T71e+03

legend: b/se

This table presents coefficients (b) and standard errors (se), with other available options
including t statistics (t) and p-values (p). The statistics given are the sample size,
the R2, the overall F statistic (based on the robust estimate of the VCE), and the
log likelihood (based on the strong assumption of normal homoskedastic errors). The
keep() option, like the drop() option, provides a way to tabulate results for just the key
regressors of interest. Here educyr is a much stronger predictor than income, because it
is more highly statistically significant and R? is higher, and there is considerable change
in the coefficient of suppins.

3.4.5 Even better tables of regression output

The preceding table is very useful for model comparison but has several limitations. It
would be more readable if the standard errors appeared in parentheses. It would be
beneficial to be able to report a p-value for the overall F statistic. Also some work may
be needed to import the table into a table format in external software such as Excel,
Word, or IXTEX.

The user-written esttab command (Jann 2007) provides a way to do this, following
the estimates store command. A cleaner version of the previous table is given by
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. * Tabulate results using user-written command esttab to produce cleaner output
. esttab REGL REG2, b(%10.4f) se scalars(N r2 F 11) mtitles
> keep(suppins income educyr) title("Model comparison of REG1-REG2")

Model compariscn of REGL1-REG2

(1) (2)
REG1 REG2
suppins 0.2556%** 0.2063**x*
(0.0466) (0.0471)
income 0.0025*
(0.0010)
educyr 0.0480%*x*
(0.0070)
N 2955 2955
r2 0.2289 0.2406
F 126.9723 132.5337
11 -4733.4476 -4710.9578

Standard errors in parentheses
* p<0.0S, »* p<0.Cl, *** p<0.001

Now standard errors are in parentheses, the strength of statistical significance is given
using stars that can be suppressed by using the nostar option, and a title is added.

The table can be written to a file that, for example, creates a table in IATEX.

* Write tabulated results to a file in latex table format

quietly esttab REGL REG2 using musO3table.tex, replacc b(%410.4f) se
> scalars(N r2 F 11) mtitles keep(suppins age income educyr _cons)
> title("Model comparison of REGL-REG2")

Other formats include .rtf for rich text format (Word), .csv for comma-separated
values, and . txt for fixed and tab-delimited text.

As mentioned earlier, this table would be better if the p-value for the overall F
statistic were provided. This is not stored in e(). However, it is possible to calculate
the p-value given other variablesin e (). Theuser-written estadd command (.Jann 2005)
allows adding this computed p-value to stored results that can then be tabulated with
esttab. We demonstrate this for a smaller table to minimize output.

* Add a user-calculated statistic to the table
estimates drop REGL REG2

quietly regress ltotexp suppins phylim actlim totchr age female income,
> vce(robust)

estadd scalar pvalue = Ftail(e(df_r),e(df_m),e(F))
(output omitted)
estimates store REGL

quietly regress ltotexp suppins phylim actlim totchr age female educyr,
> vce(robust)
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estadd scalar pvalue = Ftail(e(df_r),e(df_m),e(F))

(output omitted)

estimates store REG2

esttab REGL REG2, b(410.4f) se scalars(F pvalue) mtitles keep(suppins)

(1) (2)
REGL REG2

suppins 0.2556%*x 0.2063»xx
(0.0466) (0.0471)
N 2955 2955
F 126.9723 132.5337
pvalue 0.0000 0.0000

Standard errors in parentheses
* p<0.05, ** p<0.01, **x p<0.001

The estimates drop command saves memory by dropping stored estimates that are no
longer needed. In particular, for large samples the sample inclusion indicator e (sample)
can take up much memory.

Related user-written commands by Jann (2005, 2007) are estout, a richer but more
complicated version of esttab, and eststo, which extends estimates store. Several
earlier nser-written commands, notably, outreg, also create tables of regression output
but are generally no longer being updated by their authors. The user-written reformat
command (Brady 2002) allows formatting of the usual table of output from a single
estimation command.

3.5 Specification analysis

The fitted model has R? = 0.23, which is reasonable for cross-section data, and most re-
gressors are highly statistically significant with the expected coefficientsigns. Therefore,
it is tempting to begin interpreting the results.

However, before doing so, it is useful to subject this regression to some additional
scrutiny because a badly misspecified model may lead to erroneous inferences. We
consider several specification tests, with the notable exception of testing for regressor
exogeneity, which is deferred to chapter 6.

3.5.1 Specification tests and model diagnostics

In microeconometrics, the most common approach to deciding on the adequacy of a
model is a Wald-test approach that fits a richer model and determines whether the data
support the need for a richer model. For example, we may add additional regressors to
the model and test whether they have a zero coefficient.
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Stata also presents the user with an impressive and bewildering menu of choices of
diagnostic checks for the currently fitted regression; see [R] regress postestimation.
Some are specific to OLS regression, whereas others apply to most regression models.
Some are visual aids such as plots of residuals against fitted values. Some are diagnostic
statistics such as infiuence statistics that indicate the relative importance of individual
observations. And some are formal tests that test for the failure of one or more assump-
tions of the model. We briefly present plots and diagnmostic statistics, before giving a
lengthier treatment of specification tests.

3.5.2 Residual diagnostic plots

Diagnostic plots are used less in microeconometrics than in some other branches of
statistics, for several reasons. First, economic theory and previous research provide a
lot of guidance as to the likely key regressors and functional form for a model. Studies
rely on this and shy away from excessive data mining. Secondly, microeconometric
studies typically use large datasets and regressions with many variables. Many variables
potentially lead to many diagnostic plots, and many observations make it less likely
that any single observation will be very influential, unless data for that observation are
seriously miscoded.

We consider various residual plots that can aid in outlier detection, where an outlier
is an observation poorly predicted by the model. One way to do this is to plot actual
values against fitted values of the dependent variable. The postestimation command
rviplot gives a transformation of this, plotting the residuals @; = y; — ¥; against the
fitted values ¥; = xﬁﬁ We have

. * Plot of residuals against fitted values
. quietly regress ltotexp suppins phylim actlim totchr age female income,
> vce(robust)

. rviplot

Residuals
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Figure 3.2. Residuals plotted against fitted values after OLS regression
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Figure 3.2 does not indicate any extreme outliers, though the three observations
with a residual less than —5 may be worth investigating. To do so, we need to generate
U by using the predict command, detailed in section 3.6, and we need to list some
details on those observations with & < —5. We have

* Details on the outlier residuals
predict uhat, residual

predict yhat, xb
list totexp ltotexp yhat uhat if uhat < -5, clean

totexp ltotexp yhat uhat
1. 3 1.098612 7.254341 -6.155728
2. 6 1.791759 7.513358 -5.721598
3. 9 2.197225 T7.631211  -5.433987

The three outlying residuals are for three observations with the very smallest total an-
nual medical expenditures of, respectively, $3, §6, and §9. The model evidently greatly
overpredicts for these observations, with the predicted logarithm of total expenditures
(yhat) much greater than ltotexp.

Stata provides several other residual plots. The rvpplot postestimation command
plotsresiduals against an individual regressor. The avplot command providesan added-
variable plot, or partial regression plot, that is a useful visual aid to outlier detection.
Other commands give component-plus-residual plots that aid detection of nonlinearities
and leverage plots. For details and additional references, see [R] regress postestima-
tion.

3.5.3 [Influential ocbservations

Some observations may have unusual influence in determining parameter estimates and
resulting model predictions.

Influential observations can be detected using one of several measures that are large
if the residual is large, the leverage measure is large, or both. The leverage measure
of the i¢th observation, denoted by h; equals the ith diagonal entry in the so-called
hat matrix H = X(X’'X) -1X. If h; is large, then y; has a big influence on its OLS
prediction §; because ¥ = Hy. Different measures, including h,, can be obtained by
using different options of predict. .

A commonly used measure is dfits;, which can be shown to equal the (scaled) differ-
ence between predictions of y; with and without the ith observation in the OLS regression
(so dfits means difference in fits). Large absolute values of dfits indicate an influential
data point. One can plot dfits and investigate further observe.tions with outlying values
of dfits. A rule of thumb is that observations with |dfits| > 2\/7;/_N may be worthy of
further investigation, though for large datasets this rule can suggest that many obser-
vations are influential.

The dfits option of predict can be used after regress provided that regression
is with default standard errors because the underlying theory presumes homoskedastic
errors. We have
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. * Compute dfits that combines outliers and leverage
. quietly regress ltotexp suppins phylim actlim totchr age female income

. predict dfits, dfits
. scalar threshold = 2*sqrt((e(df_m)+1)/e(N))

. display "dfits threshold = " %6.3f threshold
dfits threshold = 0.104

. tabstat dfits, stat (min pl p5 p95 p99 max) format(49.3f) col(stat)
variable min pl pPS pSS p99S max

dfits -0.421 -0.147 -0.083 0.085 0.127 0.221

. list dfits totexp ltotexp yhat uhat if abs(dfits) > 2+xthreshold & e(sample),

> clean
dfits  totexp ltotexp ybat ubat
1. +-.2319179 3 1.098612 7.254341 -6.155728
2. -.30029%4 6 1.791759 T7.513358 -5.721598
3. -.2T765266 9 2.197225 T7.631211  -5.433987
10.  -.2170063 30 3.401197 8.348724  -4.947527
42, -.2612321 103  4.634729 7.57982  -2.945091
44. -.4212185 110 4.70048 8.993904  -4.293423
108.  -.2326284 228 5.429346 7.971406 -2.54206
114, -.2447627 239 5.476463 T7.946239 -2.469776
137.  -.2177336 283 5.645447 T7.929719  -2.284273
211, -.211344 415 6.028278 8.028338 -2.00006
2925, 2207284 62346 11.04045 8.660131 2.380323

Here over 2% of the sample has [cfits| greater than the suggested threshold of 0.104.
But only 11 observations have |dfits| greater than two times the threshold. These
correspond to observations with relatively low expenditures, or in one case, relatively
high expenditures. We conclude that no observation has unusual influence.

3.5.4 Specification te'.;ts

Formal model-specification tests have two limitations. First, a test for the failure of
a specific model assumption may not be robust with respect to the failure of another
assumption that is Kot under test. For example, the rejection of the null hypothesis
of homoskedasticity may be due to a misspecified functional form for the conditional
mean. An example is given in section 3.3.5. Second, with a very large sample, even
trivial deviations from the null hypothesis of correct specification will cause the test to
reject the null hypothesis. For example, if a previously omitted regressor has a very
small coefficient, say, 0.000001, then with an infinitely large sample the estimate will be
sufficiently precise that we will always reject the null of zero coefficient.

Test of omitted variables

The most common specification test is to include additional regressors and test whether
they are statistically significant by using a Wald test of the null hypothesis that the
coefficient is zero. The additional regressor may be a variable not already included, a
transformation of a variable(s) already included such as a quadratic inage, or a quadratic
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with interaction terms in age and education. If groups of regressors are included, such
as a set of region dummies, test can be used after regress to perform a joint test of
statistical significance.

In some branches of biostatistics, it is common to include only regressors with p <
0.05. In microeconometri®s, it is common instead to additionally include regressors that
are statistically insignificant if economic theory or conventional practice includes the
variable as a control. This reduces the likelihood of inconsistent parameter estimation
due to omitted-variables bias at the expense of reduced precision in estimation.

Test of the Box—Cox model

A common specification-testing approach is to fit a richer model that tests the current
model as a special case and perform a Wald test of the parameter restrictions that lead
to the simpler model. The preceding omitted-variable test is an example.

Here we consider a test specific to the current example. We want to decide whether
a regression model for medical expenditures is better in logs than in levels. There is no
obvious way to compare the two models because they have different dependent variables.
However, the Box—Cox transform leads to a richer model that includes the linear and
log-linear models as special cases. Specifically, we fit the model with the transformed
dependent variable

vl —~1
9(v:,0) = 49— =xB+u

where § and 3 are estimated under the assumption that w; ~ N(0,o2). Three leading
cases are 1) g(y,0) =y—1if 0 =1; 2) g(y,) = Iny if 6 = 0; and 3) 9(v,0) =1-1/y
if § = —1. The log-linear model is supported if 8 is close to 0, and the linear model is
supported if § = 1.

The Box-Cox transformation introduces a nonlinearity and an additional unknown
parameter 6 into the model. This moves the modeling exercise into the domain of
nonlinear models. The model is straightforward to fit, however, because Stata provides
the boxcox command to fit the model. We obtain

. * Boxcox model with lhs variable transformed
. boxcox totexp suppins phylim actlim totchr age female income if totexp>0, nolog
Fitting comparison model

Fitting full model

Number of obs = 2955

LR chi2(7) = 773.02

Log likelihood = -28518.267 Prob > chi2 = 0.000
totexp Cocf. Std. Err. z P>lz| [95%4 Conf. Intervall

/theta .0758956 .0096386 7.87 0.000 .0570042 .0947869
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Estimates of scale-variant parameters

Coef .
Notrans
suppins .4459618
phylim .ST7317
actlim .6905939
totchr 6754338
age .0051321
female -.1767976
income .0044039
_cons 8.930566
/sigma 2.189679
Test Restricted LR statistic P-value
HO: log likelihood chi2 Prob > chi2
theta = -1 -37454.643 17872.75 0.000
theta = 0 -28550.353 64.17 0.000
theta = 1 -31762.809 6489.08 0.000

The null hypothesis of § = 0 is strongly rejected, so the log-linear model is rejected.
However, the Box—Cox model with general § is difficult to interpret and use, and the
estimate of 6§ = 0.0759 gives much greater support for a log-linear model ( = 0) than
the linear model (9 = 1). Thus we prefer to use the log-linear model.

Test of the functional form of the conditional mean

The linear regression model specifies that the conditional mean of the dependent variable
(whether measured in levels or in logs) equals x;3. A standard test that this is the
correct specification is a variable augmentation test. A common approach is to add
powers of §; = x/(3, the fitted value of the dependent variable, as regressors and a test
for the statistical significance of the powers.

The estat ovtest postestimation command provides a RESET test that regresses y
on x and 32, %% and %', and jointly tests that the coefficients of 52, 7%, and g* are zero.
We have

. * Variable augmentation test of conditional mean using estat ovtest

. quietly regress ltotexp suppins phylim actlim totchr age female income,
> vce (robust)

. estat ovtest

Ramsey RESET test using powers of the fitted values of ltotexp
Ho: model has no omitted variables
F(3, 2944) = 9.04
Prob > F = 0.0000

The model is strongly rejected because p = 0.000.
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An alternative, simpler test is provided by the linktest command. This regTesses y
on 7 and ¥, where now the original model regressors x are omitted, and it tests whether
the coefficient of §2 is zero. We have

. * Link test of functional form of conditional -mean
. quietly regress ltotexp suppins phylim actlim totchr age female income,
> vce(robust)

. linktest
Source ss df MS Number of obs = 2955
F( 2, 2952) = 454.81
Model 1301.41696 2 650.708481 Prob > F = 0.0000
Residual 4223.47242 2952 1.43071559 R-squared = 0.,2356
Adj R-squared = 0.2350
Total 5524.88938 2954 1.87030785 Root MSE = 1,1961
ltotexp Coef. Std. Err. t P>ltl [95% Conf. Intervall
~hat 4.429216 . 6779517 6.53 0.000 3.09991 5.758522
_hatsq -.2084091 .0411515 -5.06 0.000 -.2890976 -.1277206
_cons -14.01127 2.779936 -5.04 0.000 -19.46208 -8.56046

Again the null hypothesis that the conditional mean is correctly specified is rejected.
A likely reason is that so few regressors were included in the model. for pedagogical
reasons.

The two preceding commands had different formats. The first test used the estat
ovtest command, where estat produces various statistics following estimation and the
particular statistics available vary with the previous estimation command. The second
test used linktest, which is available for a wider range of models.

Heteroskedasticity test

One consequence of heteroskedasticity is that default OLS standard errors are incorrect.
Thiscan be readily corrected and guarded against by routinely using heteroskedasticity-
robust standard errors.

Nonetheless, there may be interest in formally testing whether heteroskedasticity is
present. For example, the retransformation methods for the log-linear model used in
wection 3.6.3 assume homoskedastic errors. In section 5.3, we present diagnostic plots
for heteroskedasticity. Here we instead present a formal test.

A quite general model of heteroskedasticity is
Var(ylx) = h(en + 2',)

where h(-) is a positive monotonic function such as exp(-) and the variables in z are
functions of the variables in x. Tests for heteroskedasticity are tests of

Ho: Qg = 0

and can be shown to be independent of the choice of function k(-). We reject Hyp at
the a level if the test statistic exceeds the a critical value of a chi-squared distribution
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with degrees of freedom equal to the number of components of z. The test is performed
by using the estat hettest postestimation command. The simplest version is the
Breusch—-Pagan Lagrange multiplier test, which is equal to N times the uncentered
explained sum of squares from the regression of the squared residuals on an intercept
and z. We use the iid option to obtain a different version of the test that relaxes the
default assumption that the errors are normally distributed.

Several choices of the components of z are possible. By far, the best choice is to
use variables that are a priori likely determinants of heteroskedasticity. For example, in
regressing the level of earnings on several regressors including years of schooling, it is
likely that those with many years of schooling have the greatest variability in earnings.
Such candidates rarely exist. Instead, standard choices are to use the OLS fitted value
¥, the default for estat hettest, or to use all the regressors so z = x. White’s test
for heteroskedasticity is equivalent to letting z equal unique terms in the products and
cross products of the terms in x.

We consider z = ¥ and z = x. Then we have

* Heteroskedasticity tests using estat hettest and option iid
quietly regress ltotexp suppins phylim actlim totchr age female income

estat hettest, iid

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of ltotexp

chi2(1)= 32.87
Prob > chi2 = 0.0000

estat hettest suppins phylim actlim totchr age female income, iid

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: suppins phylim actlim totchr age female income

chi2(7) = 93.13
Prob > chi2 = 0.0000

Both versions of the test, with z = ¥ and with z = x, have p = 0.0000 and strongly
reject homoskedasticity.

Omnibus test

An alternative to separate tests of misspecification is an omnibus test, which is a joint
test of misspecification in several directions. A leading example is the information ma-
trix (IM) test (see section 12.7), which is a test for correct specification of a fully para-
metric model based on whether the IM equality holds. For linear regression with normal
homoskedastic errors, the IM test can be shown to be a joint test of heteroskedasticity,
skewness, and nonnormal kurtosis compared with the null hypothesis of homoskedas-
ticity, symmetry, and kurtosis coefficient of 3; see Hall (1987).

The estat imtest postestimation command computes the joint IM test and also
splits it into its three components. We obtain
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* Ipformation matrix test
quietly regress ltotexp suppins phylim actlim totchr age female income

estat imtest

Cameron & Trivedi’'s decomposition of IM-test

Source chi2 df P
Heteroskedasticity 139.90 31 0.0000
Skewness 35.11 7 0.0000
Kurtosis 11.96 1 0.0005
Total 186.97 39 0.0000

The overall joint IM test rejects the model assumption that y ~ N(x’'3, 0‘21), because
p = 0.0000 in the Total row. The decomposition indicates that all three assumptions
of homoskedasticity, synunetry, and normal kurtosis are rejected. Note, however, that
the decomposition assumes correct specification of the conditional mean. If instead the
mean is misspecified, then that could be the cause of rejection of the model by the IM
test.

3.5.5 Tests have power in more than one direction

Tests can have power in more than one direction, so that if a test targeted to a particular
type of model misspecification rejects a model, it is not necessarily the case that this
particular type of model misspecification is the underlying problem. For example, a test
of heteroskedasticity may reject homoskedasticity, even though the underlying cause
of rejection is that the conditional mean is misspecified rather than that errors are
heteroskedastic.

To illustrate tlils example, we use the following simulatior: exercise. The DGP is one
with homoskedastic normal errors

y; = exp(1+0.25 X z; + 4 x z2) + uy,
z; ~U(0,1), wi~ N(0,1)

We instead fit a model with a misspecified conditional mean function:
y=P0G+ bz + G’ +v

We consider a simulation with a sample size of 50. We generate the regressors and
the dependent variable by using commands detailed in section 4.2. We obtain

* Simulation to show tests have power in more than one direction
clear all

set, obs 50
obs was 0, now 50

set. seed 10101

. gemerate x = runiform() // x - uniform(0,1)
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generate u = rnormal() // u - N(O,1)
generate y = exp(l + 0.25%x + 4*x"2) + u
generate xsq = x~2

regress y x xsq

Source ss df MS Number of obs = 50

. F( 2, 47) = 168.27

Moglel 76293.9057 2 38146.9528 Prob > F = 0.0000
Residyal 10654.8492 47 226.698919 R-squared = 0.8775
Adj R-squared = 0.8722

Total 86948.7549 49 1774.46438 Root MSE = 15.057

y Coef. Std. Err. t P>ltl [95%4 Conf. Intervall

% -228.8379 29.3865 -7.79 0.000 -287.9559 -169.7199

¥sq 342.7992 28.71815 11.94 0.000 285.0258 400.5727
-cens 28.68793 6.605434 4.34 0.000 15.39951 41.97635

The misspecified model seems to fit the data very well with highly statistically significant
regressors and an RZ of 0.88.

Now consider a test for heteroskedasticity:

. * Test for heteroskedasticity
. estat hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of Yy

chi2(1) 22.70
Prob > chi2 = 0.0000

This test strongly suggests-that the errors are heteroskedastic because p = 0.0000, even
though the DGP had homoskedastic errors.

The problem is that the regression function itself was misspecified. A RESET test
yields

* Test for misspecified conditional mean
estat ovtest

Ramsey RESET test using powers of the fitted values of y
Ho: model has no omitted variables
F(3, 44) = 2702.16
Prob > F = 0.0000

This strongly rejects correct specification of the conditional mean because p = 0.0000.

Going the other way, could misspecification of other features of the model lead to
rejection of the conditional mean, even though the conditional mean itself was cor-
rectly specified? This is an econometrically subtle question. The answer, in general, is
yes. However, for the linear regression model, this is not the case essentially because
consistency of the OLS estimator requires only that the conditional mean be correctly
specified.
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3.6 Prediction

For the linear regression model, the estimator of the conditional mean of y given x = xy,
B(y|xp) = x50, is the conditional predictor § = x;f*} We focus here on prediction for
each observation in the sample. We begin with prediction from a linear model for medical
expenditures, because this is straightforward, before turning to the log-linear model.

Further details on prediction are presented in section 3.7, where weighted average
prediction is discussed, and in sections 10.5 and 10.6, where many methods are pre-
sented.

3.6.1 In-sample prediction

The most common type of prediction is in-sample, where evaluation is at the observed
regressor values for each observation. Then ¥; = x;8 predicts B(y.|x;) far s =1,..., N.

To do this, we use predict after regress. The syntax for predict is

predict [type] newvar [zf} [m] [, options]

The user always provides a name for the created variable, newrsar. The default option is
the prediction ¥;. Other options yield residuals (usual, standardized, and studentized),
several leverage and influential observation measurcs, predicted values, and associated
standard errors of prediction. Wehave already used some of these options in section 3.5.
The predict command can also be used for out-of-sample prediction. When used for
in-sample prediction, it is good practice to add the if e (sample) qualifier, because this
ensures that prediction is for the same sample as that used in estimation.

We consider prediction based on a linear regression model in levels rather than logs.
We begin by reporting the regression results with totexp as the dependent variable.

* Change dependent variable to level of positive medical expenditures
use musO3data.dta, clear
keep if totexp > 0O

(109 observations deleted)
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. regress totexp suppins phylim actlim totchr age female income, vce(robust)

Linear regression Number of obs 2955
F( 7, 2947) 40.58
Prob > F 0.:0000
R-squared 0.1163
Root MSE 14285

Robust
totexp Coef. Std. Err. t P>ltl| [95% Conf. Intervall
suppins 724.8632 427.3045 1.70 0.090 -112.9824 1562.709
phylim 2389.019 544.3493 4.39 0.000 1321.675 3456.362
actlim 3900.491 705.2244 5.53 0.000 2517.708 5283.273
totchr 1844.377 186.8938 9.87 0.000 1477.921 2210.832
age -85.36264 37.81868 -2.26 0.024 -159.5163 -11.20892
female -1383.29 432.4759 -3.20 0.001 -2231.275 -535.3044
income 6.46894 8.570658 0.75 0.450 -10.33614 23.27402
_cons 8358.954 2847.802 2.94 0.003 2775.07 13942.84

We then predict the level of medical expenditures:

. * Prediction in model linear in levels
. predict yhatlovels
(option xb assumed; fitted values)

sumparize totexp yhatlecvels

Variable ‘ Obs Mean Std. Dev. Min Max
totexp 2955 7290.235 11990.84 3 125610
yhatlevels 2955 7290.235 4089.624 -236.3781 22559

The summary statistics show that on average the predicted value yhatlevels equals
the dependent variable. This suggests that the predictor does a good job. But this is
misleading because this is always the case after OLS regression in a model with an inter-
cept, since then residuals sum to zero implying > v; = 2. 9:. The standard deviation
of yhatlevels is $4,090, so there is some variation in the predicted values.

For this example, a more discriminating test is to compare the median predicted
and actual values. We have

* Compare median prediction and median actual value
tabstat totexp yhatlevels, stat (count pS0) col(stat)

variable N pS0
totexp 2955 3334
yhatlevels 2955 6464.692

There is considerable difference between the two.7 a consequence of the right-skewness
of the original data, which the linear regression model does not capture.

The stdp option provides the standard error of the ﬁrediction, and the stdf option
provides the standard error of the prediction for each sample observation, provided the



102 Chapter 3 Linear regression basics

original estimation command used the default VCE. We therefore reestimate without
vece (robust) and use predict to obtain

* Compute standard errors of prediction and forecast with default VCE
quietly regress totexp suppins phylim actlim totchr age female income

predict yhatstdp, stdp.
predict yhatstdf, stdf
summarize yhatstdp yhatstdf

Variable | obs Mean  Std. Dev. Min Max
yhatstdp 2955 572.7 129.6575 393.5964 2813.983
yhatstdf | 2955 11300.52 10.50946  11292.12 11630.8

The first quantity views x’LB as an estimate of the conditional mean x{3 and is quite
precisely estimated because the average standard deviation is $573 compared with an
average prediction of $7,290. The second quantity views x’3 as an estimate of the actual
value y; and is very imprecisely estimated because y; = x.3 + v,, and the error u; here
has relatively large variance since the levels equation has s = 11285.

More generally, microeconometric models predict poorly for a given individual, as
evidenced by the typically low values of R> obtained from regression on cross-section
data. These same models may nonetheless predict the conditional mean well, and it is
this latter quantity that is needed for policy analysis that focuses on average behavior.

3.6.2 Marginal effects

The nfx postestimation command calculates MEs and elasticities evaluated at sample
means, along with associated standard errors and confidence intervals where relevant.
The default is to obtain these for the quantity that is the default for predict. For
many estimation commands, including regress, this is the conditional mean. Then
mfx computes for each continuous regressor dE(y(x)/dz, and for 0/1 indicator variables
AE(y|x), evaluated at 8 = B and X = X.

For the linear model, the estimated ME of the jth regressor is Ej, so there is no need
to use mfx. But mfx can also be used to compute elasticities and semielasticities. For
example, the eyex option computes the elasticity dy/9z x {z/y), evaluated at sample
means, which equals Ej x (Z;/4) for the linear model. We have

.ox Computé elasticity for a specified regressor
. quietly regress totexp suppins phylim actlim totchr age female income,
> vce(robust)

. mfx, varlist(totchr) eyex

Elasticities after regress
y = Fitted values (predict)
7290.2352

variable ey/ex Std. Err. z p>lzl 954 Cc.I. 1 X

totchr .457613 .04481 10.21  0.000 .369793 .545433 1.8088
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A 1% increase in chronic problems is associated with a 0.46% increase in medical ex-
penditures. The varlist (totchr) option restricts results to just the regressor totchr.

The predict () option of mfx allows the computation of MEs for the other quantities
that can be produced using predict.

3.6.3 Prediction in logs: The retransformation problem

Transformingthe dependent variable by taking the natural logarithm complicates pre-
diction. It is easy to predict E(lny|x), but we are instead interested in E(y|x) because
we want to predict the level of medical expenditures rather than the natural logarithm.
The obvious procedure of predicting Iny and taking the exponential is wrong because
expitE(Iny)} # E(y), just as, for example, v/ E{y%) # E(y).
The log-linear model lny = x’8 + u implies that y = exp(x’B)exp(u). It follows
that
E(yilx:) = exp(x|8)E{exp(u.) }

The simplest prediction is e.\:p(xia), but this is wrong because it ignores the multiple
E{exp(u;)}. Ifit is assumed that u; ~ N(0,2), then it can be shown that E{exp(u;)} =
exp(0.50), which can be estimated by exp(0.567), where G2 is an unbiased estimator
of the log-linear regression model error. A weaker assumption is to assume that wu;
is independent and identically distributed, in which case we can consistently estimate
E{exp(u.)} by the sample average N ~* Z;\;l exp(U;); see Duan (1983).

Applying these methods to the medical expenditure data yields

* Prediction ia levels from a logarithmic model
quietly regress ltotexp suppins phylim actlim totchr age female income

quietly predict lyhat

generate yhatwrong = exp(lyhat)

generate yhatnormal = exp(lyhat)*exp(0.5*e(rmse)~2)
quietly predict uhat, residual

generate expuhat = exp(uhat)

quietly summarize expuhat

generate yhatdaan = r(mean)*exp(lyhat)

summarize totexp yhatwrong yhatnormal yhatduan yhatlevels

Var[iable Obs Mean Std. Dev. Min Max
J texp 2955 7290.235 11990.84 3 125610
yhatErong 2955  4004.453 3303.555 959.5991 37726.22
yhatnbrmal 2955 8249.927 6805.945 1976.955 77723.13
yhatduan 2955 8005.522 6604.318 1918.387 75420.57
yhatlevels 2955 7290.235  4089.624 -236.3781 22559

Ignoring the retransformation bias leads to a very poor prediction, because yhatwrong
has a mean of $4,004 compared with the sample mean of $7,290. The two alterna-
tive methods yield much closer average values of $8,250 and $8,006. Furthermore, the
predictions from log regression, compared with those in levels, have the desirable fea-
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ture of always being positive and have greater variability. The standard deviation of
vhatnormal, for example, is $6,806 compared with $4,090 from the levels model.

3.6.4 Prediction exercise

There are several ways that predictions can be used to simulate the effects of a policy
experiment. We consider the effect of a binary treatment, whether a person has supple-
mentary insurance, on medical expenditure. Here we base our predictions on estimates
that assume supplementary insurance is exogenous. A more thorough analysis could
instead use methods that more realistically permit insurance to be endogenous. As we
discuss in section 6.2.1, a variable is endogenous if it is related to the error term. Our
analysis here assumes that supplementary insurance is not related to the error term.

An obvious comparison is to compare the difference in sample means (71 ~ ¥g),
where the subscript 1 denotes those with supplementary insurance and the subscript
0 denotes those without supplementary insurance. This measure does not control for
individual characteristics. A measure that does control for individual characteristics is
the difference in mean predictions (§, — ¥,), where, for example, §j; denotes the average
prediction for those with health insurance.

We implement the first two approaches for the complete sample based on OLS re-
gression in levels and in logs. We obtain

. * Predicted effect of supplementary insurance: methods 1 and 2
. bysort suppins: summarize totexp yhatlevels yhatduan

=> suppins = 0

Variable Obs Mean Std. Dev. Min Max
totexp 1207 6824.303 11425.94 9 104823
yhatlevels 1207 6824.303 4077.064 -236.3781  20131.43
yhatduan 1207 6745.959 5365.255 1918.387 54981.73

~-> suppins =1

Variable Obs Mean Std. Dev. Min Max
totexp 1748 7611.963 12358.83 3 125610
yhatlevels 1748 7611.963 4068.397 502.9237 22559
yhatduan 1748 8875.255 7212.993 2518.538 75420.57

The average difference is $788 (from 7612 — 6824) using either the difference in sample
means or the difference in fitted values from the linear model. Equality of the two
is a consequence of OLS regression and prediction using the estimation sample. The
log-linear model, using the prediction based on Duan’s method, gives a larger average
difference of $2,129 (from 8875 — 6746).

A third measure is the difference between the mean predictions, one with suppins
set to 1 for all observations and one with suppins = 0. For the linear model, this is
simply the estimated coefficient of suppins, which is §725.
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For the log-linear model, we need to make separate predictions for each individual
with suppins set to 1 and with suppins set to 0. For simplicity, we make predictions
in levels from the log-linear model assuming normally distributed errors. To make these
changes and after the analysis have suppins returned to its original sample values, we
-use preserve and restore (see section 2.5.2). We obtain’

* Predicted effect of supplementary insurance: method 3 for log-linear model
quietly regress ltotexp suppins phylim actlim totchr age female income

preserv.e

quietly replace suppins = 1

quietly predict lyhatl

generate yhatnormall = exp(lyhatl)*exp(0.5*e(rmse)"2)
quietly replace suppins = 0

quietly predict lyhatO

generate yhatnormalO = exp(lyhat0)=exp(0.5*e (rmse) "2)
generate treateffect = yhatrnormall - yhatnormalO
summarize yhatnormall yhatnormalQO treateffect

Variable Obs Mean Std. Dev. Min Max
yhatnormall 2955 9077.072 7313.963  2552,825 77723.13
yhatnormalO 2955 7029.453 5664 .069 1976.955 60190.23
treateffect 2955 2047.619 1649.894 575.8701 17532.91

. restore

While the average treatment effect of $2,048 is considerably larger than that obtained
by using the difference in sample means of the linear model, it is comparable to the
estimate produced by Duan’s method.

3.7 Sampling weights

The analysis to date has presumed simple random sampling, where sample observations
have been drawn from the population with equal probability. In practice, however,
many microeconometric studies use data from surveys that are not representative of
the population. Instead, groups of key interest to policy makers that would have too
few observations in a purely random sample are oversampled, with other groups then
undersampled. Examples are individuals from racial minorities or those with low income
or living in sparsely populated states.

As explained below, weights should be used for estimation of population means and
for postregression prediction and computation of MEs. However, in most cases, the
regression itself can be fitted without weights, as is the norm in microeconometrics. If
weighted analysis is desired, it can be done using standard commands with a weighting
option, which is the approach of this section and the standard approach in microecono-
metrics. Alternatively, one can use survey commands as detailed in section 5.5.
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3.7.1 Weights

Sampling weights are provided by most survey datasets. These are called probability
weights or pweights in Stata, though some others call them inverse-probability weights
because they are inversely proportional to the probability of inclusion of the sample. A
pweight of 1,400 in a survey of the U.S. population, for example, means that the obser-
vation is representative of 1,400 U.S. residents and the probability of this observation
being included in the sample is 1/1400.

Most estimation commands allow probability weighted estimators that are obtained
by adding (pweight=weight], where weight is the name of the weighting variable.

To illustrate the use of sampling weights, we create an artificial weighting variable
(sampling weights are available for the MEPS data but were not included in the data
extract used in this chapter). We manufacture weights that increase the weight given to
those with more chronic problems. In practice, such weights might arise if the original
sampling framework oversampled people with few chronic problems and undersampled
people with many chronic problems. In this section, we analyze levels of expenditures,
including expenditures of zero. Specifically,

* Create artificial sampling weights
use musO3data.dta, clear

generate swght = totchr~2 + 0.5
summarize swght
Variable | Obs Mean Std. Dev. Min Max

swght | 3064 5.285574 6.029423 .5 49.5

What matters in subsequent analysis is the relative values of the sampling weights rather
than the absolute values. The sampling weight variable swght takes on values from 0.5
to 49.5, so weighted analysis will give some observations as much as 49.5/0.5 = 99 times
the weight given to others.

Stata offers three other types of weights that for most analyses can be igmored.
Analytical weights, called aweights, are used for the quite different purpose of compen-
sating for different observations having different variances that are known up to scale;
see section 5.3.4. For duplicated observations, fweights provide the number of dupli-
cated observations. So-called importance weights, or iweights, are sometimes used in
more advanced programming. ’

3.7.2 Weighted mean

If an estimate of a population mean is desired, then we should clearly weight. In this
example, by oversampling those with few chronic problems, we will have oversampled
people who on average have low medical expenditures, so that the unweighted sample
mean will understate population mean medical expenditures.
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Let w; be the population weight for individual . Then, by defining W = Z:V:I w;
to be the sum of the weights, the weighted mean 7y is

1 N

Y= w Ew;.yi '

=1

with variance estimator (assuming independent observations) V(g ) = {1/W(W —1)}

Zf;l wi(¥, —Fw)? These formulas reduce to those for the unweighted mean if equal
weights are used.

The weighted mean downweights oversampled observations because they will have a
value of pweights (and hence w;) that is smaller than that for most observations. We

have
. * Calculate the weighted mean
. mean totexp [pweight=sught]
Mean estimation Number of obs = 3064
Mean  Std. Err. [95/4 Conf. Intervall
totexp 10670.83 428.5148 9830.62 11511.03

The weighted mean of $10,671 is much larger than the unweightcd mcan of $7,031 (see
section 3.2.4) because the unweighted mean does not adjust for the oversampling of
individuals with few chronic problems.

3.7.3 Weighted regression

The weighted least-squares estimator for the regression of y; on X; with the weights w:
is given by
N N

-1
B 2 : ’
. Pw= ( =] wixix"") Zi:l Wil

The OLS estimator is the special case of equal weights with w; = wj for all ¢ and j.
The default estimator of the VCE is a weighted version of the heteroskedasticity-robust
version in (3.3), which assumes independent observations. If observations are clustered,
then the option vce(cluster clustvar) should be used.

Although the weighted estimator is easily obtained, for legitimate reasons many
microeconometric analyses do not use weighted regression even where sampling weights
are available. We provide a brief explanation of this conceptually difficult issue. For a
more complete discussion, see Cameron and Trivedi (2005, 818-821).

Weighted regression should be used if a census parameter estimate is desired. For
example, suppose we want to obtain an estimate for the U.S. population of the average
change in earnings associated with one more year of schooling. Then, if disadvantaged
minorities are oversampled, we most likely will understate the earnings increase, because
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disadvantaged minorities are likely to have earnings that are lower than average for their
given level of schooling. A second example is when aggregaze state-level data are used
in a natural experiment setting, where the goal is to measure the effect of an exogenous
policy change that affects some states and not other states. Intuitively, the impact on
more populous states should be given more weight. Note that these estimates are being
given a correlative rather than a causal interpretation.

Weighted regression is not needed if we make the stronger assumptions that the DGP
is the specified model y; = x!3 + u: and sufficient controls are assumed to be added
so that the error F(u;/x;) = 0. This approach, called a control-function approach
or a model approach, is the approach usually taken in microeconometric studies that
emphasize a causal interpretation of regression. Under the assumption that E(u.;ix.,) =
0, the weighted least-squares estimator will be consistent for 3 for any choice of weights
including equal weights, and if . is homoskedastic, the most efficient estimator is the
OLS estimator, which uses equal weights. For the assumption that F(u;|x;) = 0 to be
reasonable, the determinants of the sampling frame should be included in the controls
x and should not be directly determined by the dependent variable y.

These points carry over directly to nonlinear regression models. In most cases, mi-
croeconometric analyses take on a model approach. In that case, unweighted estimation
is appropriate, with any weighting based on efficiency grounds. If a census-parameter
approach is being taken, however, then it is necessary to weight.

For our data example, we obtain

. * Perform weighted regression
. regress totexp suppins phylim actlim totchr age female income [pweight=swght]
(sum of wgt is  1.6195e+04)

Linear regression Number of obs = 3064
F( 7, 3056) = 14.08
Prob > F = 0.0000
R-squared = 0.0977
Root MSE = 13824

Robust
totexp Coef. Std. Err. t P>lt! [95% Conf. Intervall
suppins 278.1578  825.6959 0.34 0.736 -1340.818 1897.133
phylim 2484.52 933.7116 2.66 0.008 653.7541 4315.286
actlim 4271.154  1024.686 4.17  0.000 2262.011 6280.296
totchr 1819.929  349.2234 5.21 0.000 1135.193 2504 .666
age -59.3125 68.01237 -0.87 0.383 -192.6671 74.04212
female -2654.432 911.6422 -2.91 0.004 -4441.926 -866.9381
income 5.042348 16.6509 0.30 0.762 -27.60575 37.69045
_cons 7336.758 5263.377 1.39 0.163 -2983. 359 17656.87

The estimated coefficients of all statistically significant variables aside from f emale are
within 10% of those from unweighted regression (not given for brevity). Big differences
between weighted and unweighted regression would indicate that E(u;x;) 7 0 because
of model misspecification. Note that robust standard errors are reported by default.
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3.7.4 Weighted prediction and MEs

After regression, unweighted prediction will provide an estimate of the sample-average
value of the dependent variable. We may instead want to estimate the population-mean
value of the dependent variable. Then sampling weights-should be used in forming an
average prediction.

This point is particularly easy to see for OLS regression. Because 1/N ) ,(y: —
7:) = 0, since in-sample residuals sum to zero if an intercept is included, the average
prediction 1/N 3, §i equals the sample mean 7. But given an unrepresentative sample,
the unweighted sample mean 7 may be a poor estimate of the population mean. Instead,
we should use the weighted average prediction 1/N >, w:¥;, even if 3; is obtained by
using unweighted regression.

For this to be useful, however, the prediction should be based on a model that
includes as regressors variables that control for the unrepresentative sampling.

For our example, we obtain the weighted prediction by typing

* Weighted prediction
quietly predict yhatwols

mean yhatwols [pweight=sught], noheader

Mean Std. Err. (95% Conf. Intervall

yhatwols 10670.83 138.0828 10400.08 10941.57
mean yhatwols, noheader // unweighted prediction

Mean Std. Err. [95%4 Conf. Intervall

yhatwols 7135.206 78.57376 6981.144 7289.269

The population mean for medical expenditures is predicted to be $10,671 using weighted
prediction, whereas the unweighted prediction gives a much lower value of $7,135.

Weights similarly should be used in computing average MEs. For the linear model,
the standard ME 9E{y;|x;)/0z:; equals §; for all observations, so weighting will make
no difference in computing the marginal effect. Weighting will make a difference for
averages of other marginal effects, such as elasticities, and for MEs in nonlinear models.

3.8 OLS using Mata

Stata offers two different ways to perform computations using matrices: Stata matrix
commands and Mata functions (which are discussed, respectively, in appendices A
and B).

Mata, introduced in Stata 9, is much richer. We illustrate the use of Mata by using
the same OLS regression as that in section 3.4.2.
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The program is written for the dependent variable provided in the local macro y and
the regressors in the local macro x1ist. We begin by reading in the data and defining
the local macros.

. * OLS with White robust standard errors using Mata
. use mus0O3data.dta, clear

. keep if totexp > 0 // Analysis for positive medical expenditures only
(109 observations deleted)

. gemerate cons = 1
. local y ltotexp

. local xlist suppins phylim actlim totchr age female income cons

We then move into Mata. The st_view() Mata function is used to transfer the Stata
data variables to Mata matrices y and X, with tokens("*) added to convert “x1list "
to a comma-separated list with each entry in double quotes, necessary for st_view().

The key part of the program forms B = (X'X)"'X'y and 7(B) = (N/N - K)
(X/X)™H(,; @xix])(X’X)~ . The cross-product function cross(X,X) is used to form
X’X because this handles missing values and is more efficient than the more obvious X?X.
The matrix inverse is formed by using cholinv() because this is the fastest method in
the special case that the matrix is symmetric positive definite. We calculate the K x K
matrix Y, Urx;x}; as 3, (@,x}) (Wix}) = A’A, where the N x K matrix A has an ith
row equal to ¥;x;. Now @;x} equals the ith row of the IV x 1 residual vector U times the
ith row of the N x K regressor matrix X, so A can be computed by element-by-element
multiplication of G by X, or (e:*X), where e is U. Alternatively, 3, #%x;x} = X'DX,
where D is an N x N diagonal matrix with entries @2, but the matrix D becomes
exceptionally large, unnecessarily so, for a large N.

. The Mata program concludes by using st.matrix() to pass the estimated ,5 and
V(B) back to Stata.

. mata

mata (type end to exit)
// Create y vector and X matrix from Stata dataset

st_view(y=., ., ""y™") // y is nx1

st_view(X=., ., tokens(" xlist“")) // X is nxk

XXinv = cholinv(cross(X,X)) // XXinv is inverse of X°X

b = XXinv*cross(X,y) // b= [(XX)-1l*X"y

0o =y - X«b

o = rows(X)

k = cols(X)

s2 = (e"e)/(n-k)

vdef = s2*XXinv // default VCE not used here
vwhite = XXinv*((e:*X) "(e:*X)*n/(n-k))*XXinv // robust VCE
st_matrix("b",b") // pass results from Mata to Stata
st_matrix("V",vwhite) // pass results from Mata to Stata

: end
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Once back in Stata, we use ereturn to display the results in a format similar to that
for built-in commands, first assigning names to the colhunns and rows of b and V.

. * Use Stata ereturn display to present nicely formatted results

matrix colmames b = “xlist” ~
matrix colnames V = “xlist’
matrix rownames V = “xlist”

ereturn post b V
ereturn display

Coef. Std. Err. z P>lzl [95% Conf. Intervall

suppins .2556428 .0465982 5.49 0.000 .1643119 .3469736
phylim .3020598 .057705 5.23 0.000 . 18896 .4151595
actlim .3560054 .0634066 5.61 0.000 .2317308 .48028
totg¢hr .3758201 .0187185 20.08 0.000 .3391326 .4125077
3ge .0038016 .0037028 1.03 0.305 -. 0034558 .011059
female -.0843275 .045654 -1.85 0.065 -.1738076 .0051526
income . 0025498 .0010468 2.44 0.015 .0004981 .0046015
cons 6.703737 .2825751 23.72 0.000 6.1499 7.257575

The results are exactly the same as those given in section 3.4.2. when we used regress
with the vce (robust) option.

3.0 Stata resources

The key Stata references are [U] User's Guide and [R] regress, [R] regress postes-
timation, [R| estimates, [R] predict, and [R] test. A useful user-written command
is estout. The material in this chapter appears in many econometrics texts, such as
Greene (2008).

3.10

1.

Exercises

Fit the model in section 3.4 using only the first 100 observations. Compute stan-
dard errors in three ways: default, heteroskedastic, and cluster-robust where
clustering is on the number of chronic problems. Use estimates to produce a
table with three sets of coefficients and standard errors, and comment on any
appreciable differences in the standard errors. Construct a similar table for three
alternative sets of heteroskedasticity-robust standard errors, obtained by using the
vce (robust), vce (hc2), and vce (hc3) options, and comment on any differences
between the different estimates of the standard errors.

. Fit the model in section 3.4 with robust standard errors reported. Test at 5%

the joint significance of the demographic variables age, female, and income. Test
the hypothesis that being male (rather than female) has the same impact on
medical expenditures as aging 10 years. Fit the model under the constraint that
Bpryiin = Bace1sn bY first typing constraint 1 phylim = actlim and then by using
cosreg with the constraints(1) option.
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. Fit themodel in section 3.5, and implement the RESET test manually by regressing

yon x and 32, ¥, and §¢ and jointly testing that the coefficients of §2, 7°, and J*
are zero. To get the same results as estat ovtest, do you need to use default or
robust estimates of the VCE in this regression? Comment. Similarly, implement
linktest by regressing y on J and §> and testing that the coefficient of ° is
zero. To get the same results as linktest, do you need to use default or robust
estimates of the VCE in this regression? Comment.

. Fit the model in section 3.5, and perform the standard Lagrange multiplier test

for heteroskedasticity by using estat hettest with z = x. Then implement the
test manually as 0.5 times the explained sum of squares from the regression of y;
on an intercept and z,, where y; = {@?/(1/N) 2 @2} — 1 and 1; is the residual
from the original OLS regression. Next use estat hettest with the iid option
and show that this test is obtained as IV x R? where R? is obtained from the
regression of &7 on an intercept and z;.

. Fit the model in section 3.6 on levels, except use all observations rather than

those with just positive expenditures, and report robust standard errors. Predict
medical expenditures. Use correlate toobtain the correlation coefficient between
the actual and fitted value and show that, upon squaring, this equals R> Show
that the linear model mfx without options reproduces the OLS coefficients. Now
use mfx with an appropriate option to obtain the income elasticity of medical
expenditures evaluated at sample means.

. Fit the model in section 3.6 on levels, using the first 2,000 observations. Use these

estimates to predict medical expenditures for the remaining 1,064 observations,
and compare these with the actual values. Note that the model predicts very
poorly in part because the data were ordered by totexp.
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4.1 Introduction

Simulation by Monte Carlo experimentation is a useful and powerful methodology for
investigating the properties of econometric estimators and tests. The power of the
methodology derives from being able to define and control the statistical environment
in which the investigator specifies the data-generating process (DGP) and generates data
used in subsequent experiments.

Monte Carlo experiments can be used to verify that valid methods of statistical
inference are being used. An obvious example is checking a new computer program or
algorithm. Another example isinvestigating the robustness of an established estimation
or test procedure to deviations from settings where the properties of the procedure are
known.

Even when valid methods are used, they often rely on asymptotic results. We may
want to check whether these provide a good approximation in samples of the size typi-
cally available to the investigators. Also asymptotically equivalent procedures may have
different properties in finite samples. Monte Carlo experiments enable finite-sample
comparisons.

This chapter deals with the basic elements common to Monte Carlo experiments:
computer generation of random numbers that mimic the theoretical properties of real-
izations of random variables; commands for repeated execution of a set of instructions;
and machinery for saving, storing, and processing the simulation output, generated in
an experiment, to obtain the summary measures that are used to evaluate the proper-
ties of the procedures under study. We provide a series of examples to illustrate various
aspects of Monte Carlo analyses.

The chapter appears early in the book. Simulation is a powerful pedagogic tool for
exposition and illustration of statistical concepts. At the simplest level, we can use
pseudorandom samples to illustrate distributional features of artificial data. The goal
of this chapter is to use simulation to study the distributional and moment properties
of statistics in certain idealized statistical environments. Another possible use of the
Monte Carlo methodology is to check the correctness of computer code. Many applied
studies use methods complex enough that it is easy to make mistakes. Often these
mistakes could be detected by an appropriate simulation exercise. We believe that sim-
ulation is greatly underutilized, even though Monte Carlo experimentation is relatively
straightforward in Stata.

113



114 Chapter 4 Simulation

4.2 Pseudorandom-number generators: introduction

Suppose we want to use simulation to study the properties of the ordinary least-squares
estimator (OLS) estimator in the linear regression model with normal errors. Then,
at the minimum, we need to make draws from a specified normal distribution. The
literature on (pseudo) random-number generation contains many methodsof generating
such sequences of numbers. When we use packaged functions, we usually do not need to
know the details of the method. Yet the match between the theoretical and the sample
properties of the draws does depend upon such details.

Stata introduced a new suite of fast and easy-to-use random-number functions (gen-
erators) in mid-2008. These functions begin with the letter r (from random) and can be
readily installed via an update to version 10. The suite includes the uniform, normal,
binomial, gamma, and Poisson functions that we will use in this chapter, as well as
several others that we do not use. The functions for generating pseudorandom numbers
are summarized in help functions.

To a large extent, these new functions obviate the previous methods of using one’s
own generators or user-written commands to generate pseudorandom numbers other
than the uniform. Nonetheless, there can sometimes be a need to make draws from
distributions that are not included in the suite. For these draws, the uniform distribution
is often the starting point. The new runiferm() function generates exactly the same
uniform draws as uniform(), which it replaces.

4.2.1 Uniform random-number generation

The term random-number generation is an oxymoron. It is more accurate to use the
term pseudorandom numbers. Pseudorandom-number generators use deterministic de-
vices to produce long chains of numbers that mimic the realizations from some target
distribution. For uniform random numbers, the target distribution is the uniform dis-
tribution from 0 to 1, for which any value between 0 and 1 is equally likely. Given such
a sequence, methods exist for mapping these into sequences of nonuniform draws from
desired distributions such as the normal.

A standard simple generator for uniform draws uses the deterministic rule X; =
(kXj—1 + c)modm, j = 1,...,J, where the modulus operator a mod b forms the
remainder when o is divided by b, to produce a sequence of J integers between 0 and
m. Then R; = X /m is a sequence of J numbers betweer. 0 and 1. If computation is
done using 32-bit integer arithmetic, then m = 2*! — 1 and the maximum periodicity is
231 _ 1~ 2.1 x 109, but it is easy to select poor values of &, ¢, and Xg so that the cycle
repeats much more often than that.

This generator is implemented using Stata function runiform(), a 32-bit KISS gen-
erator that uses good values of & and ¢. The initial value for the cycle, X, is called
the seed. The default is to have this set by Stata, based on the computer clock. For
reproducibility of results, however, it is best to actually set the initial seed by using set
seed. Then, if the program is rerun at a later time or by a different researcher, the
same results will be obtained.
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To obtain and display one draw from the uniform, type

. * Single draw of a uniform number
. set seed 10101

. scalar u = runiform()

. display u
.16796649

This number is internally stored at much greater precision than the eight displayed
digits.

The following code obtains 1,000 draws from the uniform distribution and then
provides some details on these draws:

. * 1000 draws of uniform numbers
. quietly set obs 1000

. set seed 10101

. generate x = runiform()

. list x in 1/5, clean

x
. 1679665
.3197621
.7911349
.7193382
.5408687

. summarize x

Variable | Obs Mean Std. Dev. Min Max

b wWwN -

X | 1000 .5150332 .2934123 .0002845  .9993234

The 1,000 draws have a mean of 0.515 and a standard deviation of 0.293, close to the
theoretical values of 0.5 and |/1/12 = 0.289. A histogram, not given, has ten equal-
width bins with heights that range from 0.8 to 1.2, close to the theory of equal heights
of 1.0.

The draws should be serially uncorrelated, despite a deterministic rule being used
to generate the draws. To verify this, we create a time-identifier variable, t, equal to
the observation number (. n), and we use tsset to declare the data to be time series
with time-identifier t. We could then use the corrgram, ac, and pac commands to
test whether autocorrelations and partial autocorrelations are zero. We more simply
use pwcorr to produce the first three autocorrelations, where L2.x is the x variable
lagged twice and the star(0.05) option puts a star on correlations that are statistically
significantly different from zero at level 0.05.

* First three autocorrelations for the uniform draws
generate t = _n '
tsset t
time variable: t, 1 to 1000
delta: 1 urnit
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puco:.:r x L.x L2.x L3.x, star(0.05)

X L.x L2.x L3.x
x 1.0000
L.x -0.0185 1.0000
L2.x -0.0047 -0.0199 1. 0000
L3.x 0.0116 -0.0059 -0.0207 1.0000

The autocorrelations are low, and none are statistically different from zero at the 0.05
level. Uniform random-number generators used by packages s.ich as Stata are, of course,
subjected to much more stringent tests than these.

4.2.2 Draws from normal

For simulations of standard estimators such as OLS, nonlinear least squares (NLS), and
instrumental variables (1V), all that is needed are draws from the uniform and normal
distributions, because normal errors are a natural starting point and the most common
choices of distribution for generated regressors are normal and uniform.

The command for making draws from the standard normal has the following simple
syntax:
generate varname = rnormal()

To make draws from N(m,s2), the corresponding command is

generate varname = rnormal (m ,8)

Note that s > 0is the standard deviation. The arguments m and s can be numbers or
variables.

Draws from the standard normal distribution also can be obtained as a transforma-
tion of draws from the uniform by using the inverse probability transformation method
explained in section 4.4.1; that is, by using

generate varname = invnormal(runiform())

where the new function runiform() replaces uniform() in the older versions.

The following code generates and summarizes three pseudorandom variables with
1,000 observations each. The pseudorandom variables have cistributions uniform(0, 1),
standard normal, and normal with a mean of 5 and a standard deviation of 2.

* normal and uniform
clear

quietly set obs 1000
set seed 10101 // set the seed

generate uniform = runiform() // uniform(0,1)
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generate stnormal .= rnormal() // N(O,1)
generate normSand2 = raormal(5,2)

tabstat uniform stnormal normSand2, stat(mean sd skew kurt min max) col(stat)

varjable mean sd skewness kurtosis' min max
unfiform .5150332 .2934123 -.0899003 1.318878 .0002845 .9993234
stnprmal .0109413 1.010856 .0680232 3.130058 ~2.978147 3.730844
normpand2 - 4.995458 1.970729 -.0282467 3.050581 -3.027987 10.80905

The sample mean and other sample statistics are random variables; therefore, their
values will, in general, differ from the true population values. As the number of obser-
vations grows, each sample statistic will converge to the population parameter because
each sample statistic is a consistent estimator for the population parameter.

For normSand2, the sample mean and standard deviation are very close to the the-
oretical values of 5 and 2. Output from tabstat gives a skewness statistic of —0.028
and a kurtosis statistic of 3.051, close to 0 and 3, respectively.

For draws from the truncated normal, see section 4.4.4, and for draws from the
multivariate normal, see section 4.4.5.

423 Draws from t, chi-squared, F, gamma, and beta

Stata’s library of functions contains a number of generators that allow the user to draw
directly from a number of common continuous distributions. The function formats are
similar to that of the rnormal () function, and the argument(s) can be a number or a
variable.

Let ¢(n) denote Students' ¢ distribution with n degrees of freedom, x*(m) denote
the chi-squared distribution with m degrees of freedom, and F'(h,n) denote the F dis-
tribution with A and » degrees of freedom. Draws from #(n) and x? (k) can be made
directly by using the rt(df) and rchi2 (df) functions. We then generate F(h,n) draws
by transformation because a function for drawing directly from the F' distribution is
not available.

The following example generates draws from #(10), x¥2(10), and F(10, 5).

* t, chi-squared, and F with constant degrees of freedom
clear

quietly set obs 2000
set seed 10101

generate xt = rt(10) // result xt - t(10)

generate xc = rchi2(10) // result xc . chisquared(10)
generate xfn = rchi2(10)/10 // result numerator of F(10,5)
generate xfd = rchi2(10)/5 // result denominator of F(10,5)

generate xf = xfn/xfd // result zf . F(10,5)
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. summarize xt xc xf

Variable Obs Mean Std. Dev. Min Max
xt 2000 .0295636 1.118426 -5.390713 4.290518
xc 2000 9.967206 4.530771 .7512587  35.23849
x£ 2000 1.637549 2.134448 .0511289  34.40774

The #(10) draws have a sample mean and a standard deviation close to the theoretical
values of 0 and +/10/(10 —2) = 1.118; the x?(10) draws have a sample mean and
a standard deviation close to the theoretical values of 10 and /20 = 4.472; and the
F(10,5) draws have a sample mean close to the theoretical value of 5/(5 — 2) = 1.7.
The sample standard deviation of2.134 differs from the theoretical standard deviation
of /2 x 5 x 13/(10 x 32 x 1) = 2.687. This is because of randomness, and a much
larger number of draws eliminates this divergence.

Using rbeta(a,b), we can draw from a two-parameter beta with the shape param-
eters a,b > 0, mean a/(a+ b), and variance ab/(a + b)%(a +b+ 1). Using rgamma(a,b),
we can draw from a two-parameter gamma with the shape parameter a > 0, scale
parameter b > 0, mean ab, and variance ab?.

4.2.4 Draws from binomial, Poisson, and negative binomial

Stata functions also generate draws from some leading discrete distributions. Again the
argument(s) can be a number or a variable:

Let Bin(n,p) denote the binomial distribution with positive integer n trials (n) and
success probability p, 0 < p < 1, and let Poisson(m) denote the Poisson distribution
with the mean or rate parameter m. The rbinomial(n,p) function generates random
draws from the binomial distribution, and the rpoisson{m) function makes draws from
the Poisson distribution.

We demonstrate these functions with an argument that is a variable so that the
parameters differ across draws.

Independent (but not identically distributed) draws from binomial

As illustration, we consider draws from the binomial distribution, when both the prob-
ability p and the number of trials » may vary over 2.

. * Discrete rv’s: binomial
. set seed 10101

. generate pl = runiform() // bere pl-uniform(0,1)
. generate trials = ceil(10*runiform()) // here # trials varies btwn 1 & 10

. generate xbin = rbinomial(trials,pl) // draws from binomial(m,pl)
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summarize pl trials xbin

Variable Obs Mean Std. Dev. Min Max
pl 2000 .5155468 .2874989 .0002845 .9995974
trials 2000 5.438 2.887616 1 10
xbin 2000 2.753 2.434328 0 10

The DGP setup implies that the number of trials n is a random variable with an expected
value of 5.5 and that the probability p is a random variable with an expected value of
0.5. Thus we expect that xbin has a mean of 5.5 x 0.5 = 2.75, and this is approximately
the case here.

Independent (but not identically distributed) draws from Poisson

For simulating a Poisson regression DGP, denoted y ~ Poisson(u), we need to make
draws that are independent but not identically distributed, with the mean p varying
across draws because of regressors.

We do so in two ways. First, let p; equal xb=4+2xx with x=runiform(). Then
4 < y; < 6. Second, let t; equal xb times xg where xg=rgamma(1,1), which yields
a draw from the gamma distribution with a mean of 1 x 1 = 1 and a variance of
1 x12 =1, Then g > 0. In both cases, the setup can be shown to be such that the
ultimate draw has a mean of 5, but the variance differs from 5 for the independent and
identically distiibuted (i.i.d.) Poisson because in neither case are the dvaws fom an
identical distribution. We obtain

. * Discrete rv’s: independent poisson and negbin draws
. set seed 10101

. generate xb= 4 + 2*runiform()

. gemerate xg = rgamma(1l,1) // draw from gamma;E(v)=1

. gemerate xbh = xb*xg // apply multiplicative heterogeneity
. generate xp = rpoisson(5) // result xp - Poisson(5)

., generate xpl = rpoisson(xb) // result xpl - Poisson(xb)

. generate xp2 = rpoisson(xbh) // result xp2 - NB(xb)

. summarize xg xb xp xpl xp2

Variable Obs Mean Std. Dev. Min Max
xg 2000 1.032808 1.044434 .000112 8.00521
xb 2000 5.031094 .5749978 4.000569 5.999195
Xp 2000 5.024 2.300232 0 14
xpl 2000 4.976 2.239851 0 14
xp2 2000 5.1375 5.676945 0 44

The xb variable lies between 4 and 6, asexpected, and the xg gamma variable has a mean
and variance close to 1, as expected. For a benchmark comparison, we make draws of xp
from Poisson(5), which has a sample mean close to 5 and a sample standard deviation
close to V5 = 2.236. Both xpl and xp2 have means close to 5. In the case of xp2,
the model has the multiplicative unobserved heterogeneity term xg that is itself drawn
from a gamma distribution with shape and scale parameter both set to 1. Introducing
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this type of heterogeneity means that xp2 is drawn from a distribution with the same
mean as that of xpi1, but the variance of the distribution is larger. More specifically,
Var(xp2|xb) = xbx(1+xb), using results in section 17.2.2, leading to the much larger
standard deviation for xp2.

The second examp!e makes a draw from the Poisson~gamma mixture, yielding the
negative binomial distribution. The rnbinomial() function draws from a different
parameterization of the negative binomial distribution. For this reason, we draw from
the Poisson—gamma mixture here and in chapter 17.

Histograms and density plots

For a visual depiction, it is often useful to plot a histograin or kernel density estimate
of the generated random numbers. Here we do this for the draws xc from x?*(10) and
xp from Poisson(5). The results are shown in figure 4.1.

. * Example of histogram and kermel density plus graph combine
. quietly twoway (histogram xc, width(1)) (kdemsity xc, lwidth(thick)),
> title("Draws from chisquared(10)")

. quietly graph save musO4cdistr.gph, replace

. quietly twoway (histogram xp, discrete) (kdemsity xp, lwidth(thick) w(1)),
> title("Draws from Poisson(mu) for S<mu<6")

. quietly graph save musO4poissdistr.gph, replace
. graph combine musO4cdistr.gph musO4poissdistr.gph,
> title ("Random-number generation examples", margin(b=2) size(vlarge))

Random-number generation examples

Draws from chisquared(10) Draws from Poisson{mu) for 5<mu<6
~ 4

40 0 5 o 15
E Donglly  em— kdons«ych EEGHT Dencly

kdonslty xp

Figure 4.1. x?(10) and Poisson(5) draws
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4.3 Distribution of the sample mean

As an introductory example of simulation, we demonstrate the central limit theorem
result, (Zy — p)/(0/VN) — N(0,1); i.e., the sample mean is approximately normally
distributed as N — oo. We consider a random variable that has the uniform distribu-
tion, and a sample size of 30.

We begin by drawing a single sample of size 30 of the random variable X that is uni-
formly distributed on (0,1), using the runiform{} random-number function. To ensure
the same results are obtained in future runs of the same code or on other machines, we
use set seed. We have

. * Draw 1 sample of size 30 from uniform distribution
. quietly set obs 30

. set seed 10101

. gemerate x = runiform()
To see the results, we use summarize and histogram. We have

. * Summarize x and produce a histogram
. summarize x

Variable ! Obs Mean Std. Dev. Min Max
[

X 30 .5459987 .2803788 .0524637 .9983786
. quietly histogram x, width(0.1) xtitle("x from one sample")

o 4

0 2 4 ) 8 1
x from ono samplo

Figure 4.2. Histogram for one sample of size 30

The summary statistics show that 30 observations were generated and that for this
sample T = 0.546. The histogram for this single sample of 30 uniform draws, given in
figure 4.2, looks nothing like the bell-shaped curve of a normal, because we are sampling
from the uniform distribution. For very large samples, this histogram approaches a
horizontal line with a density value of 1. .
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To obtain the distribution of the sample mean by simulation, we redo the preceding
10,000 times, obtaining 10,000 samples of size 30 and 10,000 sample means Z. These
10,000 sample means are draws from the distribution of the sample-mean estimator. By
the central limit theorem, the distribution of the sample-mean estimator has approxi-
mately a normal distribution. Because the mean of a uniform(0, 1) distribution is 0.5,
the mean of the distribution of the saimple-mean estimator is0.5. Because the standard
deviation of a uniform(0,1) distribution is y/1/12 and each of the 10,000 samples is
of size 30, the standard deviation of the distribution of the sample-mean estimator is

{1/12)/30 = 0.0527.

4.3.1 Stata program

A mechanism for repeating the same statistical procedure 10,000 times is to write a
program (see appendix A.2 for more details) that does the procedure once and use the
simulate command to run the program 10,000 times.

We name the program onesample and define it to be r-class, meaning that the ulti-
mate result, the sample mean for one sample, is returned in r(). Because we name this
result meanforonesample, it will be returned in r (meanforonesample). The program
has no inputs, so there is no need for program arguments. The prograun drops any
existing data on variable x, sets the sample size to 30, draws 30 uniform variates, and
obtains the sample mean with summarize. The summarize command is itself an r-class
command that stores the sample mean in r (mean); see section 1.6.1. The last line of
the program returns r (mean) as the result meanforonesample.

The program is

. * Program to draw 1 sample of size 30 from uniform and return sample mean
. program onesample, rclass

drop _.all

quietly set obs 30

generate x = runiform()

summarize x

return scalar meanforonesample = r(mean)
end

[ I L IR AR

To check the program, we run it once, using the same seed as earlier. We obtain

. * Run program onesample once as a check
. set seed 10101

. onesample
Variable j Obs Mean Std. Dev. Min Max
x 1 30 .5459987 .2803788 .0524637 .9983786
. return list
scalars:
r(meanforonesample) = .5459987225631873

The results for one sample are exactly the same as those given earlier.



4.3.3 Central limit theorem simulation 123

4.3.2 The simulate command

The simulate command runs a specified command # times, where the user specifies
#. The basic syntax is

simulate [ e:z:p_list] , reps (#) [ optz'ons} : command

where command is the name of the command, often a user-written program, and # is
the number of simulations or replications. The quantities to be calculated and stored
from command are given in ezp_list. We provide additional details on simulate in
section 4.6.1.

After simulate is run, the Stata dataset currently in memory is replaced by a
dataset that has # observations, with a separate variable for each of the quantities
given in ezp_list.

4.3.3 Central limit theorem simulation

The simulate command can be used to runthe onesample program 10,000 times, yield-
ing 10,000 sample means from samples of size 30 of uniform variates. We additionally
used options that set the seed and suppress the output of a dot for each of the 10,000
simulations. We have

* Run program omesample 10,000 times to get 10,000 sample means
simulate xbar = r(meanforonesample), seed(10101) reps(10000) nodots:
> onesample

command: onesample
xbar: r(meanforonesamplo)

The result from each sample, r(meanforonesample), is stored as the variable xbar.

The simulate command overwrites any existing data with a dataset of 10,000 “ob-
servations” on T. We summarize these values, expecting them to have a mean of 0.5
and a standard deviation of 0.0527. We also present a histogram overlaid by a normal
density curve with a mean and standard deviation, which are those of the 10,000 values
of . We have

. * Summarize the 10,000 sample means and draw histogram
. summarize xbar

Variable | Obs Mean Std. Dev. Min Max
]

xbar i 10000 .4995835 .0533809 .3008736 .6990562

. quietly histogram xbar, normal xtitle("xbar from many samples")

(Continued on next page)
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Density
4
L

3 4 5 g
xbar from many samples

Figure 4.3. Histogram of the 10,000 sample means, each from a sample of size 30

The histogram given in figure 4.3 is very close to the bell-shaped curve of the normal.

There are several possible variations on this example. Different distributions for
x can be used with different random-number functions in the generate command for
X. As sample size (set obs) and number of simulations (reps) increases, the results
become closer to a normal distribution.

4.3.4 The postfile command

In this book, we generally use simulate to perform simulations. An alternative method
is to use a looping command, such as forvalues, and within each iteration of the
loop use post to write (or post) key results to a file that is declared in the postfile
command. After the loop ends, we then analyze the data in the posted file.

The postfile command has the following basic syntax:

postfile postname newvarlist using filename [ , every (#) replace]
where postname is an internal filename, newvarlist contains the names of the variables
to be put in the dataset, and filename is the external filename.

The post postname (expl) (exp2)... command is used to write expl, exp2, ... to
the file. Each expression needs to be enclosed in parentheses.

The postclose postname command ends the posting of observations.

The postfile command offers more flexibility than simulate and, unlike simulate,
does not lead to the dataset in memory being overwritten. For the examples in this
book, simulate is adequate.
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4.3.5 Alternative central limit theorem simulation
We illustrate the use of postfile for the central limit theorem example. We have

. * Simulation using postfile
. set seed 10101

. postfile sim_mem xmean using simresults, replace
. forvalues i = 1/10000 {

2. drop _all

3. » quietly set obs 30

4. tempvar x

5. generate “x° = runiform()
6. quietly summarize “x°

7. post sim_mem (r(mean))

8.

. postclose sim_zem

The postfile command declares the memory object in which the results are stored,
the names of variables in the results dataset, and the name of the results dataset file.
In this example, the memory object is named sim mem, xmean will be the only variable
in the results dataset file, and simresults.dta will be the results dataset file. (The
replace option causes any existing simresults .dta to be replaced.) The forvalues
loop (see section 1.8) is used to perform 10,000 repetitions. At each repetition, the
sample mean, result r(mean), is posted and will be included as an observation in the
new xmean variable in simresults.dta.

To see the results, we need to open simresults.dta and summarize.

. * See the results stored in simresults
. use simresults, clear

. summarize
Variable l Obs Mean Std. Dev. Min Max
xmean 1 iOOOO .4995835 .0533809 .3008736 .6990562

The results are identical to those in section 4.3.3 with simulate due to using the same
seed and same sequence of evaluation of random-number functions.

The simulate command suppresses all output within the simulations. This is not
the case for the forvalues loop, so the quietly prefix was used in two places in the code
above. It can be more convenient to instead apply the quietly prefix to all commands
in the entire forvalues loop.

4.4 Pseudorandom-number generators: Further details

In this section, we present further details on random-number generation that explain
the methods used in section 4.2 and are useful for making draws from additional distri-
butions.
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Commonly used methods for generating pseudorandom samples include inverse-
probability transforms, direct transformations, accept-reject methods, mixing and com-
pounding, and Markov chains. In what follows, we emphasize application and refer the
interested reader to Cameron and Trivedi (2005, ch. 12) or numerous other texts for
additional details.

4.4.1 Inverse-probability transformation

Let F(z) = Pr(X < z) denote the cumulative distribution fiinction of a random variable
z. Given a draw of a uniform variate 7, 0 < r < 1, the inverse transformation z =
F~1(r) gives a unique value of = because F' (z) is nondecreasing in z. If 7 approximates
well a random draw from the uniform, then z = F~! (r) wil: approximate well a random
draw from F(z).

A leading application is to the standard normal distribution. Then the inverse of
the cumulative distribution function (c.d f.),

F(z) = (z) = /“ ’ \/iz_ﬁe—:"‘/zczz

has no closed-form solution, and there is consequently no analytical expression for
®~!(z). Nonetheless, the inverse-transformation method is easy to implement be-
cause numerical analysis provides functions that calculate a very good approximation
to ®~!(z). In Stata, the function is invnormal (}. Combining the two steps of drawing
a random uniform variate and evaluating the inverse c.d.f., we have

* Inverse probability transformation example: standard normal
quietly set obs 2000

set seed 10101

generate xstn = invnormal(runiform())

This method was presented in section 4.2.2 but is now superseded by the rnormal ()
function.

As another application, consider drawing from the unit exponential, with c.d.f.
F(z) =1-e7% Solvingr = 1 —e~% ylelds £ = —In(1l — 7). If the uniform draw
is, say, 0.640, then z = —In(1 — 0.640) = 1.022. With continuous monotonically in-
creasing c.d.f., the inverse transformation yields a unique value of z, given 7. The Stata
code for generating a draw from the unit exponential illustrates the method:

. * Inverse probability transformation example: unit exponential
. generate xue = -ln(l-runiform())

For discrete random variables, the c.d.f. is a step function. Then the inverse is not
unique, but it can be uniquely determined by a convention for choosing a value on the
flat portion of the c.d.f., e.g., the left limit of the segment.

In the simplest case, we consider a Bernoulli random variable taking a value of 1
with a probability of p and a value of O with a probability of 1 — p. Then we take a
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uniform draw, v, and set y = 1ifu < pand y =0 if v > p. Thus, if p = 0.6, we obtain
the following:

* Inverse probability transformation example: Bermoulli (p = 0.6)
generate xbermoulli = runiform() > 0.6 // Bermoulli(0.6)

summarize xstn xue xbermoulli

Variable Obs Mean Std. Dev. Min Max
xstn 2000 .0481581 1.001728 -3.445941  3.350993

xue 2000 .9829519 1.000921 .0003338 9.096659
xbernoulli 2000 .4055 .4911113 0 1

This code uses a logical operator that sets y = 1 if the condition is met and y = 0
otherwise; see section 2.4.7.

A more complicated discrete example is the Poisson distribution because then the
random variable can potentially take an infinite number of values. The method is to
sequentially calculate the c.df. Pr(Y < k) for £ =0,1,2, .... Then stop when the first
Pr(Y € k) > u, where u is the uniform draw, and set y = k. For example, consider the
Poisson with a mean of 2 and a uniform draw of 0.701. We first calculate Pr(y < 0) =
0135 < u, then calculate Pr(y < 1) = 0406 < ‘u, then calculate Pr(y < 2) = 0677 < v,
and finally calculate Pr(y < 3) = 0.857. This last calculation exceeds the uniform
draw of 0.701, so stop and set y = 3. Pr(Y < k) is computed by using the recursion
Pr(Y <k) = DPr(Y <k - 1)+ Pr(Y = k).

4.4.2 Direct transformation

Suppose we want to make draws from the random variable Y, and from probability
theory, it is known that Yis a transformation of the random variable X, say, Y = g(X).

In this situation, the direct transformation method obtains draws of ¥ by drawing
X and then applying the transformation g(-). The method is clearly attractive when it
is easy to draw X and evaluate gi-).

Direct transformation is particularly easy to illustrate for well-known transforms
of a standard normally distributed random variable. A x2(1) draw can be obtained
as the square of a draw from the standard normal; a x?(m) draw is the sum of m
independent draws from x2(1); an F(m1,ma) draw is (vy/m1)/(ve/mz), where v and
vz are independent draws from x?(m,) and x%(m2); and a t(m) draw is u/ \/% where
uand v are independent draws from N(0, 1) and x2(m).

44.3 Other methods

In some cases, a distribution can be obtained as & mixture of distributions. A leading
example is the negative binomial, which can be obtained as a Poisson-gamma mixture
(see section 4.2.4). Specifically, if y|A is Poisson(A) and A|g, & is gamma with a mean
of p and a variance of ey, then ylp, o is a negative binomial distributed with a mean
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of £ and a variance of  + au®. This implies that we can draw from the negative
binomial by using a two-step method in which we first draw (say, v) from the gamma
distribution with a mean equal to 1 and then, conditional on v, draw from Poisson(gv).
This example, using mixing, is used again in chapter 17.

More-advanced methods include accept-reject algorithms and importance sampling.
Many of Stata’s pseudorandom-number generators use accept-reject algorithms. Type
help random number functions for more information on the methods used by Stata.

4.4.4 Draws from truncated normal

In simulation-based estimation for latent normal models with censoring or selection, it
is often necessary to generate draws from a truncated normal distribution. The inverse-
probability transformation can be extended to obtain draws in this case.

Consider making draws from a truncated normal. Then X ~ TN, (i, 72), where
without trncation X ~ N(u, o). With truncation, realizations of X are restricted to
lie between left truncation point a and right truncation poict b.

For simplicity, first consider the standard normal case (¢ = 0, 0 = 1) and let
Z ~ N(0,1). Given the draw ‘u from the uniform distribution, :v is defined by the
solution of the inverse-probability transformation equation

Pra<Z<z) @(z)- ®a)
Prla<Z <b) &)~ d(a)

‘w= F(z) =

Rearranging, ®(z) = ®(a) + {®(b) — ®(a)}u so that solving for z we obtain
=07 d(a) + {D(b) — ®(a)} u]
To extend this to the general case, note that if Z ~ N(u,0?) then Z* = (Z —p)/o ~

N(0,1), and the truncation points for Z*. rather than Z. are a* = (a — p)/o" and
b* = (b—p)/o. Then

o=+ 0@ N B(a") + {8(6%) - #(a")} u]
As an example, we consider draws from N (5, 4?) for a random variable truncated to
the range [0, 12].
* Draws from truncated normal x ~ N(mu,sigma~2) in [a,b]

quietly set obs 2000
set seed 10101

scalar a = 0 // lower truncation point
scalar b = 12 // upper truncation point
scalar mu = 5 // mean

scalar sigma = 4 // standard deviation

generate u = runiform()
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. generate w=normal((a-mu)/sigma)+u*(normal((b-mu)/sigma)-normal((a-mu)/sigma))
. gemerate xtrunc = mu + sigma*invnormal (w)
. summarize xtrunc

Variable Obs Mean Std. Dev. Min Max

xtrunc 2000 5.605522 2.944887 .005319 11.98411

Here there is more truncation from below, because a is 1.25¢ from ¢ whereas b is
1.75¢0 from g, sp we expect the truncated mean to exceed the nntruncated mean. Accord-
ingly, the sample mean is 5.606 compared with the untruncated mean of 5. Truncation
reduces the range and, for most but not all distributions, will reduce the variability.
The sample standard deviation of 2.945 is less than the untruncated standard deviation
of 4.

An alternative way to draw X ~ TN, ;)(1t, 02) is to keep drawing from untruncated
N(ir,02) until the realization lies in (g, ). This method will be very inefficient if, for
example, (a,b) = (—0.01,0.01). A Poisson example is given in section 17.3.5.

4.4.5 Draws from multivariate normal

Making draws from multivariate distributions is generally more complicated. The
method depends on tae specific case under consideration, and inverse-transformation
methods and transformation methods that work in the univariate case may no longer
apply.

However, making draws from the multivariate normal is relatively straightforward
because, unlike most other distributions, linear combinations of normals are also normal.

Direct draws from multivariate normal

The drawnorm command generates draws from N(u, ) for the user-specified vector
p and matrix 3. For example, consider making 200 draws from a standard bivariate
normal distribution'with means of 10 and 20, variances of 4 and 9, and a correlation of
0.5 (so the covariance is 3).

* Bivariate normal example:
* means 10, 20; variances 4, S; and correlatiom 0.5
clear

quietly set obs 1000

set seed 10101

matrix MU = (10,20) // MU is 2 x 1
scalar sigl2 = 0.5*sqrt(4+9) .

matrix SIGMA = (4, sigl2 \ sigl2, 9) // SIGMA is 2 x 2
drawnorm yl y2, means(MU) cov(SIGMA)
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. summarize yl y2

Variable Obs Mean Std. Dev. Min Max
yl 1000 10.08618 2.082605 3.108118 16.40892
y2 1000 20.20292 2.999583 10.12452  29.79675
. correlate yl y2
(obs=1000)
yi y2
yl 1.0000
y2 0.5553  1.0000

The sample means are close to 10 and 20, and the standard deviations are close to
V4 = 2 and V9 = 3. The sample correlation of 0.5553 differs somewhat from 0.50,
though this difference disappears for much larger sample sizes.

Transformation using Cholesky decomposition

The method uses the result that if z ~ N(0,I) then x = £+ Lz ~ N(g,LL’). It is easy
to draw z ~ N(0, ) because z is just a column vector of univariate normal draws. The
transformation method to make draws of x ~ N(u, X)) evaluates x = p + Lz, where
the matrix L satisfies LL’ = 3. More than one matrix L satisfies LL’ = ¥, the matrix
analog of the square root of ¥. Standard practice is to use the Cholesky decomposition
that restricts L to be a lower triangular matrix. Specifically, for the trivariate normal
distribution, let E(zz') = £ = Lzz'L’, where z ~ N(0,I,) and

i 0 0
L= 1ly L 0

lay lag las

Then the following transformations of 2’ = (z; z2 z3) yield the desired multivariate
normal vector x ~ N(pu, Z):

zy =+ luz
To = o + 12121 + lon2a

Tz = pa + lagzy +1laszo+ laaza

4.4.6 Draws using Markov chain Monte Carlo method

In some cases, making direct draws from a target joint (multivariate) distribution is
difficult, so the objective must be achieved in a different way. However, if it is also
possible to make draws from the distribution of a subset, conditional on the rest, then
one can create a Markov chain of draws. If one recursively makes draws from the con-
ditional distribution and if a sufficiently long chain is constructed, then the distribution
of the draws will, under some conditions, converge to the distribution of independent
draws from the stationary joint distribution. This so-called Markov chain Monte Carlo
method is now standard in modern Bayesian inference.
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To be concrete, let Y = (¥3,Y2) have a bivariate density of f(Y) = f(¥, Y2), and
suppose the two conditional densities f(Y1|Y2) and f(Y2|Y:) are known and that it is
possible to make draws from these. Then it can be shown that alternating sequential
draws from f(Y3|Y2) and f(Y2|Y1) converge in the limit to draws from f(Y;,Y3), even
though in general f(Vy, Ya) # f(Yi|Y2)f(Y2|Y3) (recall that f(¥i,Y2) = f(Y1|Y2)f(¥2))-
The repeated recursive sampling from f(Y1]Y2) and f(Y2|Y3) is called the Gibbs sampler.

We illustrate the Markov'chain Monte Carlo approach by making draws from a
bivariate normal distribution, f(Y7,Y2). Of course, using the drawnorm command, it is
quite straightforward to draw samples from the bivariate normal. So the application
presented is illustrative rather than practical. The relative simplicity of this method
comes from the fact that the conditional distributions f(¥1|Y¥2) and f(Y2|Y1) derived
from a bivariate normal are also normal.

We draw bivariate normal data with means of 0, variances of 1, and a correlation of
p =09. Then ¥3|Y2 ~ N {0,(1 — p?)} and ¥5|Vs ~ N {0, (1 — p®)}. Implementation
requires looping that is much easier using matrix programming language commands.
The following Mata code implements this algorithm by using commands explained in
appendix B.2.

. * MCMC example: Gibbs for bivariate normal mu’s=0 v's=1 corr=rho=0.9
. set seed 10101

. clear all

. set obs 1000

obs was 0, now 1000

. generate double yl =,

(1000 missing values generated)

. generate double y2 =.
(1000 missing values generated)

. mata:
mata (type end to exit)
s0 = 10000 // Burn-in for the Gibbs sampler (to be discarded)
si = 1000 // Actual draws used from the Gibbs sampler
yi = J(sD+§1,1,0) // Initialize y1
y2 = J(s0+s1,1,0) // Inpitialize y2
rho = 0.90 // Correlation parameter
: for(i=2; i<=s0+si; i++) {
> y1(i,1] = ((1-rbo~2)-0.5)*(rnormal(l, 1, 0, 1)) + rho*y2[(i-1,1]
> y2[i,1] = ((1-rko~2)-0.5)*(rmormal(i, 1, 0, 1)) + rbhoxy1[i,1]
> }
: y = yl,y2
y = yll(s0+1),1 \ (s0+s1),.!] // Drop the burn-ins
mean (y) // Means of y1, y2

1 2

1 .0831308345 .0647158328




132 Chapter 4 Simulation

variance(y) // Variance matrix of y1, y2
[symmetric]
b 2

1 1.104291499

2 1.005053494 1.108773741
correlation(y) // Correlation matrix of y1, y2
[symmetric]
z 2
1 1
2 .9082927488| 1
: end

Many draws may be needed before the chain converges. Here we assume that 11,000
draws are sufficient, and we discard the first 10,000 draws; the remaining 1,000 draws
are kept. In a real application, one should run careful checks to ensure that the chain
has indeed converged to the desired bivariate normal. For the example here, the sample
means of ¥; and ¥> are 0.08 and 0.06, differing quite a bit from 0. Similarly, the sample
variances of 1.10 and 1.11 differ from 1 and the sample covariance of 1.01 differs from
0.9, while the implied correlation is 0.91 as desired. A longer Markov chain or longer
burn-in may be needed to generate numbers with desired properties for this example
with relatively high p.

Even given convergence of the Markov chain, the sequential draws of any random
variable will be correlated. The output below shows that for the example here, the
first-order correlation of sequential draws of ¥, is 0.823.

mata:

mata (type end to exit) ———
w2 = y[l2,2 \ s1,2i]

iy2lagl = y[I11,2 \ (s1-1),2]]
:y2andlagl = y2,y2lagl

:correlation(y2andlagl,1) // Correlation between y2 and y2 lag 1
[symmetric]
1 2
1 1
2 1822692407 1
end

4.5 Computing integrals

Some estimation problems may involve definite or indefinite integrals. In such cases,
the integral may be numerically calculated.
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45.1 Quadrature

For one-dimensional integrals of the form f: f(y)dy, where possibly a = —o0, b = o0, or
both, Gaussian quadrature is the standard method. This approximates the integral by
a weighted sum of m terms, where a larger m gives a better approximation and often
even m = 20 can give a good approximation. The formulas for the weights are quite
complicated but are given in standard numerical analysis books.

One—dimer_lsional integrals often appear in regression models with a random intercept
or random effect. In many nonlinear models, this random effect does not integrate
out analytically. Most often, the random effect is normal so that integration is over
(—00, 00) and Gauss—Hermite quadrature is used. A leading example is the random-
effects estimator for nonlinear panel models fitted using various xt commands. For
Stata code, see, for example, the user-written command rfprobit.do for a random-
effects probit package or file gllamm.ado for generalized linear additive models.

4.5.2 Monte Carlo integration
Suppose the integral is of the form
b
BV} = [ hy)su)dy
where g(y) is a density function. This can be estimated by the direct Monte Carlo

integral estimate
-1
E{n(Y Zs 1

where 9!,...,y% are S independent pseudorandom numbers from the density g(y), ob-
tained by usmg methods. described earlier. This method works if E{h(Y)} exists and
S — ca.

This method can be applied to both definite and indefinite integrals. It has the added
advantage of being immediately applicable to multidimensional integrals, provided we
can draw from the.appropriate multivariate distribution. It has the disadvantage that
it will always provide an estimate, even if the integral does not exist. For example, to
obtain E(Y) for the Cauchy distribution, we could average S draws from the Cauchy.
But this would be wrong because the mean of the Cauchy does not exist.

Asan example, we consider the computation of Elexp{—exp(Y)}] wheny ~ N (0, 1).
This is the integral:

oo 1 ”
Elexp{~exp(Y)}] = |—="exp{—exp(y)}exp(—v°/2)d
xp (- exp(V )] = [—=" exp{—expw)}exp (/) dy
It has no closed-form solution but can be proved to exist. We use the estimate

E (exp {— éxp(Y)}] =gf,=1 exp {—exp(y’)}

where y* is the sth draw of S draws from the N(0,1) distribution.
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This approximation task can be accomplished for a specified value of S, say, 100, by
using the following code.

* Integral evaluation by Monte Carlo simulation with $=100
clear all

quietly set obs 100

set seed 10101

generate double y = invnormal(runiform())
generate double gy = exp(-exp(y))
quietly summarize gy, meanonly

scalar Egy = r(mean)

display "After 100 draws the MC estimate of Elexp(-exp(x))] is " Egy
After 100 draws the MC estimate of Elexp(-exp(x))] is .3524417

The Monte Carlo estimate of the integral is 0.352, based on 100 draws.

4.5.3 Monte Carlo integration using different S

It is not known in advance what value of S will yield a good Monte Carlo approximation
to the integral. We can compare the outcome for several different values of S (including
S =100), stopping when the estimates stabilize.

To investigate this, we replace the preceding code by a Stata program that has as
an argument S, the number of simulations. The program can then be called and run
several times with different values of S.

The program is named mcintegration. The number of simulations is passed to the
program as a named positional argument, numsims. This variable is a local variable
within the program that needs to be referenced using quotes. The call to the program
needs to include a value for numsims. Appendix A.2 provides the details on writing a
Stata program. The program is r-class and returns results for a single scalar, E{g(v)},
where g(y) = exp {—exp(y)}.

* Program mcintegration to compute Eg(y) numsims times
program mcintegration, rclass

version .0.1

args numsims // Call to program will include value for numsims
drop _all

quietly set obs “numsims”

set seed 10101

generate double y = rmormal(0)

generate double gy = exp(-exp(y))

quietly summarize gy, meanonly

scalar Egy = r(mean)

display "#simulations: " 49.0g “numsims”® ///

" MC estimate of El[exp(-exp(x))] is " Egy

11. end

LNV HEWN -
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The program is then run several times, for S = 10, 100, 1000, 10000, and 100000.
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. * Run program mcintegration S = 10, 100, ...., 100000 times
. mcintegration 10
#simulations: 10 MC estimate of Elexp-exp(x)] is .30979214

. mcintegration 100
#simulations: 100 MC estimate of E[exp-exp(x)] is .3714466

. mcintegration 1000
#simulations: 1000 MC estimate of E[exp-exp(x)] is .38146534

. mcintegration 10000
#simulations: 10000 MC estimate of El[exp-exp(x)] is .38081373

. mcintegration 100000
#simulations: 100000 MC estimate of El[exp-exp(x)] is .38231031

The estimates of E{g(y)} stabilize as S — oo, but even with S = 10°, the estimate
changes in the third decimal place.

4.6 Simulation for regression: Introduction

The simplest use of simulation methods is to generate a single dataset and estimate the
DGP parameter 8. Under some assumptions, if the estimated parameter 6 differs from
0 for a large sample size, the estimator is probably inconsistent. We defer an example
of this simpler simulation to section 4.6.4.

More often, 6 is estimated from each of S generated datasets, and the estimates
are slored and summarized to learn about the distribution of 6 for a given DGP. For
example, this approach is necessary if one wants to check the validity of a standard
error estimator or the finite-sample size of a test. This approach requires the ability to
perform the same analysis S times and to store the results from each simulation. The
simplest approach is to write a Stata program for the analysis of one simulation and
then use simulate to run this program many times.

4.6.1 Simulation example: OLS with x? errors

In this section, we use simulation methods to investigate the finite-sample properties
of the OLS estimator with random regressors and skewed errors. If the errors are i.i.d.,
the fact that they are skewed has no effect on the large-sample properties of the OLS
estimator. However, when the errors are skewed, we will need a larger sample size for the
asymptotic distribution to better approximate the finite-sample distribution of the OLS
estimator than when the errors are normal. This example also highlights an important
modeling decision: when y is skewed, we sometimes choose to model £(lny|x) instead of
E(y|x) because we believe the disturbances enter multiplicatively instead of additively.
This choice is driven by the multiplicative way the error affects the outcome and is
independent of the functional form of its distribution. As illustrated in this simulation,
the asymptotic theory for the OLS estimator works well when the errors are i.i.d. from
a skewed distribution.
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We consider the following DGP:
y=F+Bz+u; u~x®()-1 z~x(1)

where 0, = 1, f2 = 2, and the sample size N = 150. For this DGP, the error u is
independent of the regressor z (ensuring consistency of OLS) and has a mean of 0,
variance of 2, skewness of v/8, and kurtosis of 15. By contrast, a normal error has a
skewness of O and a kurtosis of 3.

We wish to perform 1,000 simulations, where in each simulation we obtain parameter
estimates, standard errors, t-values for the ¢ test of Hp: 82 = 2, and the outcome of a
two-sided test of Hy at level 0.05.

Two of the most frequently changed parameters in a simulation study are the sample
size and the number of simulations. For this reason, these two parameters are almost
always stored in something that can easily be changed. We use global macros. In the
output below, we store the number of observations in the global macro numobs and the
number of repetitions in the global macro numsims. We use these global macros in the
examples in this section.

* defining global macros for sample size and number of simulations
global numobs 150 // sample size N

global numsims "1000" // number of simulations

We first write the chi2data program, which generates data on y, performs OLS, and
returns B, sz, t2 = (B2 -~ 2)/ s, a rejection indicator r2 =1 if [t2] > t0.025(148), and
the p-value for the two-sided ¢ test. The chi2data program is an r-class program, so
these results are returned in r() using the return command.

* Pragram for finite-sample properties of OLS
program chi2data, rclass

1 version 10.1

2 drop _all

3 set obs $numobs

4. generate double x = rchi2(1)

5. generate y = 1 + 2xx + rchi2(1)-1 // demeaned chi"2 error
6 regress y x

7 return scalar b2 =_b[x]

8 return scalar se2 = _sel[x]

9

return scalar t2 = (_b[x]-2)/_selx]

10. return scalar r2 = abs(return(t2))>invttail($numobs-2,.025)
11. return scalar p2 = 2+ttail($numobs-2,abs(return(t2)))
12. end

Instead of computing the ¢ statistic and p-value by hand, we could have used test,
which would have computed an F' statistic with the same p-value. We perform the
computations manually for pedagogical purposes. The following output illustrates that
test and the manual calculations yield the same p-value.

set seed 10101
quietly chi2data



4.6.1 Simulation example: OLS with x? errors 137

. return list

scalars:
r(p2) = .0419507319188174
r(r2) = 1.
r(t2) = 2.051809742705663
r(se2) = .0774765767688598

r(b2) = 2.15896719504583
. quietly test x=2
. return.list

scalars:
r(drop) = 0
r(df_r) = 148
r(F) = 4.209923220261881
r(df) = 1
r(p) = .0419507319188174

Below we use simulate to call chi2data $numsims times and to store the results;
here $numsims = 1000. The current dataset is replaced by one with the results from
each simulation. These results can be displayed by using summarize, where obs in the
output refers to the number of simulations and not the sample size in each simulation.
The summarize output indicates that 1) the mean of the point estimates is very close
to the true value of 2, 2) the standard deviation of the point estimates is close to the
mean of the standard errors, and 3) the rejection rate of 0.046 is very close to the size
of 0.05.

. * Simulation for finite-sample properties of OLS
. simulate b2f=r(b2) se2f=r(se2) t2f=r(t2) reject2f=r(r2) p2f=r(p2),
> reps($numsims) saving(chi2datares, replace) nolegend nodots: chi2data

. summarize b2f se2f reject2f

Variable -0bs Mean Std. Dev. Min Max
b2f 1000 2.000502 .0842622 1.719513 2.40565
se2f 1000 .0839736 .0172607 .0415919 .145264
reject2f 1000 .046 .2095899 0 1

Below we use mean to obtain 95% confidence intervals for the simulation averages.
The results for b2f and the rejection rate indicate that there is no significant bias and
that the asymptotic distribution approximated the finite-sample distribution well for
this DGP with samples of size 150. The confidence interval for the standard errors
includes the sample standard deviation for b2f, which is another indication that the
large-sample theory provides a good approximation to the finite-sample distribution.

. mean b2f se2f reject2f

Mean estimation Number of obs = 1000
Mean  Std. Err. [95% Conf. Intervall

b2f 2.000502 .0026646 1.995273 2.005731

se2f .0839736 .0005458 .0829025 .0850448
reject2f .046 .0066278 .032994 .059006
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Further information on the distribution of the results can be obtained by using the
summarize, detail and kdensity commands.

4.6.2 Interpreting simulation output

We consider in turn unbiasedness of 2, correctness of the standard-error formula for
3, distribution of the ¢ statistic, and test size.

Unbiasedness of estimator

The average of G2 over the 1,000 estimates, G2 = (1/1000) S.:%% 4., is the simulation
estimate of E(Ez) Here (2 = 2.001 (see the mean of b2f) is very close to the DGP
value G2 = 2.0, suggesting that the estimator is unbiased. However, this comparison
should account for simulation error. From the mean command, the simulation yields a

95% confidence interval for E(G2) of [1.995,2.006]. This interval is quite narrow and
includes 2.0, so we conclude that E({z) is unbiased.

Many estimators, particularly nonlinear estimators, are biased in finite samples.
Then exercises such as this can be used to estimate the magnitude of the bias in typical

sample sizes. If the estimator is consistent, then any bias should disappear as the sample
size N goes to infinity.

Standard errors

The variance of 52 over the 1,000 estimates, s? = (1/999) 1OOC'(Es - E;)g, is the
12

s=1

simulation estimate of O’%ﬂ = Var([?z), the variance of [a. Similarly, S5, = 0.084 (see the

standard deviation of b2f) is the simulation estimate of oj,. Here se(f2) = 0.084 (see

the mean of se2f) and the 95% confidence interval for se((2) is [0.083, 0.085]. Since this

~

interval includes s, = 0.084, there is no evidence that se((B) is biased for TG0 which

means that the asymptotic distribution is approximating the finite-sample distribution
well.

2,

In general, that {se(f2)}? is unbiased for of

~

square root se((2) is unbiased for oz, .

does not imply that upon taking the

t statistic

Because we impose looser restrictions on the DGP, ¢ statistics are not exactly ¢ dis-
tributed and z statistics are not exactly z distributed. However, the extent to which
they diverge from the reference distribution disappears as the sample size increases.
The output below generates the graph in figure 4.4, which compares the density of the
¢ statistics with the ¢(148) distribution.
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. kdensity t2f, n(1000) gen(t2_x t2_d) nograph
. genmerate double t2_d2 = tden(148, t2_x) '
. graph twoway (line t2_d t2_x) (line t2_d2 t2_x)

o

-4 2 a 4
{t2)

Figure 4.4. t statistic density against asymiptotic distribution

donshy: e(t2) 2 d2 j

Although the graph highlights some differences between the finite-sample and the asymp-
totic distributions, the divergence between the two does not appear to be great. Rather
than focus on the distribution of the ¢ statistics, we instead focus on the size of tests or
coverage of confidence intervals based on these statistics.

Test size

The size of the test is the probability of rejecting Hy when Hj is true. Because the
DGP sets 82 = 2, we consider a two-sided test of Hg: B2 = 2 against H,: 82 ¥ 2. The
level or nominal size of the test is set to 0.05, and the ¢ test is used. The proportion
of simulations that lead to a rejection of Hy is known as the rejection rate, and this
proportion is the simulation estimate of the true test size. Here the estimated rejection
rate is 0.046 (see the mean of reject2f). The associated 95% confidence interval (from
mean reject2f) is [0.033, 0.059], which is quite wide but includes 0.05. The width
of this confidence interval is partially a result of having run only 1,000 repetitions,
and partially an indication that, with 150 observations, the true size of the test can
differ from the nominal size. When this simulation is rerun with 10,000 repetitions, the
estimated rejection rate is 0.049 and the confidence interval is [0.044, 0.052].

The simulation results also include the variable p2f, which stores the p-values of
each test. If the ¢(148) distribution is the correct distribution for the ¢ test, then p2f
should be uniformly distributed on (0,1). A histogram, not shown, reveals this to be
the case.
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More simulations are needed to accurately measure test size (and power) than are
needed for bias and standard-error calculations. Fora test with estimated size a based on
S simulations, a 95% confidence interval for the true sizeis a+1.96 x 1 /&(1 — a)/S. For
example, if a = 0.06 and S = 10,000 then the 95% confidence interval is [0.055,0.065].
A more detailed Monte Carlo experiment for test size and power is given in section 12.6.

Number of simuiations

Ideally, 10,000 simulations or more would be run in reported results, but this can be
computationally expensive. With only 1,000 simulations, there can be considerable
simulation noise, especially for estimates of test size (and power).

4.6.3 Variations

The preceding code is easily adapted to other problems of interest.

Different sample size and number of simulations

Sample size can be changed by changing the global macro numobs. Many simulation
studies focus on finite-sample deviations from asymptotic theory. For some estimators,
most notably IV with weak instruments, such deviations can occur even with samples
of many thousands of observations.

Changing the global macro numsims can increase the number of simulations to yield
more-precise simulation results.

Test power

The power of a test is the probability that it rejects a false null hypothesis. To simulate
the power of a test, we estimate the rejection rate for a test against a false null hypoth-
esis. The larger the difference between the tested value and the true value, the greater
the power and the rejection rate. The example below modifies chi2data to estimate
the power of a test against the false null hypothesis that 8> = 2.1.

. * Program for finite-sample properties of OLS: fixed regressors
. program chi2datab, rclass

1. version 10.1

2. drop _all

3. set obs $numobs

4. generate double x = rchi2(1)

5. generate y = 1 + 2»x + rchi2(1)-1 // demeaned chi~2 error
6. regress y x

7. return scalar b2 =_b[x]

8. return scalar se2 =_se[x]

9. test x=2.1

10. return scalar r2 = (r(p)<.05)

11. end
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Below we use simulate to run the simulation 1,000 times, and then we summarize the
results.

. * Power simulation for finite-sample properties of OLS
. simulate b2f=r(b2) se2f=r(se2) reject2f=r(r2), reps($numsims)
> saving(chi2databres, replace) nolegend nodots: chi2datab

. mean b2f se2f reject2f

Mean estimation Number of obs = 1000
Mean Std. Err. [95%4 Conf. Intervall

b2f 2.001816 .0026958 1.996526 2.007106

se2f .0836454 .0005591 .0825483 .0847426
reject2f .241 .0135315 .2144465 .2675535

The sample mean of reject2f provides an estimate of the power. The estimated power
is 0.241, which is not high. Increasing the sample size or the distance between the tested
value and the true value will increase the power of the test.

A useful way toincorporate power estimation is to define the hypothesized value of
B2 to be an argumert of the program chi2datab. This is demonstrated in the more
detailed Monte Carlo experiment in section 12.6.

Different error distributions

We can investigate the effect of using other error distributions by changing the dis-
tribution used in chi2data. For linear regression, the ¢ statistic becomes closer to ¢
distributed as the error distribution becomes closer to i.i.d. normal. For nonlinear mod-
els, the exact finite-sample distribution of estimators and test statistics is unknown even
if the errors are i.i.d. normal.

The example in section 4.6.2 used different draws of both regressors and errors in
each simulation. This corresponds to simple random sanipling where we jointly sample
the pair (y,z), especially relevant to survey data where individuals are sampled, and
we use data (y,z) for the sampled individuals. An alternative approach is that of fixed
regressors in repeated trials, especially relevant to designed experiments. Then we draw
a sample of = only once, and we use the same sample of = in each simulation while
redrawing only the error u (and hence y). In that case, we create fixedx.dta, which
has 150 observations on a variable, z, that is drawn from the xg(l) distribution, and
we replace lines 2-4 of chi2data by typing use fixedx, clear.

4.6.4 Estimator inconsistency

Establishing estimator inconsistency requires less coding because we need to generate
data and obtain estimates only once, with a large N, and then compare the estimates
with the DGP values.
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We do so for a classical errors-in-variables model of measurement error. Not only is
it known that the OLS estimator is inconsistent, but in this case, the magnitude of the
inconsistency is also known, so we have a benchmark for comparison.

The DGP considered is
y=p0z" +u; z"~N(0,9); u~N(0,1)
z=z"'+wv; v~ N(01)

OLS regression of y on z* consistently estimates 3. However, only data on z rather
than z* are available, so we insteg.d obtain § from an OLS regression of y on z. It
is a well-known result that then § is inconsistent, with a downward bias, s(3, where
s =02/(c2+02.) is the noise-signal ratio. For the DGP under consideration, this ratio

is1/(1+9) =01, soplimf=F-s8=1-0.1x1=0.9.

The following simulation checks this theoretical prediction, with sample size set to
10,000. We usedrawnorm to jointly draw (z*, u, v), though we could have more simply
made three separate standard normal draws. We set 8 = 1.

. * Inconsistency of OLS in errors-in-variables model (measurement error)
. clear

. quietly set obs 10000

. set seed 10101

. matrix mu = (0,0,0)

. matrix sigmasq = (9,0,0\0,1,0\0,0,1)

. drawnorm xstar u v, means(mu) cov(sigmasq)

. generate y = l*xstar + u // DGP for y depends on xstar
. genmerate x = xstar + v // x is mismeasured xstar

. regress y x, noconstant

Source SS df MS Number of obs = 10000
F( 1, 9999) =42724.08

Model 31730.3312 1 81730.3312 Prob > F = 0.0000
Residual 19127.893 9999 1.9129806 R-squared = 0.8103
Adj R-squared = 0.8103

Total 100858.224 10000 10.0858224 Root MSE = 1.3831

y Coef. Std. Err. t P>t [95% Conf. Interval]

x .9001733 .004355 206.70 0.000 .8916366 .90871

The OLS estimate is very precisely estimated, given the large sample size. The estimate
of 0.9002 clearly differs from the DGP value of 1.0, so OLS is inconsistent. Furthermore,
the simulation estimate essentially equals the theoretical value of 0.9.

4.6.5 Simulation with endogenous regressors

Endogeneity is one of the most frequent causes of estimator inconsistency. A simple
method to generate an endogenous regressor is to first generate the error » and then
generate the regressor x to be the sum of a multiple of v and anindependent component.
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We adapt the previous DGP as follows:

y=0+0Gzx+u; u~N(0,1)
z=12z+05u; 2z~ N(0,1)

We set f; = 10 and 82 = 2. For this DGP, the correlation between z and u equals 0.5.
Welet N =150.

The following program generates the data:

. * Endogenous regressor
. Clear

. set seed 10101

. program endogreg, rclass
1 - version 10.1
2 drop _all
3 set obs $numobs
4 generate u = rnormal(0)
5. generate x = 0.5*u + ranormal(0) // endogenous regressors
6 generate y = 10 + 2*x + u
7 regress y x
8 return scalar b2 =_b[x]
9

. return scalar se2 = _selx]
10. return scalar t2 = (_b[x]-2)/_sel[x]
11. return scalar r2 = abs(return(t2))>invttail ($numobs-2,.025)
12. return scalar p2 = 2*ttail($numobs-2,abs(return(t2)))
13. end

Below we run the simulations and summarize the results.

. simulate b2r=r(b2) se2r=r(se2) t2r=r(t2) reject2r=r(r2) p2r=r(p2),
> reps($numsims) nolegend nodots: endogreg

. mean b2r se2r reject2r

Mean estimation Number of obs = 1000

Mean Std. Err. [95% Conf. Intervall

b2r |- 2.399301 .0020708 2.395237 2.403365

se2r .0658053 .0001684 .0654747 .0661358
reject2r 1 0

Theresults from these 1,000 repetitions indicate that for N = 150, the OLS estimator
is biased by about 20%, the standard error is about 32 times too small, and we always
reject the true null hypothesis that G, = 2.

By setting N large, we could also show that the OLS estimator is iconsistent with a
single repetition. As a variation, we could instead estimate by 1v, with z an instrument
for z, and verify that the IV estimator is consistent.
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4.7 Stata resources

The key reference for random-number functions is help functions. This covers most of
the generators illustrated in this chapter and several other standard ones that have not
been used. Note, however, that the rnbinomial (5¥,p) function for making draws from
the negative binomial distribution has a different parameterization from that used in this
book. The key Stata commands for simulation are [R] simulate and [P] postfile. The
simulate command requires first collecting commands into a program; see [P] program.

A standard book that presents algoritbms for random-number generation is Press et
al. (1992). Cameron and Trivedi (2005) discuss random-number generation and present
a Monte Carlo study; see also chapter 12.7.

4.8 Exercises

1.

to

~1

Using the normal generator, generate a random draw from a 50-50 scale mixture
of N(1,1) and N(1, 3% distributions. Repeat the exercise with the N(1,3%) com-
ponent replaced by N(3,1). For both cases, display the features of the generated
data by using a kernel density plot.

Generate 1,000 observationsfrom the F'(5, 10) distribution. Use rchi2() to obtain
draws from the x>(5) and the x>(10) clistributions. Compare the sample moments
with their theoretical counterparts.

. Make 1,000 draws from the N(6,22) distribution by making a transformation of

draws from N(0, 1) and then making the transformasion ¥ = p+ o Z7.

. Generate 1,000 draws from the t(6) distribution, which has a mean of 0 and a

variance of 4. Compare your results with those from exercise 3.

. Generate a large sample from the N(p = 1,02 = 1) distribution and estimate

o /14, the coeflicient of variation. Verify that the sample estimate is a consistent
estimate.

. Generate a draw from a multivariate normal distribution, N (g, ¥ = LL'), with

¢ =1[000] and

1 0 0 1
L=|1 V3 0 ,or X=|1
0 0

W B
© w o

using transformations based on this Cholesky decomposition. Compare your re-
sults with those based on using the drawnorm command.

. Let s denote the sample estimate of o and Z denote the sample estimate of . The

coefficient of variation (CV) o/p, which is the ratio of the standard deviation to
the mean, is a dimensionless measure of dispersion. The asymptotic distribution
of the sample Cv s/Z is N[o/p, (N — 2)"*2(a/p )2 {0.5 + (o/)?}); see Miller
(1991). For N = 25, using either simulate or postfile, compare the Monte
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Carlo and asymptotic variance of the sample CVv with the following specification
of the DGP: = ~ N{pu, 02) with three different values of cv = 0.1, 0.33, and 0.67.

8. It is suspected that making draws from the truncated normal using the method
given in section 4.4.4 may not work well when sampling from the extreme tails of
the normal. Using different truncation points, check this suggestion.

9. Repeat the example of section 4.6.1 (OLS with x? errors), now using the postfile
command. Use postfile to save the estimated slope coefficient, standard error,
the ¢ statistic for Hyp: G = 2, and an indicator for whether Hy is rejected at 0.05
level in a Stata file named simresults. The template program is as follows:

* Postfile and post example: repeat OLS with chi-squared errors example
clear
set seed 10101
program simbypost
version 10.1
tempname simfile
postfile “simfile” b2 se2 t2 reject2 p2 using simresults, replace
quietly {
forvalues i = 1/$numsims {
drop _all
set obs $numobs
generate x = rchi2(1)
generate y = 1 + 2*x + rchi2(1) - 1 // demeaned chi“2 error
regress y x
scalar b2 =_b[x]
scalar se2 = _se[x]
scalar t2 = (.blx]-2)/_se[x]
scalar reject2 = abs(t2) > invttail ($numobs-2,.025)
scalar p2 = 2*ttail($numobs-2,abs(t2))
post “simfile” (b2) (se2) (t2) (reject2) (p2)
}
} -
postclose “simfile”
end '
simbypost
use simresults, clear
summarize






5 GLS regression

5.1 [Introduction

This chapter presents generalized least-squares (GLS) estimation in the linear regression
model.

GLS estimators are appropriate when one or more of the assumptions of homoskedas-
ticity and noncorrelation of regression errors fails. We presented in chapter 3 ordinary
least-squares (OLS) estimation with inference based on, respectively, heteroskedasticity-
robust or cluster-robust standard errors. Now we go further and present GLS estimation
based on a richer correctly specified model for the error. This is more efficient than OLS

estimation, leading to smaller standard errors, narrower confidence intervals, and larger
t statistics.

Here we detail GLS for single-equation regression on cross-section data with het-
eroskedastic errors, and for multiequation seemingly unrelated regressions (SUR), an ex-
ample of correlated errors. Other examples of GLS include the three-stage least-squares
estimator for simultaneous-equations systems (section 6.6), the random-effects estimator
for panel data (section 8.7), and systems of nonlinear equations (section 15.10.2).

This chapter concludes with a stand-alone presentation of a quite distinct topic:
survey estimation methods that explicitly control for the three complications of data
from complex surveys—sampling that is weighted, clustered, and stratified.

5.2 GLS and FGLS regression

We provide an overview of theory for GLS and feasible GLS (FGLS) estimation.

5.21 GLS for heteroskedastic errors

A simple example is the single-equation linear regression model with heteroskedastic
independent errors, where a specific model for heteroskedasticity is given. Specifically,

yL=x1.6+uzu 7'=111N (51)
U; = U(zi)si .

where €; satisfies E(eqlx;, 2;) = 0, B(ei€j|xi, 2i,%;,2;) = 0, i # j, and E(e?|x;,2,) = 1.
The function o(2;), called a skedasticity function, is a specified scalar-valued function

147
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of the observable variables z; The special case of homoskedastic regression arises if
o(z;) = o, a constant. The elements of the vectors z and x may or may not overlap.

Under these assumptions, the errors u; in (5.1) have zero mean and are uncorrelated
but are heteroskedastic with variance 0%(2;). Then OLS estimation of (5.1) yields con-
sistent estimates, but more-efficient estimation is possible if we instead estimate OLS
by a transformed model that has homoskedastic errors. Transforming the model by
multiplying by w; = 1/0(z..) yields the homoskedastic regression

{5%}: {UEZ-) },ﬁm (5.2)

because u;/07(z;) = {o(2;)e;:}/o(2:) = €; and €; is homoskedastic. The GLS estimator
is the OLS estimator of this transformed model. This regression can also be interpreted
as a weighted linear regression of y; on x; with the weight w; = 1/0(2;) assigned to the
tth observation. In practice, o(z;) may depend on unknown parameters, leading to the
feasible GLS estimator that uses the estimated weights &(z;) as explained below.

5.2.2 GLS and FGLS

More generally, we begin with the linear model in matrix notation:
y=XB+u (5.3)

By the Gauss-Markov theorem, the OLS estimator is efficient among linear unbiased
estimators if the linear regression model errors are zero-mean independent and ho-
moskedastic.

We suppose instead that £(uu’|X) = Q, where Q # ¢>I for a variety of reasons
that may include heteroskedasticity or clustering. Then the efficient GLS estimator is
obtained by OLS estimation of the transformed model

Q Yy QX B + e
where Q7/2QQ Y% = I so that the transformed error € = Q~*/2u ~ [0, 1] is ho-
moskedastic. In the heteroskedastic case, Q = Diag{c?(z,)}, so Q7/? = Diag{l/o'(z;)}.

In practice, Q is not known. Instead, we specify an error variance matrix model,
= §)(7), that depends on a finite-dimensional parameter vector <y and, possibly,
data. Given a consistent estimate ¥ of 7y, we form = (5). Different situations
correspond to different models for () and estimates of £2. The FGLS estimator is the
. . =12 a-1f2
OLS estimator from the regression of €2 y on Q X and equals
~ ~-1 P
Brars = (X'Q X)7'X'Q
Under the assumption that Q(v) is correctly specified, the variance—covariance matrix

- ~—1
of the estimator (VCE) of Brpgyg is (X'Q  X)~! because it can be shown that estimating
Q by © makes no difference asymptotically.
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5.2.3 Weighted least squares and robust standard errors

The FGLS estimator requires specification of a model, ©(+), for the error variance
matrix. Usually, it is clear what general complication is likely to be present. For
example, heteroskedastic errors are likely with cross-section data, but it is not clear what
specific model for that complication is appropriate. If the model for €(«) is misspecified,
then FGLS is still consistent, though it is no longer efficient. More importantly, the usual
VCE of Bggps will be incorrect. Instead, a robust estimator of the VCE should be used.

We therefore distinguish between the true error variance matrix, @ = E(uu’'X),
and the specified model for the error variance, denoted by ¥ = 3(-y). In the statistics
literature, especially that for generalized linear models, 3 () is called a working variance
matrix. Form the estimate £ = 3(7), where 7 is an estimate of «y. Then do FGLS with

. o1
the weighting matrix ¥ |, but obtain a robust estimate of the VCE. This estimator is

called a weighted least-squares (WLS) estimator to indicate that we no longer maintain
that Z(-y) = Q.

Table 5.1 presents the lengthy formula for the estimated VCE of the WLS estimator,
along with corresponding formulas for OLS and FGLS. Heteroskedasticity-robust stan-
dard errors can be obtained after OLS and after FGLS; see section 5.:3.5, which uses the
vce (robust) option. The cluster—-robust case is presented for panel data in chapter 8.

Table 5.1. Least-squares estimators and their asymptotic variance

Estimator Definition Estimated asymptotic variance
OLS B=(X'X)"'Xy (X/X)™! XX (X X)™?

FGLS B= (X x)xaly (Xt x)-t

WLS B= (X x)1x gy XETX)XETAS T XS T x)-

Note: Allresults are for a linear regression model whose errors have a conditional variance matrix
Q. For FGLS, it is assumed that (2 is consistent for Q. For OLS and WLS, the heteroskedasticity-
robust VCE of 3 uses Q equal to a diagonal matrix with squared residuals on the diagonals. A
cluster-robust VCE can also be used.

5.2.4 Leading examples

The GLS framework is relevant whenever  # ¢>I. We sumnmarize several leading cases.

Heteroskedastic errors have already been discussed at some length, and can arise in
many different ways. In particular, they may reflect specification errors associated with
the functional form of the model. Examples include neglected random or systematic
parameter variation; incorrect functional form of the conditional mean; incorrect scaling
of the variables in the regression; and incorrect distributional assumptions regarding
the dependent variables. A proper treatment of the problem of heteroskedasticity may
therefore require analysis of the functional form of the regression. For example, in
chapter 3, a log-linear model was found to be more appropriate than a linear model.
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For multivariate linear regression, such as the estimasion of systems of equations,
errors can be correlated across the equations for a specific individual. In this case, the
model consists of m linear regression equations y;; = x; ]ﬁj + u:j, where the errors ui;
are correlated over j for a given 4, but are uncorrelated over ¢ Then GLS estimation
refers to efficient joint estimation of all m regressions. The three-stage least-squares
estimator is an extension to the case of simultaneous-equations systems.

Another common example is that of clustered (or grouped) errors, with errors being
correlated within clusters but uncorrelated between clusters. A cluster consists of a
group of observations that share some social, geographical, or economic trait that in-
duces within-cluster dependence between observations, even after controlling for sources
of observable differences. Such dependence can also be induced by other latent factors
such as shared social norms, habits, or influence of a common local environment. In
this case, 2 can be partitioned by cluster. If all observations can be partitioned into
C mutually exclusive and exhaustive groups, then € can be partitioned into C subma-
trices, with each submatrix having its own intracluster correlation. A leading example
is the random-effects estimator for panel data, where clustering is on the individual
with independence across individuals. Then algorithms exist to simplify the necessary
inversion of the potentially very large N x N matrix Q.

5.3 Modeling heteroskedastic data

Heteroskedastic errors are pervasive in microeconometrics. The failure of homoskedas-
ticity in the standard regression model, introduced in chapter 3, leads to the OLS estima-
tor being inefficient, though it is still a consistent estimator. Given heteroskedastic er-
rors, there are two leading approaches. The first, taken in chapter 3, is to obtain robust
estimates of the standard errors of regression coefficients without assumptions about
the functional form of heteroskedasticity. Under this option, the form of heteroskedas-
ticity has no interest for the investigator who only wants to report correct standard
errors, t statistics, and p-values. This approach is easily implemented in Stata, using
the vce(robust) option. The second approach seeks to model the heteroskedasticity
and to obtain more-efficient FGLS estimates. This enables more precise estimation of
parameters and marginal effects and more precise prediction of the conditional mean.

Unlike some other standard settings for FGLS, there is no direct Stata command for
FGLS estimation given heteroskedastic errors. However, it is straightforward to obtain
the FGLS estimator manually, as we now demonstrate.

5.3.1 Simulated dataset

We use a simulated dataset, one where the conditional mean of y depends on regres-
sors z, and z3, while the conditional variance depends on only z2. The specific data-
generating process (DGP) is
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To,Tg ~ N(O, 25)

Yy=1l+1xzo+1xz3+Yy

u = /exp(

—-140.2 x T3) X ¢

Then the error u is heteroskedastic with a conditional variance of 25 x exp(—1+40.2x z5)
that varies across observations according to the value taken by z2.

We generate a sample of size 500 from this DGP:

. * Generated data for heteroskedasticity example
- set seed 10101

. quietly set obs 500

. generate double x2 = S*rnormal(0)

. generate double x3 = S5*rnormal(0)
. genmerate double e = S5*rmormal(0)
. generate double u = sqrt(exp(-1+0.2%x2))*e
. generate double y =1 + 1*x2 + 1*x3 + u
. summarize
Variable Obs Mean Std. Dev. Min Max
x2 500 -.0357347 4.929534 -17.05808 15.1011
x3 500 .08222 5.001709 -14.89073 15.9748
e 500 -.04497 5.130303 -12.57444 18.65422
u 500 ~.1564096 3.80155 -17.38211 16.09441
y 500 .8900757 7.709741 -21.65168  28.89449

The generated normal variables x2, x3, and e have, approximately, means of 0 and

standard deviations of 5 as expected.

53.2 OLS estimation

OLS regression with default standard errors yields

* OLS regression with default standard errors
. regress y x2 x3

Source ss df MS Number of obs = 500

F( 2, 497) = 790.51

Medel 22566.6872 2 11283.3436 Prob > F = 0.0000
Residual 7093.92492 497 14.2734908 R-squared = 0.7608
Adj R-squared = 0.7599

Total 29660.6122 499 59.4401046 Root MSE = 3.778

y Coef. Std. Err. t P>ltl [95% Conf. Intervall

x2 .9271964 .0343585 26.99 0.000 . 8596905 .9947023

x3 .9384295 .0338627 27.71° 0.000 .8718977 1.004961

- cons .8460511 . 168987 5.01 0.000 .5140341 1.178068




152 Chapter 5 GLS regression

The coefficient estimates are close to their true values and just within or outside the
upper limit of the 95% confidence intervals. The estimates are quite precise because
there are 500 observations, and for this generated dataset, the R? = 0,76 is very high.

The standard procedure is to obtain heteroskedasticity-robust standard errors for
the same OLS estimators. We have

. * OLS regression with heteroskedasticity-robust standard errors
. regress y x2 x3, vce(robust)

Linear regression Number of obs = 500
F( 2, 497) = 652.33
Prob > F = 0.0000
R-squared = 0.7608
Root MSE = 3.778
Robust
y Coef.  Std. Err. ot P>ltl [95%4 Conf. Intervall
x2 .9271964  .0452823 20.48 0.000 .8382281 1.016165
x3 .9384295  .0398793 23.53 0.000 .8600767 1.016782
.cons .8460511 .170438 4.96 0.000 .5111833 1.180919

In general, failure to control for heteroskedasticity leads to default standard errors being
wrong, though a priori it is not known whether they will be too large or too small. In
our example, we expect the standard errors for the coefficient of x2 to be most effected
because the heteroskedasticity depends on x2. This is indeed the case. For x2, the
robust standard error is 30% higher than the incorrect default (0.045 versus 0.034).
The original failure to control for heteroskedasticity led to wrong standard errors, in
this case, considerable understatement of the standard error of x2. For x3, there is less
change in the standard error.

5.3.3 Detecting heteroskedasticity

A simple informal diagnostic procedure is to plot the absolute value of the fitted regies-
sion residual, |@,|, against a variable assumed to be in the skedasticity function. The
regressors in the model are natural candidates.

The following code produces separate plots of [4,| against x2; and |4, against z3;,
and then combines theseintoone graph (shown in figure 5.1) by using the graph combine
command; seesection 2.6. Several options for the twoway command are used to improve
the legibility of the graph.

. * Heteroskedasticity diagpnostic scatterplot
. quietly regress y x2 x3

. predict double ubat, resid
. generate double absu = abs(uhat)

. quietly twoway (scatter absu x2) (lowess absu x2, bw(0.4) lw(thick)),
> scale(1.2) xscale(titleg(*5)) yscale(titleg(*5))
> plotr(style(none)) name(glsl)
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. quietly twoway (scatter absu x3) (lowess absu x3, bw(0.4) lw(thick)),
> scale(1.2) xscale(titleg(*5)) yscale(titleg(*5))
> plotr(style(none)) name(gls2)

. graph combine glsl gls2
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Figure 5.1. Absolute residuals graphed against z» and z3

It is easy to see that the range of the scatterplot becomes wider as z2 increases, with
a nonlinear relationship, and is unchanging as z3 increases. These observations are to
be expected given the DGP.

We can go beyond a visual representation of heteroskedasticity by formally testing
the null hypothesis of homoskedasticity against the alternative that residual variances
depend upon a) zz only, b) z3 only, and ¢) z2 and z3 jointly. Given the previous plot
(and our knowledge of the DGP), we expect the first test and the third test to reject
homoskedasticity, while the second test should not reject homoskedasticity.

These tests can be implemented using Stata'’s postestimation command estat
hettest, introduced in section 3.5.4. The simplest test is to use the mtest option,
which performs multiple tests that separately test each component and then test all
components. We have

(Continued on next page)
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- * Test heteroskedasticity depending on x2, x3, and x2 and x3
. estat hettest x2 x3, mtest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance

Variable chi2 df p
x2 180.80 1 0.0000 #
x3 2.16 1 0.1413 #
simultaneous 185.62 2 0.0000

# unadjusted p-values

The p-value for x2 is 0.000, causing us to reject the null hypothesis that the skedasticity
function does not depend on x2. We conclude that there is heteroskedasticity due
to x2 alone. In contrast, the p-value for x3 is 0.1413, so we cannot reject the null
hypothesis that the skedasticity function doesnot depend on x3. We conclude that there
is no heteroskedasticity due to x3 alone. Similarly, the p-value of 0.000 for the joint
(simultaneous) hypothesis leads us to conclude that the skedasticity function depends
on x2 and x3.

The mtest option is especially convenient if there are many regressors and, hence,
many candidates for causing heteroskedasticity. It does, however, use the version of
hettest that assumes that errors are normally distributed. To relax this assumption
to one of independent and identically distributed errors, we need to use the iid option
(see section 3.5.4) and conduct separate tests. Doing this leads to test statistics (not
reported) with values lower than those obtained above without iid, but leads to the
same conclusion: the heteroskedasticity is due to x2.

5.3.4 FGLS estimation

For potential gains in efficiency, we can estimate the parameters of the model by using

this is easy: from (5.2), we need to 1) estimate 52 and 2) OLS regress y;/3; on X;/3;.

At the first step, we estimate the linear regression by OLS, save the residuals %; =
y—x'BoLs, estimate the skedasticity function o%(z., ) by regressing &2 on o2(2,,7y), and
get the predicted values 52(z;,%). Here our tests suggest that the skedasticity function
should include only x2. We specify the skedasticity function o®(z) = exp(m + 7V232),
because taking the exponential ensures a positive variance. This is a nonlinear model
that needs to be estimated by nonlinear least squares. We use the n1 command, which
is explained in section 10.3.5.

The first step of FGLS yields

. * FGLS: First step get estimate of skedasticity function
. quietly regress y x2 x3 // get bols

. predict double uhat, resid
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. generate double uhatsq = uhat~2 // get squared residual

. generate doubile one = 1

. nl (ubatsq = exp{{xb: x2 one})), nolog // NLS of uhatsq on exp(z-a)
(obs = 500)
Source SSs df MS
Number of obs = 500
Model 188726.865 2 94363.4324 R-squared = 0.3294
Residual 384195.497 498 771.476902 Adj R-squared = 0.3267
Root MSE = 27.77547
Total 572922 .362 500 1145.84472 Res. dev, = 4741.088
uhatsq Coef. Std. Err. t P>ltl [95% Conf. Interval]
/xb_x2 . 1427541 .0128147 11.14 0.000 .1175766 .1679317
/xb_one 2,462675 .1119496 22.00 0.000 2.242723 2.682626

. predict double varu, yhat // get sigmabat~2

Note that x2 explains a good deal of the heteroskedasticity (R? = 0.33) and is highly
statistically significant. For our DGP, ¢2(z) = 25 x exp(—1 + 0.2z2) = exp(In25 — 1 +
0.2z2) = exp(2.22 +0.2x7), and the estimates of 246 and 0.14 are close to these values.

At the second step, the predictions 52(z) define the weights that are used to obtain
the FGLS estimator. Specifically, we regress y;/3, on x,/7,; where 32 = exp(J1 + V2%2:)-
This weighting can be done automatically by using aweight in estimation. If the
aweight variable is w;, then OLS regression is of Wiy, on \/wix;. Here we want
the aweight variable to be 1/32, or 1/varu. Then

. * FGLS: Second step get estimate of skedasticity function
. regress y x2 x3 [aweight=1/varu]
(sum of wgt is  5.4993e+01)

Source SS df MS Number of obs = 500
F( 2, 497) = 1890.74

Model 29055. 2584 2 14527.6292 Prob > F = 0.0000
Residual 3818.72634 497 7.68355401 R-squared = 0.8838
Adj R-squared = 0.8834

Total . 32873.9847 499 65.8797289 Root MSE = 2.7719

y Coef. Std. Err. t P>ltl [95%4 Conf. Intervall

x2 .9880644 .0246626 40.06 0.000 .9396087 1.03652

x3 .9783926 .025276 38.71 0.000 .9287315 1. 028054

_cons .9522962 . 1516564 6.28 0. 000 .6543296 1.250263

Comparison with previous results for OLS with the correct robust standard errors shows
that the estimated confidence intervals are narrower for FGLS. For example, for x2 the
improvement is from [0.84, 1.02] to [0.94, 1.04]. As predicted by theory, FGLS with a
correctly specified model for heteroskedasticity is.more efficient than OLS.

In practice, the form of heteroskedasticity is not known. Then a similar favorable
outcome may not occur, and we should create more robust standard errors as we next
consider.
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5.3.5 WLS estimation

The FGLS standard errors are based on the assumption of a correct model for het-
eroskedasticity. To guard against misspecification of this model, we use the WLS esti-
mator presented in section 5.2.3, which is equal to the FGLS estimator but uses robust
standard errors that do not rely on a model for heteroskedasticity. We have

. * WLS estimator is FGLS with robust estimate of VCE
. regress y x2 x3 [aweight=1/varu], vce(robust)
(sum of wgt is  5.49930+01)

Linear regression Number of obs = 500
F( 2, 497) = 2589.73
Prob > F = 0.0000
R-squared = (.8838
Root MSE = 2.7719
Robust
v Coef.  Std. Err. t P>tl [95% Conf. Interval]
x2 .9880644 .0218783 45.16 0.000 .9450791 1.03105
x3 .9783926 .0242506 40.35 0.000 .9307462 1.026039
_cons .9522962  .1546593 6.16  0.000 . 6484296 1.256163

The standard errors are quite similar to those for FGL:S, as expected because here FGLS
is known to use the DGP model for heteroskedasticity.

5.4 System of linear regressions

In this section, we extend GLS estimation to a system of linear equations with errors
that are correlated across equations for a given individual but are uncorrelated across
individuals. Then cross-equation correlation of the errors can be exploited to improve
estimator efficiency. This multivariate linear regression model is usually referred to
in econometrics as a set of SUR equations. It arises naturally in many contexts in
economics—a system of demand equations is a leading example. The GLS methods
presented here can be extended to systems of simultaneous equations (three-stage least-
squares estimation presented in section 6.6), panel data (chapter 8), and to systems of
nonlinear equations (section 15.10.2).

We also illustrate how to test or impose restrictions on parameters across equa-
tions. This additional complication can arise with systems of equations. For example,
consumer demand theory may impose symmetry restrictions.

5.4.1 SUR model

The model consists of m linear regression equations for N individuals. The jth equation
for individual i is y;; = x[;8; + ij- With all observations stacked, the model for the
Jth equation can be written as y; = X;3; + u;. We then stack the m equations to give
the SUR model
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" v1 X3 0 0 161 uy 7
y2 0 : Ba up
Sl=| 0 X S (5.4)
: : .. 0 : ‘
_ Y i 0 0 X, ] ﬁm Up,
This has a compact representation:
y=X8+u (5.5)

The error terms are assumed to have zero mean and to be independent across indi-
viduals and homoskedastic. The complication is that for a given individual the errors
are correlated across equations, with £(u;u:;4X) = 0j; and o7 £ 0 when j 7 j'.
It follows that the N x 1 error vectors uj, j = 1,...,m, satisfy the assumptions 1)
E(u;|X) = 0; 2) B(u;uj|X) = 0;,;1y; and 3) E(u;u}(X) = 05y, j # j'. Then for
the entire system, Q = E(uu’) = @Iy, where & = (0;;/) is an m x m positive-definite
matrix and @ denotes the Kronecker product of two matrices.

OLS applied to each equation yields a consistent estimator of 3, but the optimal
estimator for this model is the GLS estimator. Using 27" = 7! @ Iy, because {1 =
S @1y, the GLS is

Bore = { X' (57 @Iy) X} T {X/ (57} ®ly)y) (5.6)
with a VCE given by
Var(B) = { X' (™ @Iy) X}

FGLS estimation is straightforward, and the estimator is called the SUR estimator.
Werequire only estimation and inversion of the m x m matrix 3. Computation is in two
steps. First, each equation is estimated by OLS, and the residuals from the m equations
are used to estimate X, using G, = y; — X;0;, and 77 = G, Uy /N. Second, ¥ is
substituted for ¥ in (5.6) to obtain the FGLS estimator BFGLS. An alternative is to
further iterate these two steps until the estimation converges, called the iterated FGLS
(1FGLS) estimator. Although asymptotically there is no advantage from iterating, in
finite samples there may be. Asymptotic theory assumes that m is fixed while N — oo.

There are two cases where FGLS reduces to equation-by-equation OLS. First is the
obvious case of errors uncorrelated across equations, so ¥ is diagonal. The second case
is less obvious but can often arise in practice. Even if 3 is nondiagonal, if each equation
contains exactly the same set of regressors, so X; = X for all j and j’, then it can be
shown that the FGLS systems estimator reduces to equation-by-equation OLS.

5.4.2 The sureg command
The SUR estimator is performed in Stata by using the command sureg. This command

requires specification of dependent and regressor variables for each of the m equations.
The basic syntax for sureg is
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sureg (depvarl varlistl) ... (depvarm varlistm) [zf} [m] [weight] [, options]

where each pair of parentheses contains the model specification for each of the m linear
regressions. The default is two-step SUR estimation. Specifying the isure option causes
sureg to produce the iteraled estimator.

5.4.3 Application to two categories of expenditures

The application of SUR considered here involves two dependent variables that are the
logarithm of expenditure on prescribed drugs (1drugexp) and expenditure on all cate-
gories of medical services other than drugs (1totothr).

This data extract from the Medical Expenditure Panel Survey (MEPS) is similar
to that studied in chapter 3 and covers the Medicare-eligible pcpulation of those aged
65 years and more. The regressors are socioeconomic variables (educyr and a quadratic
in age), health-status variables (actlim and totchr), and supplemental insurance in-
dicators (private and medicaid). We have

. * Summary statistics for seemingly unrelated regressions example
. clear all

. use mus0Ssurdata.dta

. summarize ldrugexp ltototbr age age2 educyr actlim totchr medicaid private

Variable Obs Mean Std. Dev. Min Max
ldrugexp 3285 6.936533 1.300312 1.386294 10.33773
ltotothr 3350 7.537196 1.61298 1.098612 11.71892
age 3384 74.38475 6.388984 65 90
age2 3384 5573.898 961.357 4225 8100
educyr 3384 11.29108 3.7758 0 17
actlim 3384 .3454492 .4755848 0 1
totchr 3384 1.954492 1.326529 0 8
medicaid 3384 .161643 .3681774 0
private 3384 .5156619 .4998285 0 1

1

The parameters of the SUR model are estimated by using the sureg command.
Because SUR estimation reduces to OLS if exactly the same set of regressors appears in
each equation, we omit educyr from the model for 1drugexp, and we omit medicaid
from the model for 1totothr. We use the corr option because this yields the correlation
matrix for the fitted residuals that is used to form a test of the independence of the
errors in the two equations. We have
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* SUR estimatior of a seemingly unrelated regressions model
sureg (ldrugexp age age2 actlim totchr medicaid private)
> (ltotothr age age2 educyr actlim totchr private), corr

Seemingly unrelated regression

Equation Obs Parms RMSE “R-sq" ' chi2 P

ldrugexp 3251 6 1.133657 0.2284 962.07 0.0000

ltotothr 3251 6 1.491159 0.1491 567.91 0.0000
Coef. Std. Err. z P>lz! [95%4 Conf. Intervall

ldrugexp
age .2630418 .0795316 3.31 0.001 .1071627 .4189209
age2 -.0017428 .0005287 -3.30 0.001 -.002779 -.0007066
actlim . 3546589 .046617 7.61 0.000 .2632912 .4460266
totchr .4005159 .0161432 24.81 0.000 .3688757 .432156
medicaid . 1067772 .0592275 1.80 0.071 -. 0093065 .2228608
private .0810116 .0435596 1.86 0.063 -.0043636 .1663867
_cons -3.891259 2.975898 -1.31 0.191 -9.723911 1.9413594
ltotothr

age .2927827 .1046145 2.80 0.005 .087742 4978234
age2 -.0019247 .0006955 -2.77 0.006 -.0032878 -.0005617
educyr .0652702 .00732 8.92 0.000 .0509233 .0796172
actlim .7386912 .0608764 12.13 0.000 .6193756 .8580068
totchr .2873668 .0211713 13.57 0.000 .2458719 .3288618
private .2689068 . 055683 4.83 0.000 .1597701 .3780434
_cons -5.198327 3.914053 -1.33 0.184 ~12.86973 2.473077

Correlation matrix of residuals:

ldrugexp ltotothr
ldrugexp 1.0000
ltotothr 0.1741 - 1.0000

Breusch-Pagan test of independence: chi2(1) = 98.590, Pr = 0.0000

There are only 3,251 observations in this regression because of missing values for
ldrugexp and ltotothr. The lengthy output from sureg has three components.

The first set of results summarizes the goodness-of-fit for each equation. For the
dependent variable l1drugexp, we have B2 = 0.23. A test for joint significance of all
regressors in the equation (aside from the intercept) has a value of 962.07 with a p-value
of p = 0.000 obtained from the ¥*(6) distribution because there are six regressors. The
regressors are jointly significant in each equation.

The middle set of results presents the estimated coefficients. Most regressors are
statistically significant at the 5% level, and the regressors generally have a bigger impact
on other expenditures than they do on drug expenditures. As you will see in exercise 6
at the end of this chapter, the coefficient estimates are similar to those from OLS, and
the efficiency gains of SUR compared with OLS-are relatively modest, with standard
errors reduced by roughly 1%.
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The final set of results are generated by the corr option. The errors in the two equa-
tions are positively correlated, with ri2 = &¢12/+/011022 = 0.1741. The Breusch-Pagan
Lagrange multiplier test for error independence, computed as Nr3, = 3251 x 0.17412 =
98.54, has p = 0.000, computed by using the x?(1) distribution. Because 2 is not
exactly equal to 0.1741, the hand calculation yields 98.54, which is not exactly equal to
the 98.590 in the output. This indicates statistically significant correlation between the
errors in the two equations, as should be expected because the two categories of expen-
ditures may have similar underlying determinants. At the same time, the correlation is
not particularly strong, so the efficiency gains to SUR estimation are not great in this
example.

8.4.4 Robust standard errors

The standard errors reported from sureg impose homoskedasticity. This is a reason-
able assumption in this example, because taking the natural logarithm of expenditures
greatly reduces heteroskedasticity. But in other applications, such as using the levels of
expenditures, this would not be reasonable.

There is no option available with sureg to allow the errors to be heteroskedastic.
However, the bootstrap prefix, explained in chapter 13, can be used. It resamples over
individuals and provides standard errors that are valid under the weaker assumption
that BElusjuijX) = oj;, while maintaining the assumption of independence over
individuals. As you will learn in section 13.3.4, it is good practice to use more bootstraps
than the Stata default and to set a seed. We have

. * Bootstrap to get heteroskedasticity-robust SEs for SUP. estimator
. bootstrap, reps(400) seed(10101) nodots: surog

> (ldrugexp age age2 actlim totchr medicaid private)

> (ltotothr age age2 educyr actlim totchr private)

Seemingly unrelated regression

Equation Obs Parms RMSE "R-sq" chi2 P

ldrugexp 3251 6 1.133657 0.2284 962.07 0.0000
ltotothr 3251 6 1.491159 0.1491 567.91  0.0000
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Bootstrap

Coef. Std. Err. z P>lz! [95%4 Conf. Intervall

ldrugexp '
age .2630418 .0799786 3.29 0.001 .1062866 .4197969
age2 ~-.0017428 .0005319 -3.28 0.001 -.0027853 -.0007003
actlinm .3546589 .0460193 7.71 0.000 .2644627 .4448551
totchr .4005159 .0160369 24,97 0.000 .3690841 .4319477
medicaid .1067772 .0578864 1.84 0.065 -.0066781 .2202324
private .0810116 .042024 1.93 0.054 ~.0013539 .163377
- cons -3.891259  2.993037 -1.30 0.194 -9.757504 1.974986

ltotothr

age .2927827  .1040127 2.81 0.005 .0889216 .4966438
age2 -.0019247 .0006946 -2.77 0.006 -.0032861 -.0005633
educyr .0652702 .0082043 7.96 0.000 .0491902 .0813503
actlim .7386912 .0655458 11.27  0.000 .6102238 .8671586
totchr .2873668  .0212155 13.55 0.000 .2457853 .3289483
private .2689068 .057441 4.68 0.000 .1563244 .3814891
_cons -5.198327  3.872773 -1.34 0.180 -12.78882 2.392168

The output shows that the bootstrap standard errors differ little from the default stan-
dard errors. So, as expected for this example for expenditures in logs, heteroskedasticity
makes little difference to the standard errors.

5.4.5 Testing cross-equation constraints

Testing and imposing cross-equation constraints is not possible using equation-by-
equation OLS but is possible using SUR estimation. We begin with testing.

To test the joint significance of the age regressors, we type

* Test of variables in both equations
quietly sureg (ldrugexp age age2 actlim totchr medicaid private)
> (ltotothr age age2 educyr actlim totchr private)

test age age2

(1) [ldrugexp.age = 0
( 2) [ltototbrlage = 0
( 3) [ldrugexplage2 = 0
( 4) [ltotothrlage2 =0
chi2( 4) = 16.55
Prob > chi2 = 0.0024

This command autorcatically conducted the test for both equations.

The format used to refer to coefficient estimates is [depname] varname, where dep-
nome is the name of the dependent variable in the equation of interest, and varname is
the name of the regressor of interest.



162 Chapter 5 GLS regression

A test for significance of regressors in just the first equation is therefore

. » Test of variables in just the first equation
. test [ldrugexplage [ldrugexplage2

(1) [ldrugexplage = 0

( 2) [ldrugexplage2 = O

chi2( 2)
Prob > chi2

10.98
0.0041

The quadratic in age in the first equation is jointly statistically significant at the 5%
level.

Now consider a test of a cross-equation restriction. Suppose we want to test the
null hypothesis that having private insurance has the same impact on both dependent
variables. We can set up the test as follows:

. * Test of a restriction across the two equations
. test [ldrugexplprivate = [ltototbrlprivate

(1) [ldrugexplprivate - [ltototbrlprivate = 0

chi2( 1) = 8.35
Prob > chi2 = 0.0038

The null hypothesis is rejected at the 5% significance level. The coefficients in the two
equations differ. ’

In the more general case involving cross-equation restrictions in models with three
or more equations, then the accumulate option of the test command should be used.

5.4.6 Imposing cross-equation constraints

Wenow obtain estimates that impose restrictions on parameters across equations. Usu-
ally, such constraints are based on economic theory. As an illustrative example, we
impose the constraint that having private insurance has the same impact on both de-
pendent variables.

We first use the constraint command to define the constraint.

. * Specify a restriction across tho two equations
. constraint 1 [ldrugexplprivato = [ltotothrlprivate

Subsequent commands imposing the constraint will refer to it by the number 1 (any
integer between 1 and 1,999 can be used).
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We then impose the constraint using the constraints() option. We have

. * Estimate subject to the cross-equation constraint
. sureg (ldrugexp age age2 actlim totchr medicaid private)
> (ltotothr age age2 educyr actlim totchr private), comstraints(l)
Seemingly unrelated regression
Constraints:
( 1) [ldrugexplprivate - [ltotothrlprivate = 0

Equation' Obs Parms RMSE "R-sg" chi2 P

ldrugexp 3251 6 1.134035 0.2279 974.09  0.0000

ltotothr 3251 6 1.492163 0.1479 559.71 0.0000
Coef. Std. Err. z P>zl [95% Conf. Intervall

ldrugexp
age 2707053  .0795434 3.40 0.001 .1148031 .4266076
age2 -.0017907  .0005288 -3.39 0.001 -.0028271  -,0007543
actlim .3575386  .0466396 7.67 0.000 .2661268 .4489505
totchr .3997819  .0161527 24.75 0.000 .3681233 .4314405
medicaid .1473961  .0575962 2.56 0.010 .0345096 .2602827
private 1482936  .0368364 4,03 0.000 0760955 .2204917
- cons -4,235088 2.975613 -1.42 0.155 -10.06718 1.597006
ltotothr

age 2780287  .1045298 2.66 0.008 .073154 .4829034
age2 -.0018298  .0006949 -2.63 0.008 ~.0031919  -.0004677
educyr .0703523  .0071112 9.89 0.000 .0564147 .0842899
actlim 7276336  .0607791 11.97 0.000 6085088 .8467584
totchr 2874639  .0211794 13.57 0.000 .245953 .3289747
private .1482936  .0368364 4.03 0.000 .0760955 2204917
_cons -4.62162 3.910453 -1.18 0.237 -12,28597 3.042727

As desired, the private variable has the same coefficient in the two equations: 0.148.

More generally, separate constraint commands can be typed to specify many con-
straints, and the constraints() option will then have as an argument a list of the
constraint numbers.

5.5 Survey data: Weighting, clustering, and stratification

We now turn to a quite different topic: adjustments to standard estimation methods
when the data are not from a simple random sample, as we have implicitly assumed, but
instead come from complexsurvey data. The issues raised apply to all estimation meth-
ods, including single-equation least-squares estimation of the linear model, on which we
focus here.

Complex survey data lead to a sample that can be weighted, clustered, and strat-
ified. From section 3.7, weighted estimation, if desired, can be performed by using
the estimation command modifier [pweight=weight]. (This is a quite different rea-
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son for weighting than is that leading to the use of aweights in section 5.3.4.) Valid
standard errors that control for clustering can be obtained by using the vce(cluster
clustvar) option. This is the usual approach in microeconometric analysis—standard
errors should always control for any clustering of errors, and weighted analysis may or
may not be approp