Large–Sample Confidence Interval for μ

$$\overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Large–Sample Test of Hypothesis about $\,\mu$

One-Tailed Test

Two-Tailed Test

 $H_0: \mu = \mu_0$

 $H_0: \mu = \mu_0$

 $H_a: \mu < \mu_0$

 $H_a: \mu \neq \mu_0$

(or $H_a: \mu > \mu_0$)

Test statistic: $z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$

Rejection region: $z < -z_{\alpha}$

Rejection region: $|z| > z_{\alpha/2}$

(or $z > z_{\alpha}$ when $H_a: \mu > \mu_0$)

Small–Sample Confidence Interval for $\,\mu$

$$\overline{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$$

where $t_{\alpha/2}$ is based on (n-1) degrees of freedom

Small-Sample Test of Hypothesis about μ

One-Tailed Test

Two-Tailed Test

 $H_0: \mu = \mu_0$

 $H_0: \mu = \mu_0$

 $H_a: \mu < \mu_0$

 $H_a: \mu \neq \mu_0$

(or $H_a: \mu > \mu_0$)

Test statistic: $t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}$

Rejection region: $t < -t_{\alpha}$

Rejection region: $|t| > t_{\alpha/2}$

(or $t > t_{\alpha}$ when $H_a: \mu > \mu_0$)

where t_{α} and $t_{\alpha/2}$ are based on (n-1) degrees of freedom

Large-Sample Confidence Interval for Population Proportion p

$$\widehat{p} \pm z_{\alpha/2} \sqrt{\frac{pq}{n}} \approx \widehat{p} \pm z_{\alpha/2} \sqrt{\frac{\widehat{p}\widehat{q}}{n}}$$

where $\widehat{p} = x/n$ and $\widehat{q} = 1 - \widehat{p}$

Large-Sample Test of Hypothesis about Population Proportion p

One-Tailed Test

Two-Tailed Test

 $H_0: p = p_0$

 $H_0: p = p_0$

 $H_a: p < p_0$

 $H_a: p \neq p_0$

(or $H_a: p > p_0$)

Test statistic: $z = \frac{\widehat{p} - p_0}{\sigma_{\widehat{n}}}$, where $\sigma_{\widehat{p}} = \sqrt{\frac{p_0 q_0}{n}}$ and $q_0 = 1 - p_0$

Rejection region: $z < -z_{\alpha}$

Rejection region: $|z| > z_{\alpha/2}$

(or $z > z_{\alpha}$ when $H_a: p > p_0$)

Large–Sample Confidence Interval for $(\mu_1 - \mu_2)$ (Independent Samples)

$$(\overline{x}_1 - \overline{x}_2) \pm z_{\alpha/2} \sigma_{(\overline{x}_1 - \overline{x}_2)} = (\overline{x}_1 - \overline{x}_2) \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

Large-Sample Test of Hypothesis about $(\mu_1 - \mu_2)$ (Independent Samples)

One-Tailed Test

Two-Tailed Test

$$H_0: (\mu_1 - \mu_2) = D_0$$
 $H_0: (\mu_1 - \mu_2) = D_0$ $H_a: (\mu_1 - \mu_2) < D_0$ $H_a: (\mu_1 - \mu_2) > D_0$

Test statistic:
$$z = \frac{(\overline{x}_1 - \overline{x}_2) - D_0}{\sigma(\overline{x}_1 - \overline{x}_2)}$$
, where $\sigma_{(\overline{x}_1 - \overline{x}_2)} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$

Rejection region:
$$z<-z_{\alpha}$$
 Rejection region: $|z|>z_{\alpha/2}$ (or $z>z_{\alpha}$ when H_a : $(\mu_1-\mu_2)>D_0$)

Small-Sample Confidence Interval for $(\mu_1 - \mu_2)$ (Independent Samples)

$$(\overline{x}_1 - \overline{x}_2) \pm t_{\alpha/2} \sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

where $s_p^2 = \frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1 + n_2 - 2}$ and $t_{\alpha/2}$ is based on $(n_1 + n_2 - 2)$ degrees of freedom

Small-Sample Test of Hypothesis about $(\mu_1 - \mu_2)$ (Independent Samples)

One-Tailed Test

Two-Tailed Test

$$\begin{array}{ll} H_0: \ (\mu_1-\mu_2) = D_0 & H_0: \ (\mu_1-\mu_2) = D_0 \\ H_a: \ (\mu_1-\mu_2) < D_0 & H_a: \ (\mu_1-\mu_2) \neq D_0 \\ (\text{or } H_a: \ (\mu_1-\mu_2) > D_0) & \end{array}$$

Test statistic:
$$t = \frac{(\overline{x}_1 - \overline{x}_2) - D_0}{\sigma_{(\overline{x}_1 - \overline{x}_2)}}$$
, where $\sigma_{(\overline{x}_1 - \overline{x}_2)} = \sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$

Rejection region: $t < -t_{\alpha}$ Rejection region: $|t| > t_{\alpha/2}$ (or $t > t_{\alpha}$ when H_a : $(\mu_1 - \mu_2) > D_0$)

where t_{α} and $t_{\alpha/2}$ are based on $(n_1 + n_2 - 2)$ degrees of freedom

Large-Sample Paired Difference Confidence Interval for $\mu_d = (\mu_1 - \mu_2)$

$$\overline{d} \pm z_{\alpha/2} \frac{\sigma_d}{\sqrt{n_d}}$$

Large-Sample Paired Difference Test of Hypothesis about $\mu_d = (\mu_1 - \mu_2)$

One-Tailed Test

Two-Tailed Test

 $H_0: \mu_d = D_0$ $H_a: \mu_d < D_0$ $H_0: \mu_d = D_0$

(or $H_a: \mu_d > D_0$)

 $H_a: \mu_d \neq D_0$

Test statistic: $z = \frac{\overline{d} - D_0}{\sigma_d / \sqrt{n_d}}$

Rejection region: $z < -z_{\alpha}$

Rejection region: $|z| > z_{\alpha/2}$

(or $z > z_{\alpha}$ when $H_a: \mu_d > D_0$)

Small-Sample Paired Difference Confidence Interval for $\mu_d = (\mu_1 - \mu_2)$

$$\overline{d} \pm t_{\alpha/2} \frac{s_d}{\sqrt{n_d}},$$

where $t_{\alpha/2}$ is based on (n_d-1) degrees of freedom

Small-Sample Paired Difference Test of Hypothesis about $\mu_d = (\mu_1 - \mu_2)$

One-Tailed Test

Two-Tailed Test

 $H_0: \mu_d = D_0$

 $H_0: \mu_d = D_0$

 $H_a: \mu_d < D_0$

 $H_a: \mu_d \neq D_0$

(or $H_a: \mu_d > D_0$)

Test statistic: $t = \frac{\overline{d} - D_0}{s_d / \sqrt{n_d}}$

Rejection region: $t < -t_{\alpha}$

Rejection region: $|t| > t_{\alpha/2}$

(or $t > t_{\alpha}$ when $H_a: \mu_d > D_0$)

where t_{α} and $t_{\alpha/2}$ are based on (n_d-1) degrees of freedom

Large-sample Confidence Interval for $(p_1 - p_2)$

$$(\widehat{p}_1 - \widehat{p}_2) \pm z_{\alpha/2} \sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}} \approx (\widehat{p}_1 - \widehat{p}_2) \pm z_{\alpha/2} \sqrt{\frac{\widehat{p}_1 \widehat{q}_1}{n_1} + \frac{\widehat{p}_2 \widehat{q}_2}{n_2}}$$

Large-Sample Test of Hypothesis about $(p_1 - p_2)$

One-Tailed Test

Two-Tailed Test

 $H_0: (p_1 - p_2) = D_0$ $H_a: (p_1 - p_2) < D_0$ $H_0: (p_1 - p_2) = D_0$

(or $H_a: (p_1 - p_2) > D_0$)

 $H_a: (p_1 - p_2) \neq D_0$

Test statistic:
$$z = \frac{(\widehat{p}_1 - \widehat{p}_2) - D_0}{\sigma_{(\widehat{p}_1 - \widehat{p}_2)}}$$
, where $\sigma_{(\widehat{p}_1 - \widehat{p}_2)} = \sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}} \approx \sqrt{\widehat{p}\widehat{q}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$ and $\widehat{p} = \frac{x_1 + x_2}{n_1 + n_2}$

Rejection region: $z < -z_{\alpha}$

Rejection region: $|z| > z_{\alpha/2}$

(or $z > z_{\alpha}$ when H_a : $(p_1 - p_2) > D_0$)