Matrix equations

Summing up all information concerning matrices, we list their basic properties:

Addition properties

1. $A+B=B+A$ (commutative);
2. $(A+B)+C=A+(B+C)$ (associative);
3. $A+0=0+A=A$;
4. $A-A=-A+A=0$.

Multiplication properties

1. $A(B C)=(A B) C$ (associative);
2. $A I=I A=A$;
3. $A A^{-1}=A^{-1} A=I$.

Combined properties

1. $A(B+C)=A B+A C$;
2. $(B+C) A=B A+C A$.

Equality properties

1. If $A=B$, then $A+C=B+C$;
2. If $A=B$, then $A C=B C$;
3. If $A=B$, then $C A=C B$.

We use these properties for the solution of matrix equations.

Example 1 Given an $n \times n$ matrix A and an $n \times m$ matrix B. Solve $A X=B$ for X, where X is an $n \times m$ matrix.

Solution 1

$$
\begin{gathered}
A X=B \\
A^{-1} A X=A^{-1} B \\
I X=A^{-1} B \\
X=A^{-1} B
\end{gathered}
$$

Example 2 Given an $n \times n$ matrix A and an $m \times n$ matrix B. Solve $X A=B$ for X, where X is an $m \times n$ matrix.

Solution 2

$$
\begin{gathered}
X A=B \\
X A A^{-1}=B A^{-1} \\
X I=B A^{-1} \\
X=B A^{-1}
\end{gathered}
$$

Example 3 Given an $n \times n$ matrix A and an $n \times m$ matrix B. Solve $A X+X=B$ for X, where X is an $n \times m$ matrix.

Solution 3

$$
\begin{gathered}
A X+X=B \\
(A+I) X=B \\
(A+I)^{-1}(A+I) X=(A+I)^{-1} B \\
I X=(A+I)^{-1} B \\
X=(A+I)^{-1} B
\end{gathered}
$$

Example $4 A=\left(\begin{array}{cc}4 & 5 \\ -1 & -2\end{array}\right)$ and $B=\left(\begin{array}{cc}-1 & -3 \\ 5 & 1\end{array}\right)$. Solve $X-A X=B$ for X.

Solution 4 First step is to resolve the given equation with resect to X :

$$
\begin{gathered}
X-A X=B \\
(I-A) X=B \\
(I-A)^{-1}(I-A) X=(I-A)^{-1} B \\
X=(I-A)^{-1} B
\end{gathered}
$$

So, we need to find $(I-A)^{-1}$:

$$
I-A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-\left(\begin{array}{cc}
4 & 5 \\
-1 & -2
\end{array}\right)=\left(\begin{array}{cc}
-3 & -5 \\
1 & 3
\end{array}\right)
$$

$$
\begin{gathered}
\operatorname{det}(I-A)=\left|\begin{array}{cc}
-3 & -5 \\
1 & 3
\end{array}\right|=-9+5=-4 \\
(I-A)^{-1}=\frac{1}{\operatorname{det} A}\left(\begin{array}{cc}
M_{11} & -M_{12} \\
-M_{21} & M_{22}
\end{array}\right)^{T}=-\frac{1}{4}\left(\begin{array}{cc}
3 & -1 \\
5 & -3
\end{array}\right)^{T}=-\frac{1}{4}\left(\begin{array}{cc}
3 & 5 \\
-1 & -3
\end{array}\right)
\end{gathered}
$$

Thus,

$$
X=-\frac{1}{4}\left(\begin{array}{cc}
3 & 5 \\
-1 & -3
\end{array}\right)\left(\begin{array}{cc}
-1 & -3 \\
5 & 1
\end{array}\right)=-\frac{1}{4}\left(\begin{array}{cc}
22 & -4 \\
-14 & 0
\end{array}\right)=\left(\begin{array}{cc}
-5.5 & 1 \\
3.5 & 0
\end{array}\right)
$$

Gaussian elimination

Definition 1 A matrix A is called an echelon matrix, if the following two conditions hold:

1. All zero rows, if any, are at the bottom of the matrix;
2. Each leading nonzero entry in a row is to the right of the leading nonzero entry in the preceding row.

For example,

$$
A=\left(\begin{array}{llllllll}
0 & 2 & 3 & 4 & 5 & 9 & 0 & 7 \\
0 & 0 & 0 & 3 & 4 & 1 & 2 & 5 \\
0 & 0 & 0 & 0 & 0 & 5 & 7 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 8 & 6 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Elementary row operations

1. Interchange rows R_{i} and R_{j} or " $R_{i} \leftrightarrow R_{j}$ ";
2. Replace R_{i} by $k R_{i}(k \neq 0)$ or " $k R_{i} \rightarrow R_{i}$ ";
3. Replace R_{j} by $k R_{i}+R_{j}$ or " $k R_{i}+R_{j} \rightarrow R_{j}$ ".

Definition $2 A$ matrix A is said to be row equivalent to a matrix B, written $A \sim B$, if B can be obtained from A by a sequence of elementary row operations.

Algorithm of Gaussian elimination: The input is any matrix A and the output is an echelon form of A.

Step 1. Find the first column with a nonzero entry. Let j denote this column.
(a) arrange so that $a_{1 j} \neq 0$.
(b) Use $a_{1 j}$ as a pivot to obtain 0 's below $a_{1 j}$: replace R_{i} by $k R_{1}+R_{i}$, where $k=-\frac{a_{i j}}{a_{1 j}}$.
Step 2. Repeat Step 1 with the submatrix formed by all the rows excluding the first row.

Step 3. Continue the above process until a submatrix has only zero rows.
Remark 1 Thus, by elementary row operations any matrix can be reduced to echelon form.

Example 5 Reduce $A=\left(\begin{array}{ccccc}1 & 2 & -3 & 1 & 2 \\ 2 & 4 & -4 & 6 & 10 \\ 3 & 6 & -6 & 9 & 13\end{array}\right)$ to echelon form.
Solution $5\left(\begin{array}{ccccc}1 & 2 & -3 & 1 & 2 \\ 2 & 4 & -4 & 6 & 10 \\ 3 & 6 & -6 & 9 & 13\end{array}\right) \quad-2 R_{1}+R_{2} \rightarrow R_{2} \quad$ and $\quad-3 R_{1}+R_{3} \rightarrow R_{3}$
$\sim\left(\begin{array}{ccccc}1 & 2 & -3 & 1 & 2 \\ 0 & 0 & 2 & 4 & 6 \\ 0 & 0 & 3 & 6 & 7\end{array}\right) \quad \frac{1}{2} R_{2} \rightarrow R_{2}$
$\sim\left(\begin{array}{ccccc}1 & 2 & -3 & 1 & 2 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 3 & 6 & 7\end{array}\right) \quad-3 R_{2}+R_{3} \rightarrow R_{3}$
$\sim\left(\begin{array}{ccccc}1 & 2 & -3 & 1 & 2 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & -2\end{array}\right)$.

Inverse of using Elementary Row Operations

This method is as follows: apply Elementary Row Operations to a matrix A until it turns into the identity matrix I, and by also doing the changes to an identity matrix it turns into the inverse A^{-1}. Thus,

$$
(A \mid I) \sim\left(I \mid A^{-1}\right)
$$

Example 6 Find A^{-1} if $A=\left(\begin{array}{ccc}1 & 2 & 1 \\ 3 & -5 & 3 \\ 2 & 7 & -1\end{array}\right)$.
Solution $6\left(\begin{array}{ccc|ccc}1 & 2 & 1 & 1 & 0 & 0 \\ 3 & -5 & 3 & 0 & 1 & 0 \\ 2 & 7 & -1 & 0 & 0 & 1\end{array}\right) \quad-3 R_{1}+R_{2} \rightarrow R_{2}$ and $-2 R_{1}+R_{3} \rightarrow R_{3}$

$$
\begin{aligned}
& \sim\left(\begin{array}{ccc|ccc}
1 & 2 & 1 & 1 & 0 & 0 \\
0 & -11 & 0 & -3 & 1 & 0 \\
0 & 3 & -3 & -2 & 0 & 1
\end{array}\right) \quad-\frac{1}{11} R_{2} \rightarrow R_{2} \text { and } \frac{1}{3} R_{3} \rightarrow R_{3} \\
& \sim \sim\left(\begin{array}{ccc|ccc}
1 & 2 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & \frac{3}{11} & -\frac{1}{11} & 0 \\
0 & 1 & -1 & -\frac{2}{3} & 0 & \frac{1}{3}
\end{array}\right) \quad R_{3}+R_{1} \rightarrow R_{1} \text { and }(-1) R_{2}+R_{3} \rightarrow R_{3} \\
& \sim\left(\begin{array}{ccc|ccc}
1 & 3 & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\
0 & 1 & 0 & \frac{3}{11} & -\frac{1}{11} & 0 \\
0 & 0 & -1 & -\frac{31}{33} & \frac{1}{11} & \frac{1}{3}
\end{array}\right) \quad(-3) R_{2}+R_{1} \rightarrow R_{1} \text { and }(-1) R_{3} \rightarrow R_{3} \\
& \sim\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & -\frac{16}{33} & \frac{3}{11} & \frac{1}{3} \\
0 & 1 & 0 & \frac{3}{11} & -\frac{1}{11} & 0 \\
0 & 0 & 1 & \frac{31}{33} & -\frac{1}{11} & -\frac{1}{3}
\end{array}\right) . \\
& \text { Thus, } A^{-1}=\left(\begin{array}{ccc}
-\frac{16}{33} & \frac{3}{11} & \frac{1}{3} \\
\frac{3}{11} & -\frac{1}{11} & 0 \\
\frac{31}{33} & -\frac{1}{11} & -\frac{1}{3}
\end{array}\right) .
\end{aligned}
$$

