## Determinants

Determinant is a number associated with any square matrix $A$ and denoted by $\operatorname{det} A$. If vertical lines are around a matrix, it means determinant. Thus,

$$
\operatorname{det} A=\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right|
$$

It can be calculated as follows:

1. if $n=1$, then $\operatorname{det} A=a_{11}$;
2. if $n>1$, then

$$
\operatorname{det} A=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} M_{i j} \text { for any fixed } i
$$

or

$$
\operatorname{det} A=\sum_{i=1}^{n}(-1)^{i+j} a_{i j} M_{i j} \text { for any fixed } j
$$

where $M_{i j}$ is a determinant called a minor that results by eliminating the $i$ th row and $j$ th column from $A$. This calculation is called "Expansion by minors".

Thus, in particular, if $n=2$ and $i=1$ we have

$$
\begin{gathered}
\operatorname{det} A=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=\sum_{j=1}^{2}(-1)^{1+j} a_{1 j} M_{1 j}=(-1)^{1+1} a_{11} M_{11}+(-1)^{1+2} a_{12} M_{12} \\
=a_{11} a_{22}-a_{12} a_{21}
\end{gathered}
$$

The obtained formula is used to calculate the determinants of any $2 \times 2$ matrices. So, it is the product of elements on the principal diagonal minus the product of elements on the nonprincipal diagonal.

Similarly, if $n=3$ and $i=1$ we have

$$
\begin{gathered}
\operatorname{det} A=\left|\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=\sum_{j=1}^{3}(-1)^{1+j} a_{1 j} M_{1 j} \\
=(-1)^{1+1} a_{11} M_{11}+(-1)^{1+2} a_{12} M_{12}+(-1)^{1+3} a_{13} M_{13}
\end{gathered}
$$

$$
\begin{gathered}
=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
=a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)-a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right)+a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right) \\
=\left(a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}\right)-\left(a_{13} a_{22} a_{31}+a_{11} a_{23} a_{32}+a_{12} a_{21} a_{33}\right) .
\end{gathered}
$$

This formula is used to calculate the determinants of any $3 \times 3$ matrices. To remember this formula we need to extend the determinant's grid by rewriting the first two columns:

$$
\left.\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array} \right\rvert\,
$$

There are three down-diagonals: the principal diagonal with the elements $a_{11}, a_{22}$, $a_{33}$, and two diagonals parallel to principal with the elements $a_{12}, a_{23}, a_{31}$ and $a_{13}, a_{21}, a_{32}$, respectively. If we sum the products of elements on each of these down-diagonals, we get the first bracket of the formula. Similarly, there are three up-diagonals: the nonprincipal diagonal with the elements $a_{13}, a_{22}, a_{31}$, and two diagonals parallel to nonprincipal with the elements $a_{11}, a_{23}, a_{32}$ and $a_{12}, a_{21}, a_{33}$, respectively. If we sum the products of elements on each of these up-diagonals, we get the second bracket of the formula.
Example 1 Find $\operatorname{det} A$ if $A=\left(\begin{array}{cc}1 & 2 \\ 3 & -1\end{array}\right)$.

## Solution 1

$$
\operatorname{det} A=\left|\begin{array}{cc}
1 & 2 \\
3 & -1
\end{array}\right|=1 \cdot(-1)-2 \cdot 3=-1-6=-7
$$

Example 2 Find $\operatorname{det} A$ if $A=\left(\begin{array}{ccc}5 & -2 & 1 \\ 3 & 1 & -4 \\ 6 & 0 & -3\end{array}\right)$.

## Solution 2

$$
\operatorname{det} A=\left|\begin{array}{ccc|cc}
5 & -2 & 1 & 5 & -2 \\
3 & 1 & -4 & 3 & 1 \\
6 & 0 & -3 & 6 & 0
\end{array}\right|
$$

$$
\begin{gathered}
=(5 \cdot 1 \cdot(-3)+(-2) \cdot(-4) \cdot 6+1 \cdot 3 \cdot 0)-(1 \cdot 1 \cdot 6+5 \cdot(-4) \cdot 0+(-2) \cdot 3 \cdot(-3)) \\
=(-15+48+0)-(6-0+18)=33-24=9 .
\end{gathered}
$$

## Properties of determinants

1. $\operatorname{det} A=\operatorname{det} A^{T}$;
2. Interchange of two rows (or columns) changes sign of determinant;
3. Common factor of all elements of row (or column) can be taken outside determinant;
4. Determinant with row (or column) of zeros is equal to 0 ;

5 . Determinant with two equal rows (or columns) is equal to 0 ;
6. Determinant with two proportional rows (or columns) is equal to 0 ;
7. Determinant does not change if one row (or column) multiplied by constant is added to another row (or column).

Let us recalculate the determinant given in Example 2 by using properties.
Example 3 Find $\operatorname{det} A$ if $A=\left(\begin{array}{ccc}5 & -2 & 1 \\ 3 & 1 & -4 \\ 6 & 0 & -3\end{array}\right)$.
Solution 3 We use Property 7. Namely, the determinant does not change if we multiply the third column by 2 and add it to the first column. Then we apply "expansion by minors" with respect to the third row:

$$
\begin{gathered}
\operatorname{det} A=\left|\begin{array}{ccc}
5 & -2 & 1 \\
3 & 1 & -4 \\
6 & 0 & -3
\end{array}\right|=\left|\begin{array}{ccc}
7 & -2 & 1 \\
-5 & 1 & -4 \\
0 & 0 & -3
\end{array}\right| \\
=(-1)^{3+3}(-3)\left|\begin{array}{cc}
7 & -2 \\
-5 & 1
\end{array}\right|=-3 \cdot(7 \cdot 1-(-2) \cdot(-5))=-3 \cdot(-3)=9 .
\end{gathered}
$$

## Inverse matrix

Definition 1 The inverse of a square matrix $A$ is a matrix $A^{-1}$ such that

$$
A A^{-1}=A^{-1} A=I
$$

Theorem $1 A$ square matrix $A$ has an inverse if and only if $\operatorname{det} A \neq 0$.

Suppose that $A=\left(a_{i j}\right)_{n \times n}$. If $A^{-1}=\left(\alpha_{i j}\right)_{n \times n}$, then

$$
\alpha_{i j}=\frac{(-1)^{i+j} M_{j i}}{\operatorname{det} A} .
$$

Example 4 Find $A^{-1}$ if $A=\left(\begin{array}{cc}2 & 3 \\ -1 & 1\end{array}\right)$.
Solution 4 First step is to find $\operatorname{det} A$ :

$$
\operatorname{det} A=\left|\begin{array}{cc}
2 & 3 \\
-1 & 1
\end{array}\right|=2 \cdot 1-3 \cdot(-1)=5 \text {. }
$$

Next, we find all elements of $A^{-1}$ :

$$
\begin{aligned}
& \alpha_{11}=\frac{(-1)^{1+1} M_{11}}{\operatorname{det} A}=\frac{1}{5} \\
& \alpha_{12}=\frac{(-1)^{1+2} M_{21}}{\operatorname{det} A}=\frac{-3}{5} \\
& \alpha_{21}=\frac{(-1)^{2+1} M_{12}}{\operatorname{det} A}=\frac{1}{5} \\
& \alpha_{22}=\frac{(-1)^{2+2} M_{22}}{\operatorname{det} A}=\frac{2}{5}
\end{aligned}
$$

Thus,

$$
A^{-1}=\left(\begin{array}{cc}
\frac{1}{5} & \frac{-3}{5} \\
\frac{1}{5} & \frac{2}{5}
\end{array}\right)
$$

Example 5 Find $A^{-1}$ if $A=\left(\begin{array}{ccc}1 & 2 & 1 \\ 3 & -5 & 3 \\ 2 & 7 & -1\end{array}\right)$.
Solution 5 First step is to find $\operatorname{det} A$. If we multiply the first row by -3 and add to the second row, we get

$$
\operatorname{det} A \xlongequal{ }\left|\begin{array}{ccc}
1 & 2 & 1 \\
3 & -5 & 3 \\
2 & 7 & -1
\end{array}\right|=\left|\begin{array}{ccc}
1 & 2 & 1 \\
0 & -11 & 0 \\
2 & 7 & -1
\end{array}\right|=(-1)^{2+2}(-11)\left|\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right|
$$

$$
=-11 \cdot(-1-2)=-11 \cdot(-3)=33
$$

It is obvious that $A^{-1}$ can be found as follows

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left(\begin{array}{ccc}
M_{11} & -M_{12} & M_{13} \\
-M_{21} & M_{22} & -M_{23} \\
M_{31} & -M_{32} & M_{33}
\end{array}\right)^{T}
$$

Hence,

$$
\begin{aligned}
& A^{-1}=\frac{1}{33}(\begin{array}{cc}
\left|\begin{array}{cc}
-5 & 3 \\
7 & -1
\end{array}\right| & -\left|\begin{array}{cc}
3 & 3 \\
2 & -1
\end{array}\right|\left|\begin{array}{cc}
3 & -5 \\
2 & 7
\end{array}\right| \\
-\left|\begin{array}{cc}
2 & 1 \\
7 & -1
\end{array}\right| & \left|\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right|
\end{array} \underbrace{T} \\
& =\frac{1}{33}\left(\begin{array}{ccc}
-16 & 9 & 31 \\
9 & -3 & -3 \\
11 & 0 & -11
\end{array}\right)^{T}=\frac{1}{33}\left(\begin{array}{ccc}
-16 & 9 & 11 \\
9 & -3 & 0 \\
31 & -3 & -11
\end{array}\right)=\left(\begin{array}{ccc}
-\frac{16}{33} & \frac{3}{11} & \frac{1}{3} \\
\frac{3}{11} & -\frac{1}{11} & 0 \\
\frac{31}{33} & -\frac{1}{11} & -\frac{1}{3}
\end{array}\right) \text {. }
\end{aligned}
$$

