

7 Linear algebra

7.1 Matrices

Definition 1 An $m \times n$ matrix is a rectangular table with m rows and n columns of elements a_{ij} , $i = 1, 2, \dots, m$, $j = 1, 2, \dots, n$, written within brackets

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{21} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}.$$

The expression $m \times n$ is called the size of the matrix.

Remark 1 It is important to note that the number of rows is always given first.

Remark 2 Each element of a matrix is uniquely identified by its row and column position. This position is denoted by double subscript notation a_{ij} , where i is the row R_i and j is the column C_j containing a_{ij} .

Definition 2 A matrix with n rows and n columns is called a square matrix of order n .

Definition 3 A matrix with only 1 column is called a column matrix or column vector, and a matrix with only 1 row is called a row matrix or row vector.

Definition 4 The principal (main) diagonal of a matrix consists of the elements $a_{11}, a_{22}, a_{33}, \dots$.

Definition 5 A matrix consisting only of zeros is called a zero matrix and is denoted O .

Definition 6 An identity matrix I is a square matrix that has 1 on the principal diagonal and 0 elsewhere. For example, the identity matrices 2×2 , 3×3 and 4×4

are

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad I = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

respectively.

Definition 7 *The transpose of a matrix A is a new matrix A^T formed by interchanging the rows and columns of A .*

7.2 Operations with matrices

1. Sum and difference of two matrices

Remark 3 *The sum and difference operations are not defined for matrices of different sizes.*

The sum of two matrices is a matrix with elements that are the sum of the corresponding elements of two given matrices. Similarly, the difference of two matrices is a matrix with elements that are the difference of the corresponding elements of two given matrices.

Thus, suppose that $A = (a_{ij})_{m \times n}$ and $B = (b_{ij})_{m \times n}$. If $C = (c_{ij})_{m \times n} = A + B$ and $D = (d_{ij})_{m \times n} = A - B$, then

$$c_{ij} = a_{ij} + b_{ij}$$

and

$$d_{ij} = a_{ij} - b_{ij}.$$

Remark 4 *Matrix summation is commutative:*

$$A + B = B + A.$$

Example 1 $A = \begin{pmatrix} 2 & -1 & 0 & 7 \\ 4 & 6 & -7 & -3 \end{pmatrix}$ and $B = \begin{pmatrix} 6 & 2 & -5 & 5 \\ 2 & 1 & -2 & 1 \end{pmatrix}$. Find $A + B$ and $A - B$.

Solution 1

$$\begin{aligned}
 A + B &= \begin{pmatrix} 2+6 & -1+2 & 0+(-5) & 7+5 \\ 4+2 & 6+1 & -7+(-2) & -3+1 \end{pmatrix} \\
 &= \begin{pmatrix} 8 & 1 & -5 & 12 \\ 6 & 7 & -9 & -2 \end{pmatrix}. \\
 A - B &= \begin{pmatrix} 2-6 & -1-2 & 0-(-5) & 7-5 \\ 4-2 & 6-1 & -7-(-2) & -3-1 \end{pmatrix} \\
 &= \begin{pmatrix} -4 & -3 & 5 & 2 \\ 2 & 5 & -5 & -4 \end{pmatrix}.
 \end{aligned}$$

2. Multiplication of matrix by number

The product of a matrix A by a number k is a matrix kA formed by multiplying each element a_{ij} by k .

Example 2 $A = \begin{pmatrix} 2 & -1 & 0 & 7 \\ 4 & 6 & -7 & -3 \end{pmatrix}$ and $k = 10$. Find kA .

Solution 2

$$kA = 10 \begin{pmatrix} 2 & -1 & 0 & 7 \\ 4 & 6 & -7 & -3 \end{pmatrix} = \begin{pmatrix} 20 & -10 & 0 & 70 \\ 40 & 60 & -70 & -30 \end{pmatrix}.$$

3. Multiplication of two matrices

Remark 5 The product of two matrices AB is not defined if the number of columns in A is not equal to the number of rows in B .

The product of two matrices A and B is a matrix with an element in the i th row and j th column obtained by multiplying the corresponding entries of the i th row of A and j th column of B (first by first, second by second, etc.) and adding the result.

Thus, suppose that $A = (a_{ik})_{m \times p}$ and $B = (b_{kj})_{p \times n}$. If $C = (c_{ij})_{m \times n} = AB$, then

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{ik}b_{kj}.$$

Remark 6 *Matrix product is not commutative:*

$$AB \neq BA.$$

Example 3 $A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 1 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 3 \\ 1 & 2 \end{pmatrix}$. Find AB and BA .

Solution 3

$$AB = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 1 & 2 \end{pmatrix}$$

is not defined because 3 columns in A is not equal to 2 rows in B .

$$\begin{aligned} BA &= \begin{pmatrix} 1 & 3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ 3 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + 3 \cdot 3 & 1 \cdot 2 + 3 \cdot 1 & 1 \cdot 1 + 3 \cdot 0 \\ 1 \cdot 1 + 2 \cdot 3 & 1 \cdot 2 + 2 \cdot 1 & 1 \cdot 1 + 2 \cdot 0 \end{pmatrix} \\ &= \begin{pmatrix} 10 & 5 & 1 \\ 7 & 4 & 1 \end{pmatrix}. \end{aligned}$$