Matrices

Definition 1 An $m \times n$ matrix is a rectangular table with m rows and n columns of elements $a_{i j}, i=1,2, \ldots, m, j=1,2, \ldots, n$, written within brackets

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{21} \\
\ldots & \ldots & \ldots & \ldots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)
$$

The expression $m \times n$ is called the size of the matrix.
Remark 1 It is important to note that the number of rows if always given first.

Remark 2 Each element of a matrix is uniquely identified by its row and column position. This position is denoted by double subscript notation $a_{i j}$, where i is the row R_{i} and j is the column C_{j} containing $a_{i j}$.

Definition 2 A matrix with n rows and n columns is called a square matrix of order n.

Definition 3 A matrix with only 1 column is called a column matrix or column vector, and a matrix with only 1 row is called a row matrix or row vector.

Definition 4 The principal (main) diagonal of a matrix consists of the elements $a_{11}, a_{22}, a_{33}, \ldots$.

Definition 5 A matrix consisting only of zeros is called a zero matrix and is denoted O.

Definition 6 An identity matrix I is a square matrix that has 1 on the principal diagonal and 0 elsewhere. For example, the identity matrices $2 \times 2,3 \times 3$ and 4×4 are

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), I=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \text { and } I=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

respectively.

Definition 7 The transpose of a matrix A is a new matrix A^{T} formed by interchanging the rows and columns of A.

Operations with matrices

1. Sum and difference of two matrices

Remark 3 The sum and difference operations are not defined for matrices of different sizes.

The sum of two matrices is a matrix with elements that are the sum of the corresponding elements of two given matrices. Similarly, the difference of two matrices is a matrix with elements that are the difference of the corresponding elements of two given matrices.

Thus, suppose that $A=\left(a_{i j}\right)_{m \times n}$ and $B=\left(b_{i j}\right)_{m \times n}$. If $C=\left(c_{i j}\right)_{m \times n}=A+B$ and $D=\left(d_{i j}\right)_{m \times n}=A-B$, then

$$
c_{i j}=a_{i j}+b_{i j}
$$

and

$$
d_{i j}=a_{i j}-b_{i j} .
$$

Remark 4 Matrix summation is commutative:

$$
A+B=B+A
$$

Example $1 A=\left(\begin{array}{cccc}2 & -1 & 0 & 7 \\ 4 & 6 & -7 & -3\end{array}\right)$ and $B=\left(\begin{array}{cccc}6 & 2 & -5 & 5 \\ 2 & 1 & -2 & 1\end{array}\right)$. Find $A+B$ and $A-B$.

Solution 1

$$
\begin{gathered}
A+B=\left(\begin{array}{cccc}
2+6 & -1+2 & 0+(-5) & 7+5 \\
4+2 & 6+1 & -7+(-2) & -3+1
\end{array}\right) \\
=\left(\begin{array}{cccc}
8 & 1 & -5 & 12 \\
6 & 7 & -9 & -2
\end{array}\right)
\end{gathered}
$$

$$
\begin{gathered}
A-B=\left(\begin{array}{cccc}
2-6 & -1-2 & 0-(-5) & 7-5 \\
4-2 & 6-1 & -7-(-2) & -3-1
\end{array}\right) \\
=\left(\begin{array}{cccc}
-4 & -3 & 5 & 2 \\
2 & 5 & -5 & -4
\end{array}\right)
\end{gathered}
$$

2. Multiplication of matrix by number

The product of a matrix A by a number k is a matrix $k A$ formed by multiplying each element $a_{i j}$ by k.

Example $2 A=\left(\begin{array}{cccc}2 & -1 & 0 & 7 \\ 4 & 6 & -7 & -3\end{array}\right)$ and $k=10$. Find $k A$.

Solution 2

$$
k A=10\left(\begin{array}{cccc}
2 & -1 & 0 & 7 \\
4 & 6 & -7 & -3
\end{array}\right)=\left(\begin{array}{cccc}
20 & -10 & 0 & 70 \\
40 & 60 & -70 & -30
\end{array}\right)
$$

3. Multiplication of two matrices

Remark 5 The product of two matrices $A B$ is not defined if the number of columns in A is not equal to the number of rows in B.

The product of two matrices A and B is a matrix with an element in the i th row and j th column obtained by multiplying the corresponding entries of the i th row of A and j th column of B (first by first, second by second, etc.) and adding the result.

Thus, suppose that $A=\left(a_{i k}\right)_{m \times p}$ and $B=\left(b_{k j}\right)_{p \times n}$. If $C=\left(c_{i j}\right)_{m \times n}=A B$, then

$$
c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i k} b_{k j} .
$$

Remark 6 Matrix product is not commutative:

$$
A B \neq B A .
$$

Example $3 A=\left(\begin{array}{lll}1 & 2 & 1 \\ 3 & 1 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 3 \\ 1 & 2\end{array}\right)$. Find $A B$ and $B A$.

Solution 3

$$
A B=\left(\begin{array}{lll}
1 & 2 & 1 \\
3 & 1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 3 \\
1 & 2
\end{array}\right)
$$

is not defined because 3 columns in A is not equal to 2 rows in B.

$$
\begin{aligned}
B A=\left(\begin{array}{ll}
1 & 3 \\
1 & 2
\end{array}\right)\left(\begin{array}{ccc}
1 & 2 & 1 \\
3 & 1 & 0
\end{array}\right) & =\left(\begin{array}{ccc}
1 \cdot 1+3 \cdot 3 & 1 \cdot 2+3 \cdot 1 & 1 \cdot 1+3 \cdot 0 \\
1 \cdot 1+2 \cdot 3 & 1 \cdot 2+2 \cdot 1 & 1 \cdot 1+2 \cdot 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
10 & 5 & 1 \\
7 & 4 & 1
\end{array}\right) .
\end{aligned}
$$

