Area between two curves

Theorem 1 If f and g are continuous functions such that $f(x) \geq g(x)$ over the interval $[a ; b]$, then the area of a region bounded by $f(x)$ and $g(x)$ over $[a ; b]$ is given by the formula

$$
S=\int_{a}^{b}(f(x)-g(x)) d x
$$

Example 1 Find the area bounded by $f(x)=x^{2}+2$ and $g(x)=1-x^{2}$ over $[0 ; 1]$.

Solution 1 First, we need to sketch the area (Figure 1).

Figure 1

It is obvious that $f(x) \geq g(x)$, therefore

$$
S=\int_{0}^{1}\left(\left(x^{2}+2\right)-\left(1-x^{2}\right)\right) d x=\int_{0}^{1}\left(2 x^{2}+1\right) d x=\frac{2 x^{3}}{3}+\left.x\right|_{0} ^{1}=\frac{2}{3}+1=\frac{5}{3} .
$$

Example 2 Find the area bounded by $f(x)=\sqrt{x}$ and $g(x)=x^{2}$.

Solution 2 The statement of the problem does not include any interval. It means that we need to find points of intersection of f and g, that is equivalent to the solution of the equation $f(x)=g(x)$ or $\sqrt{x}=x^{2}$. That gives $x_{1}=0$ and $x_{2}=1$.

Second, we need to sketch the area (Figure 2).

Figure 2

It is obvious that $f(x) \geq g(x)$ for $[0 ; 1]$, therefore

$$
S=\int_{0}^{1}\left(\sqrt{x}-x^{2}\right) d x=\frac{2 x^{\frac{3}{2}}}{3}-\left.\frac{x^{3}}{3}\right|_{0} ^{1}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3} .
$$

Example 3 Find the area bounded by $f(x)=(x+3)^{2}-3$ and $g(x)=2 x+6$ over $[-5 ; 0]$.

Solution 3 Let us find points of intersection of f and g, that is equivalent to the solution of the equation $f(x)=g(x)$.

$$
\begin{gathered}
(x+3)^{2}-3=2 x+6 \\
x^{2}+6 x+9-3-2 x-6=0 \\
x^{2}+4 x=0 \\
x_{1}=0, \quad x_{2}=-4 .
\end{gathered}
$$

These points help us to sketch the area (Figure 3).

Figure 3
Examining the graph, we see that $f(x) \geq g(x)$ over $[-5 ;-4]$ and $g(x) \geq f(x)$ over $[-4 ; 0]$. Thus, two integrals are needed to calculate the total area.

$$
\begin{gathered}
S_{1}=\int_{-5}^{-4}(f(x)-g(x)) d x=\int_{-5}^{-4}\left(\left((x+3)^{2}-3\right)-(2 x+6)\right) d x \\
=\int_{-5}^{-4}\left(x^{2}+6 x+9-3-2 x-6\right) d x=\int_{-5}^{-4}\left(x^{2}+4 x\right) d x=\frac{x^{3}}{3}+\left.2 x^{2}\right|_{-5} ^{-4} \\
=\left(\frac{(-4)^{3}}{3}+2(-4)^{2}\right)-\left(\frac{(-5)^{3}}{3}+2(-5)^{2}\right)=-\frac{64}{3}+32+\frac{125}{3}-50 \\
=\frac{61}{3}-18=\frac{61}{3}-\frac{54}{3}=\frac{7}{3} \\
=\int_{-4}^{0}\left(2 x+6-x^{2}-6 x-9+3\right) d x=\int_{-4}^{0}(g(x)-f(x)) d x=\int_{-4}^{0}\left((2 x+6)-\left((x+3)^{2}-3\right)\right) d x \\
S_{2} \\
=0-\left(-\frac{(-4)^{3}}{3}-2(-4)^{2}\right)=-\frac{64}{3}+32=-\frac{64}{3}+\frac{96}{3}=\frac{32}{3} .
\end{gathered}
$$

The total area between the two graphs is

$$
S=S_{1}+S_{2}=\frac{7}{3}+\frac{32}{3}=\frac{39}{3}=13
$$

