
6.3 De�nite integrals

Let f be a function de�ned on the interval [a; b]. We divide the interval [a; b] into n

subintervals of equal length ∆x = (b− a)/n:

a = x0 < x1 < x2 < ... < xi−1 < xi < ... < xn−1 < xn = b.

Then we choose arbitrary points ci from each subintervals [xi−1;xi] and �nd their

values f(ci). Next we construct the sum:

Sn = f(c1) ·∆x+ f(c2) ·∆x+ ...+ f(cn) ·∆x =
n∑

i=1

f(ci) ·∆x.

This sum is called the Riemann integral sum.
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Theorem 1 If f is continuous function on [a; b], then there exists the limit of the

Riemann integral sums when n → ∞.

De�nition 1 Let f be a continuous function on [a; b]. The limit of the Riemann

integral sums when n → ∞ is called the de�nite integral of f from a to b, denoted
b∫
a

f(x)dx. Thus,

b∫
a

f(x)dx = lim
n→∞

n∑
i=1

f(ci) ·∆x.

Here a and b are the lower and upper limits of integration, respectively.
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Obviously, the de�nite integral has the following geometric interpretation: it

represents the sum of the areas between the graph of f and the x-axis from a to b,

where the areas above the x-axis are counted positively and the areas below x-axis

are counted negatively (Figure 24).

Properties of de�nite integrals

1.
a∫
a

f(x)dx = 0;

2.
b∫
a

kf(x)dx = k
b∫
a

f(x)dx, where k is a constant;

3.
b∫
a

f(x)dx = −
a∫
b

f(x)dx;

4.
b∫
a

(f(x)± g(x)) dx =
b∫
a

f(x)dx±
b∫
a

g(x)dx;

5.
b∫
a

f(x)dx =
c∫
a

f(x)dx+
b∫
c

f(x)dx, where a < c < b.

6.4 Fundamental theorem of calculus

Theorem 2 If f is a continuous function on [a; b], and F (x) is an antiderivative

of f , then
b∫

a

f(x)dx = F (x) |ba= F (b)− F (a).

Proof. Let us �rst prove the following fact. If the function G(x) is de�ned on [a; b]

by the formula

G(x) =

x∫
a

f(t)dt,

then G′(x) = f(x), i.e., G(x) is an antiderivative of f .

Indeed, using the de�nition of derivative, we have

G′(x) = lim
∆x→0

G(x+∆x)−G(x)

∆x
= lim

∆x→0

1

∆x

 x+∆x∫
a

f(t)dt−
x∫

a

f(t)dt

 =

lim
∆x→0

1

∆x

 x∫
a

f(t)dt+

x+∆x∫
x

f(t)dt−
x∫

a

f(t)dt

 = lim
∆x→0

1

∆x

x+∆x∫
x

f(t)dt.
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For some number c between x and x+∆x, by the de�nition of the de�nite integral

we get
x+∆x∫
x

f(t)dt ≈ ∆x · f(c).

Therefore,

G′(x) = lim
∆x→0

1

∆x
∆x · f(c) = lim

∆x→0
f(c).

Since c → x as ∆x → 0 and f is continuous, then

G′(x) = lim
c→x

f(c) = f(x).

If G(x) and F (x) are both antiderivatives of f , then G(x) = F (x) + C. Hence,

x∫
a

f(t)dt = G(x) = F (x) + C.

Let x = a, then
a∫

a

f(t)dt = 0 = F (a) + C,

so C = −F (a). Now let x = b, then

b∫
a

f(t)dt = F (b) + C = F (b)− F (a).

The proof is complete.

Example 1 Evaluate the integral
3∫

−1

x2dx.

Solution 1
3∫

−1

x2dx =
x3

3
|3−1=

33

3
− (−1)3

3
=

27

3
+

1

3
=

28

3
.

6.5 Integration by substitution for de�nite integrals

We have already discussed the substitution technique for inde�nite integral. The

same formula can be used for de�nite integral, but here we also substitute the lower
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and upper bounds a and b by α and β, respectively, where g(α) = a and g(β) = b.

Thus,

b∫
a

f(x)dx =

β∫
α

f(g(t)) · g′(t)dt = F (g(t))|βα = F (g(β))− F (g(α)) = F (b)− F (a).

Example 2 Evaluate the integral
e2∫
e

dx
x lnx

.

Solution 2 Let t = lnx, then dt = d(lnx) = 1
x
dx. Moreover, from the old lower and

upper bounds x = e and x = e2, we can respectively �nd new lower and upper bounds

t = ln e = 1 and t = ln e2 = 2. Replace the results into the substitution formula:

e2∫
e

dx

x lnx
=

e2∫
e

1

lnx
· 1
x
dx =

2∫
1

1

t
dt = ln |t| |21= ln 2− ln 1 = ln 2.

6.6 Average value

We know the formula that allows to calculate the average of a �nite number n of

values a1, a2, ..., an that is

Average =
a1 + a2 + ...+ an

n
.

How can we �nd the average of a continuous function over some interval [a; b] with

in�nitely many values? Let us choose n numbers of values of f : f(c1), f(c2), ...,

f(cn), where a < c1 < c2 < ... < cn < b. Then their average can be calculated by

Average =
f(c1) + f(c2) + ...+ f(cn)

n
.

Multiply the formula by b−a
b−a

Average =
b− a

b− a
· f(c1) + f(c2) + ...+ f(cn)

n

=
1

b− a
· b− a

n
(f(c1) + f(c2) + ...+ f(cn)).

We remember that b−a
n

= ∆x, then

Average =
1

b− a
·∆x(f(c1) + f(c2) + ...+ f(cn))
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=
1

b− a
(f(c1)∆x+ f(c2)∆x+ ...+ f(cn)∆x) .

In�nitely many values over the interval means that n → ∞. Thus,

(Average of f over [a; b]) =
1

b− a
lim
n→∞

(f(c1)∆x+ f(c2)∆x+ ...+ f(cn)∆x)

=
1

b− a

b∫
a

f(x)dx.

De�nition 2 Average value of a continuous function f over [a; b] is given by the

formula

(Average of f over [a; b]) =
1

b− a

b∫
a

f(x)dx.

Example 3 Find the average value of f(x) = 1
x2+x

over [1; 3].

Solution 3

Average =
1

3− 1

3∫
1

1

x2 + x
dx =

1

2

3∫
1

1

x(x+ 1)
dx =

1

2

3∫
1

(x+ 1)− x

x(x+ 1)
dx

=
1

2

3∫
1

(
(x+ 1)

x(x+ 1)
− x

x(x+ 1)

)
dx =

1

2

3∫
1

(
1

x
− 1

x+ 1

)
dx

=
1

2

 3∫
1

dx

x
−

3∫
1

dx

x+ 1

 =
1

2

(
lnx |31 − ln(x+ 1) |31

)
=

1

2
(ln 3− ln 1− ln 4 + ln 2) =

1

2
ln

3 · 2
4

=
1

2
ln

3

2
.
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