Strategy for graphing function

Step 1. Find domain of f;

Step 2. Find intercepts of f;

Step 3. Find asymptotes of f;

Step 4. Find intervals of monotonicity and local extreme points of f;

Step 5. Find intervals of concavity and inflection points of f;

Step 6. Sketch graph of f.

Example 1 Use the graphing strategy to analyze the function $f(x) = \frac{x^3+4}{x^2}$ and sketch its graph.

Solution 1 Step 1. Domain: $D(f) = (-\infty; 0) \cup (0; +\infty)$. Step 2. Intercepts: If y = 0, then $x^3 + 4 = 0$ or $x^3 = -4$, so the x-intercept is $x = -\sqrt[3]{4}$.

Since 0 is not in the domain of f, there is no y-intercept. Step 3. Asymptotes: 1) The denominator is 0 for x = 0, and

$$\lim_{x \to 0+} \frac{x^3 + 4}{x^2} = +\infty,$$
$$\lim_{x \to 0-} \frac{x^3 + 4}{x^2} = +\infty.$$

Therefore, x = 0 is a vertical asymptote.

2) Since

$$\lim_{x \to +\infty} \frac{x^3 + 4}{x^2} = +\infty$$

and

$$\lim_{x \to -\infty} \frac{x^3 + 4}{x^2} = -\infty,$$

the function does not have horizontal asymptotes to the both directions. 3) Since

$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{\frac{x^3 + 4}{x^2}}{x} = \lim_{x \to \pm \infty} \frac{x^3 + 4}{x^3} = 1$$

and

$$b = \lim_{x \to \pm \infty} \left(f(x) - kx \right) = \lim_{x \to \pm \infty} \left(\frac{x^3 + 4}{x^2} - x \right) = \lim_{x \to \pm \infty} \frac{x^3 + 4 - x^3}{x^2}$$

$$=\lim_{x\to\pm\infty}\frac{4}{x^2}=0,$$

y = x is an oblique asymptote to the both directions.

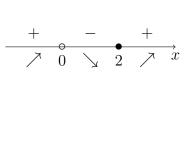
Step 4. Intervals of monotonicity and local extreme points: 1) Derivative f':

$$f'(x) = \frac{(x^3+4)' \cdot x^2 - (x^2)' \cdot (x^3+4)}{x^4} = \frac{3x^2 \cdot x^2 - 2x \cdot (x^3+4)}{x^4}$$
$$= \frac{3x^4 - 2x^4 - 8x}{x^4} = \frac{x^4 - 8x}{x^4} = \frac{x(x^3-8)}{x^4} = \frac{x^3 - 8}{x^3}.$$

2) Partition numbers for f':

f' = 0 if $x^3 - 8 = 0$ or $x^3 = 8$, then $x_1 = 2$ is a partition number; f' does not exist if $x^3 = 0$, then $x_2 = 0$ is a partition number.

3) Sign chart for f':



Test numbers		
x	f'(x)	
-1	9 (+)	
1	-7(-)	
3	$\frac{19}{27}$ (+)	

Conclusion: The sign chart indicates that f is increasing on $(-\infty; 0)$ and $(2; +\infty)$; f is decreasing on (0; 2). Moreover, since 0 is not in the domain of f, it is not an extreme point. 2 is in the domain of f, so $f(2) = \frac{2^3+4}{2^2} = 3$ is a local minimum. Step 5. Intervals of concavity and inflection points: 1) Second order derivative f'': $f''(x) = \left(\frac{x^3-8}{x^3}\right)' = (1-8 \cdot x^{-3})' = 24x^{-4} = \frac{24}{x^4}.$ 2) Partition numbers for f'': $f'' \neq 0$ for any number of the domain of f''; f'' does not exist if $x^4 = 0$, then 0 is a partition number.

3) Sign chart for f'':

+	0	+	
\smile	0	\smile	\vec{x}

Test numbers			
x	f''(x)		
-1	24 (+)		
1	24 (+)		

Conclusion: The sign chart indicates that f is concave up on $(-\infty; 0)$ and $(0; +\infty)$. Moreover, there is no inflection point. Step 6. Sketch graph of f (Figure 1).

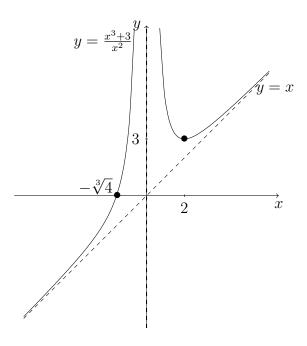


Figure 1