Strategy for graphing function
Step 1. Find domain of f;
Step 2. Find intercepts of f;
Step 3. Find asymptotes of f;
Step 4. Find intervals of monotonicity and local extreme points of f;

Step 5. Find intervals of concavity and inflection points of f;

Step 6. Sketch graph of f.

Example 1 Use the graphing strategy to analyze the function f(x) = riﬁ‘l and

sketch its graph.

Solution 1 Step 1. Domain: D(f) = (—o0;0) U (0; +00).

Step 2. Intercepts: If y = 0, then 23 +4 = 0 or 23 = —4, so the x-intercept is
T = —v/4.

Since 0 is not in the domain of f, there is no y-intercept.

Step 3. Asymptotes: 1) The denominator is 0 for x =0, and
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Therefore, x = 0 is a vertical asymptote.
2) Since
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the function does not have horizontal asymptotes to the both directions.

3) Since
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y = x is an oblique asymplote to the both directions.

Step 4. Intervals of monotonicity and local extreme points: 1) Derivative f':
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2) Partition numbers for f':
f'=0if23—=8=0 ora®=S8, then x; = 2 is a partition number;
f' does not exist if x3 =0, then x5 = 0 is a partition number.

3) Sign chart for f':
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Conclusion: The sign chart indicates that f is increasing on (—00;0) and (2; 4+00);
[ is decreasing on (0;2). Moreover, since 0 is not in the domain of f, it is not an
extreme point. 2 is in the domain of f, so f(2) = % = 3 15 a local minimum.
Step 5. Intervals of concavity and inflection points: 1) Second order derivative f”:
F(z) = (fjc—gS)/ —(1-8-27%) =24zt =%

2) Partition numbers for f”:

f" # 0 for any number of the domain of f";

" does not exist if x* =0, then 0 is a partition number.

3) Sign chart for f":
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Conclusion: The sign chart indicates that f is concave up on (—o0;0) and (0;4+00).
Moreover, there is no inflection point.

Step 6. Sketch graph of f (Figure 1).

Figure 1



