

5.3 Strategy for graphing function

Step 1. Find domain of f ;

Step 2. Find intercepts of f ;

Step 3. Find asymptotes of f ;

Step 4. Find intervals of monotonicity and local extreme points of f ;

Step 5. Find intervals of concavity and inflection points of f ;

Step 6. Sketch graph of f .

Example 1 Use the graphing strategy to analyze the function $f(x) = \frac{x^3+4}{x^2}$ and sketch its graph.

Solution 1 Step 1. Domain: $D(f) = (-\infty; 0) \cup (0; +\infty)$.

Step 2. Intercepts: If $y = 0$, then $x^3 + 4 = 0$ or $x^3 = -4$, so the x -intercept is $x = -\sqrt[3]{4}$.

Since 0 is not in the domain of f , there is no y -intercept.

Step 3. Asymptotes: 1) The denominator is 0 for $x = 0$, and

$$\lim_{x \rightarrow 0^+} \frac{x^3 + 4}{x^2} = +\infty,$$

$$\lim_{x \rightarrow 0^-} \frac{x^3 + 4}{x^2} = +\infty.$$

Therefore, $x = 0$ is a vertical asymptote.

2) Since

$$\lim_{x \rightarrow +\infty} \frac{x^3 + 4}{x^2} = +\infty$$

and

$$\lim_{x \rightarrow -\infty} \frac{x^3 + 4}{x^2} = -\infty,$$

the function does not have horizontal asymptotes to the both directions.

3) Since

$$k = \lim_{x \rightarrow \pm\infty} \frac{f(x)}{x} = \lim_{x \rightarrow \pm\infty} \frac{\frac{x^3+4}{x^2}}{x} = \lim_{x \rightarrow \pm\infty} \frac{x^3 + 4}{x^3} = 1$$

and

$$b = \lim_{x \rightarrow \pm\infty} (f(x) - kx) = \lim_{x \rightarrow \pm\infty} \left(\frac{x^3 + 4}{x^2} - x \right) = \lim_{x \rightarrow \pm\infty} \frac{x^3 + 4 - x^3}{x^2}$$

$$= \lim_{x \rightarrow \pm\infty} \frac{4}{x^2} = 0,$$

$y = x$ is an oblique asymptote to the both directions.

Step 4. Intervals of monotonicity and local extreme points: 1) Derivative f' :

$$\begin{aligned} f'(x) &= \frac{(x^3 + 4)' \cdot x^2 - (x^2)' \cdot (x^3 + 4)}{x^4} = \frac{3x^2 \cdot x^2 - 2x \cdot (x^3 + 4)}{x^4} \\ &= \frac{3x^4 - 2x^4 - 8x}{x^4} = \frac{x^4 - 8x}{x^4} = \frac{x(x^3 - 8)}{x^4} = \frac{x^3 - 8}{x^3}. \end{aligned}$$

2) Partition numbers for f' :

$f' = 0$ if $x^3 - 8 = 0$ or $x^3 = 8$, then $x_1 = 2$ is a partition number;

f' does not exist if $x^3 = 0$, then $x_2 = 0$ is a partition number.

3) Sign chart for f' :

Conclusion: The sign chart indicates that f is increasing on $(-\infty; 0)$ and $(2; +\infty)$; f is decreasing on $(0; 2)$. Moreover, since 0 is not in the domain of f , it is not an extreme point. 2 is in the domain of f , so $f(2) = \frac{2^3+4}{2^2} = 3$ is a local minimum.

Step 5. Intervals of concavity and inflection points: 1) Second order derivative f'' :

$$f''(x) = \left(\frac{x^3 - 8}{x^3} \right)' = (1 - 8 \cdot x^{-3})' = 24x^{-4} = \frac{24}{x^4}.$$

2) Partition numbers for f'' :

$f'' \neq 0$ for any number of the domain of f'' ;

f'' does not exist if $x^4 = 0$, then 0 is a partition number.

3) Sign chart for f'' :

Conclusion: The sign chart indicates that f is concave up on $(-\infty; 0)$ and $(0; +\infty)$.

Moreover, there is no inflection point.

Step 6. Sketch graph of f (Figure 23).

Figure 23