Intervals of monotonicity and local extreme points

Let us remind the following definition.

Definition 1 If $a<x_{1}<x_{2}<b$ implies that $f\left(x_{1}\right)<f\left(x_{2}\right)$, then a function $y=f(x)$ is increasing on an interval ($a ; b$). If $a<x_{1}<x_{2}<b$ implies that $f\left(x_{1}\right)>f\left(x_{2}\right)$, then f is decreasing on $(a ; b)$.

Theorem 1 Suppose that a function $y=f(x)$ is differentiable over an interval $(a ; b)$.

1. If $f^{\prime}(x)>0$ for each x in the interval $(a ; b)$, then f is increasing on $(a ; b)$;
2. if $f^{\prime}(x)<0$ for each x in the interval $(a ; b)$, then f is decreasing on $(a ; b)$.

Definition $2 f\left(x_{0}\right)$ is called a local maximum of $y=f(x)$ if $f\left(x_{0}\right)>f\left(x_{0}+h\right)$ and $f\left(x_{0}\right)>f\left(x_{0}-h\right)$ for any sufficiently small $h ; f\left(x_{0}\right)$ is called a local minimum of $f(x)$ if $f\left(x_{0}\right)<f\left(x_{0}+h\right)$ and $f\left(x_{0}\right)<f\left(x_{0}-h\right)$ for any sufficiently small h.
$f\left(x_{0}\right)$ is a local extremum if it is either a local maximum or minimum.

Theorem 2 If $y=f(x)$ has a local extremum at x_{0}, then either $f^{\prime}\left(x_{0}\right)=0$ or $f^{\prime}\left(x_{0}\right)$ does not exist.

The inverse statement is not always correct. For example, let $f(x)=(x-1)^{3}+2$. Its derivative $f^{\prime}(x)=3(x-1)^{2}$. Then, $f^{\prime}(1)=0$. However, from the the graph of $f(x)=(x-1)^{3}+2$ (Figure 2) it is obvious that $x_{0}=1$ is not a local extreme point.

Definition 3 The partition numbers for a function $y=f(x)$ are values of x such that f is discontinuous at x or $f(x)=0$.

Definition 4 The partition number x_{0} for f^{\prime} in the domain of f is called the critical number; $f\left(x_{0}\right)$ and $\left(x_{0} ; f\left(x_{0}\right)\right)$ are called the critical value and critical point, respectively.

Remark 1 From Definitions 3 and 4 it is obvious that f' may have partition numbers that are not critical if they are not in the domain of f.

Theorem 3 Suppose that $y=f(x)$ is differentiable over some neighborhood of a critical number x_{0}. If f^{\prime} changes sign from positive to negative at x_{0}, then $f\left(x_{0}\right)$ is a local maximum; if f^{\prime} changes sign from negative to positive at x_{0}, then $f\left(x_{0}\right)$ is a local minimum.

The strategy for finding local extrema is the following: find partition numbers for f^{\prime}, construct a sign chart for f^{\prime}, locate the found partition numbers on the sign chart, select a test number in each obtained interval to determine the sign of f^{\prime}, indicate critical numbers among the partition numbers and draw a conclusion if they produce local maximum, local minimum or neither.

Example 1 Find the intervals of monotonicity and local extreme points for $f(x)=$ $\frac{x}{3}-\sqrt[3]{x^{2}}$.

Solution 1 Step 1. Domain: $D(f)=(-\infty ;+\infty)$.
Step 2. Derivative $f^{\prime}: f^{\prime}(x)=\left(\frac{x}{3}-x^{\frac{2}{3}}\right)^{\prime}=\frac{1}{3}-\frac{2}{3} x^{-\frac{1}{3}}=\frac{1}{3}-\frac{2}{3 \sqrt[3]{x}}=\frac{\sqrt[3]{x}-2}{3 \sqrt[3]{x}}$.
Step 3. Partition numbers for f^{\prime} :

1) $f^{\prime}=0$ if $\sqrt[3]{x}-2=0$, then $x_{1}=8$ is a partition number;
2) f^{\prime} does not exist if $3 \sqrt[3]{x}=0$, then $x_{2}=0$ is a partition number.

Step 4. Sign chart for f^{\prime} :

Test numbers	
x	$f^{\prime}(x)$
-1	1
1	$(+)$
27	$-\frac{1}{3}(-)$
	$(+)$

Answer: The sign chart indicates that f is increasing on $(-\infty ; 0)$ and $(8 ;+\infty) ; f$ is decreasing on $(0 ; 8)$. Moreover, since 0 and 8 are in the domain of f, they are also critical numbers. Thus, $f(0)=0$ is a local maximum and $f(8)=\frac{8}{3}-\sqrt[3]{8}=\frac{8}{3}-4=-\frac{4}{3}$ is a local minimum.

Example 2 Find the intervals of monotonicity and local extreme points for $f(x)=$ $\frac{1}{(x-2)^{2}}$.

Solution 2 Step 1. Domain: $D(f)=(-\infty ; 2) \cup(2 ;+\infty)$.
Step 2. Derivative $f^{\prime}: f^{\prime}(x)=\left(\frac{1}{(x-2)^{2}}\right)^{\prime}=\frac{-2}{(x-2)^{3}}$.
Step 3. Partition numbers for f^{\prime} :

1) $f^{\prime} \neq 0$ for any number of the domain of f^{\prime};
2) f^{\prime} does not exist if $(x-2)^{3}=0$, then $x_{0}=2$ is a partition number.

Step 4. Sign chart for f^{\prime} :

\nearrow	0	-	\longrightarrow		Test numbers	
:---:	:---:					
\nearrow	2					

Answer: The sign chart indicates that f is increasing on $(-\infty ; 2)$ and f is decreasing on $(2 ;+\infty)$. Moreover, since 2 is not in the domain of f, it is not a critical number. Thus, f has no extreme points.

Second order derivative test

Sometimes, especially for polynomials, it is more convenient to use the test called the second order derivative test.

Theorem 4 Let a function $y=f(x)$ be twice differentiable over some neighborhood of a number x_{0}. Suppose that $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right) \neq 0$. If $f^{\prime \prime}\left(x_{0}\right)<0$, then $f\left(x_{0}\right)$ is a local maximum; if $f^{\prime \prime}\left(x_{0}\right)>0$, then $f\left(x_{0}\right)$ is a local minimum.

Example 3 Find the local extreme points for $f(x)=x^{3}+6 x^{2}-63 x+7$.

Solution 3 Step 1. Domain: $D(f)=(-\infty ;+\infty)$.
Step 2. Derivative $f^{\prime}: f^{\prime}(x)=3 x^{2}+12 x-63=3\left(x^{2}+4 x-21\right)=3(x-4)(x+7)$.
Step 3. Critical numbers for $f^{\prime}=0$:
$3(x-4)(x+7)=0$, then $x_{1}=4$ and $x_{2}=-7$ are critical numbers.
Step 4. Second order derivative $f^{\prime \prime}: f^{\prime \prime}(x)=6 x+12$.
Step 5. Sign check for $f^{\prime \prime}: f^{\prime \prime}(4)=24+12=36>0$, then $f(4)=4^{3}+6 \cdot 4^{2}-63 \cdot 4+7=$ $64+96-252+7=85$ is a local minimum.
$f^{\prime \prime}(-7)=-42+12=-30<0$, then $f(-7)=(-7)^{3}+6 \cdot(-7)^{2}-63 \cdot(-7)+7=$ $-343+294+441+7=399$ is a local maximum.

Applications

Example $4 A$ company produces and sells pencils. It has fixed costs (at 0 output) of $\$ 4000$ per month; and variable costs of $\$ 1$ per pencil. The price-demand equation is $P(x)=6-0.001 x$. What is the maximum profit?

Solution 4 The cost function is

$$
C(x)=1 \cdot x+4000 .
$$

The revenue function is

$$
R(x)=x \cdot(6-0.001 x)
$$

The profit function is

$$
P(x)=R(x)-C(x)=x \cdot(6-0.001 x)-x-4000=-0.001 x^{2}+5 x-4000 .
$$

The marginal profit function is

$$
P^{\prime}(x)=\left(-0.001 x^{2}+5 x-4000\right)^{\prime}=-0.002 x+5
$$

Then

$$
\begin{gathered}
-0.002 x+5=0 \\
x=2500 \text { critical number }
\end{gathered}
$$

Since $P^{\prime \prime}(x)=-0.002>0$, by the second order derivative test the number $x=2500$ maximizes the profit

$$
P(2500)=-0.001 \cdot 2500^{2}+5 \cdot 2500-4000=-6250+12500-4000=\$ 2250 .
$$

Intervals of concavity and inflection points

Definition 5 We say that $y=f(x)$ is concave upward on an interval, if the graph of f lies above its tangent lines. We say that $y=f(x)$ is concave downward on an interval, if the graph of f lies below its tangent lines. The point of $y=f(x)$, where the graph of f changes concavity, is called the inflection point.

Theorem 5 Suppose that a function $y=f(x)$ is twice differentiable over an interval $(a ; b)$.

1. If $f^{\prime \prime}(x)>0$ for each x in the interval $(a ; b)$, then f is concave upward on $(a ; b)$;
2. if $f^{\prime \prime}(x)<0$ for each x in the interval $(a ; b)$, then f is concave downward on $(a ; b)$.

Theorem 6 If $y=f(x)$ has an inflection point at x_{0}, then either $f^{\prime \prime}\left(x_{0}\right)=0$ or $f^{\prime \prime}\left(x_{0}\right)$ does not exist.

The inverse statement is not always correct. Thus, we need one more theorem.

Theorem 7 Suppose that $y=f(x)$ is twice differentiable over some neighborhood of a number x_{0}, where x_{0} is a partition number of $f^{\prime \prime}$ that belongs to the domain of f. If $f^{\prime \prime}$ changes sign at x_{0}, then $\left(x_{0} ; f\left(x_{0}\right)\right)$ is an inflection point.

Example 5 Find the intervals of concavity and inflection points for $f(x)=x^{6}-$ $10 x^{4}$.

Solution 5 Step 1. Domain: $D(f)=(-\infty ;+\infty)$.
Step 2. Derivative $f^{\prime}: f^{\prime}(x)=6 x^{5}-40 x^{3}$.
Step 3. Second order derivative $f^{\prime \prime}: f^{\prime \prime}=30 x^{4}-120 x^{2}=30 x^{2}\left(x^{2}-4\right)=30 x^{2}(x-$ 2) $(x+2)$

Step 4. Partition numbers for $f^{\prime \prime}$:

1) $f^{\prime \prime}=0$ if $x^{2}(x-2)(x+2)=0$, then $x_{1}=-2, x_{2}=0$ and $x_{3}=2$ are partition numbers;
2) $f^{\prime \prime}$ exists for any real number.

Step 5. Sign chart for $f^{\prime \prime}$:

Answer: The sign chart indicates that f is concave up on $(-\infty ;-2)$ and $(2 ;+\infty)$; f is concave down on $(-2 ; 2)$. All three values $0,-2$ and 2 are in the domain of f. However, since $f^{\prime \prime}$ does not change sign at 0, the function has not an inflection point at 0 . Since $f^{\prime \prime}$ changes sign at -2 and 2 , the function has inflection points at -2 and 2. Moreover, $f(-2)=(-2)^{6}-10 \cdot(-2)^{4}=64-160=-96$ and $f(2)=-96$.

