
5 Derivatives and graphs

5.1 Intervals of monotonicity and local extreme points

Let us remind the following de�nition.

De�nition 1 If a < x1 < x2 < b implies that f(x1) < f(x2), then a function

y = f(x) is increasing on an interval (a; b). If a < x1 < x2 < b implies that

f(x1) > f(x2), then f is decreasing on (a; b).

Theorem 1 Suppose that a function y = f(x) is di�erentiable over an interval

(a; b).

1. If f ′(x) > 0 for each x in the interval (a; b), then f is increasing on (a; b);

2. if f ′(x) < 0 for each x in the interval (a; b), then f is decreasing on (a; b).

De�nition 2 f(x0) is called a local maximum of y = f(x) if f(x0) > f(x0+h) and

f(x0) > f(x0 − h) for any su�ciently small h; f(x0) is called a local minimum of

f(x) if f(x0) < f(x0 + h) and f(x0) < f(x0 − h) for any su�ciently small h.

f(x0) is a local extremum if it is either a local maximum or minimum.

Theorem 2 If y = f(x) has a local extremum at x0, then either f ′(x0) = 0 or

f ′(x0) does not exist.

The inverse statement is not always correct. For example, let f(x) = (x−1)3+2.

Its derivative f ′(x) = 3(x − 1)2. Then, f ′(1) = 0. However, from the the graph of

f(x) = (x− 1)3 +2 (Figure 2) it is obvious that x0 = 1 is not a local extreme point.

De�nition 3 The partition numbers for a function y = f(x) are values of x such

that f is discontinuous at x or f(x) = 0.

De�nition 4 The partition number x0 for f ′ in the domain of f is called the

critical number; f(x0) and (x0; f(x0)) are called the critical value and critical point,

respectively.
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Remark 1 From De�nitions 3 and 4 it is obvious that f ′ may have partition numbers

that are not critical if they are not in the domain of f .

Theorem 3 Suppose that y = f(x) is di�erentiable over some neighborhood of a

critical number x0. If f
′ changes sign from positive to negative at x0, then f(x0) is

a local maximum; if f ′ changes sign from negative to positive at x0, then f(x0) is a

local minimum.

The strategy for �nding local extrema is the following: �nd partition numbers

for f ′, construct a sign chart for f ′, locate the found partition numbers on the sign

chart, select a test number in each obtained interval to determine the sign of f ′,

indicate critical numbers among the partition numbers and draw a conclusion if

they produce local maximum, local minimum or neither.

Example 1 Find the intervals of monotonicity and local extreme points for f(x) =

x
3
− 3

√
x2.

Solution 1 Step 1. Domain: D(f) = (−∞; +∞).

Step 2. Derivative f ′: f ′(x) =
(

x
3
− x

2
3

)′
= 1

3
− 2

3
x− 1

3 = 1
3
− 2

3 3√x
=

3√x−2
3 3√x

.

Step 3. Partition numbers for f ′:

1) f ′ = 0 if 3
√
x− 2 = 0, then x1 = 8 is a partition number;

2) f ′ does not exist if 3 3
√
x = 0, then x2 = 0 is a partition number.

Step 4. Sign chart for f ′:

x
•
0

•
8

+ − +

↗ ↘ ↗

Test numbers

x f ′(x)

−1 1 (+)

1 −1
3
(−)

27 1
9

(+)

Answer: The sign chart indicates that f is increasing on (−∞; 0) and (8;+∞); f is

decreasing on (0; 8). Moreover, since 0 and 8 are in the domain of f , they are also

critical numbers. Thus, f(0) = 0 is a local maximum and f(8) = 8
3
− 3
√
8 = 8

3
−4 = −4

3

is a local minimum.
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Example 2 Find the intervals of monotonicity and local extreme points for f(x) =

1
(x−2)2

.

Solution 2 Step 1. Domain: D(f) = (−∞; 2) ∪ (2;+∞).

Step 2. Derivative f ′: f ′(x) =
(

1
(x−2)2

)′
= −2

(x−2)3
.

Step 3. Partition numbers for f ′:

1) f ′ ̸= 0 for any number of the domain of f ′;

2) f ′ does not exist if (x− 2)3 = 0, then x0 = 2 is a partition number.

Step 4. Sign chart for f ′:

x
◦
2

+ −
↗ ↘

Test numbers

x f ′(x)

1 2 (+)

3 −2 (−)

Answer: The sign chart indicates that f is increasing on (−∞; 2) and f is decreasing

on (2;+∞). Moreover, since 2 is not in the domain of f , it is not a critical number.

Thus, f has no extreme points.

Second order derivative test

Sometimes, especially for polynomials, it is more convenient to use the test called

the second order derivative test.

Theorem 4 Let a function y = f(x) be twice di�erentiable over some neighborhood

of a number x0. Suppose that f ′(x0) = 0 and f ′′(x0) ̸= 0. If f ′′(x0) < 0, then f(x0)

is a local maximum; if f ′′(x0) > 0, then f(x0) is a local minimum.

Example 3 Find the local extreme points for f(x) = x3 + 6x2 − 63x+ 7.

Solution 3 Step 1. Domain: D(f) = (−∞; +∞).

Step 2. Derivative f ′: f ′(x) = 3x2 + 12x− 63 = 3(x2 + 4x− 21) = 3(x− 4)(x+ 7).

Step 3. Critical numbers for f ′ = 0:

3(x− 4)(x+ 7) = 0, then x1 = 4 and x2 = −7 are critical numbers.

Step 4. Second order derivative f ′′: f ′′(x) = 6x+ 12.
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Step 5. Sign check for f ′′: f ′′(4) = 24+12 = 36 > 0, then f(4) = 43+6·42−63·4+7 =

64 + 96− 252 + 7 = 85 is a local minimum.

f ′′(−7) = −42 + 12 = −30 < 0, then f(−7) = (−7)3 + 6 · (−7)2 − 63 · (−7) + 7 =

−343 + 294 + 441 + 7 = 399 is a local maximum.

Applications

Example 4 A company produces and sells pencils. It has �xed costs (at 0 output)

of $4000 per month; and variable costs of $1 per pencil. The price-demand equation

is P (x) = 6− 0.001x. What is the maximum pro�t?

Solution 4 The cost function is

C(x) = 1 · x+ 4000.

The revenue function is

R(x) = x · (6− 0.001x).

The pro�t function is

P (x) = R(x)− C(x) = x · (6− 0.001x)− x− 4000 = −0.001x2 + 5x− 4000.

The marginal pro�t function is

P ′(x) = (−0.001x2 + 5x− 4000)′ = −0.002x+ 5.

Then

−0.002x+ 5 = 0

x = 2500 critical number

Since P ′′(x) = −0.002 > 0, by the second order derivative test the number x = 2500

maximizes the pro�t

P (2500) = −0.001 · 25002 + 5 · 2500− 4000 = −6250 + 12500− 4000 = $ 2250.
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5.2 Intervals of concavity and in�ection points

De�nition 5 We say that y = f(x) is concave upward on an interval, if the graph

of f lies above its tangent lines. We say that y = f(x) is concave downward on an

interval, if the graph of f lies below its tangent lines. The point of y = f(x), where

the graph of f changes concavity, is called the in�ection point.

Theorem 5 Suppose that a function y = f(x) is twice di�erentiable over an interval

(a; b).

1. If f ′′(x) > 0 for each x in the interval (a; b), then f is concave upward on (a; b);

2. if f ′′(x) < 0 for each x in the interval (a; b), then f is concave downward on

(a; b).

Theorem 6 If y = f(x) has an in�ection point at x0, then either f ′′(x0) = 0 or

f ′′(x0) does not exist.

The inverse statement is not always correct. Thus, we need one more theorem.

Theorem 7 Suppose that y = f(x) is twice di�erentiable over some neighborhood

of a number x0, where x0 is a partition number of f ′′ that belongs to the domain of

f . If f ′′ changes sign at x0, then (x0; f(x0)) is an in�ection point.

Example 5 Find the intervals of concavity and in�ection points for f(x) = x6 −

10x4.

Solution 5 Step 1. Domain: D(f) = (−∞; +∞).

Step 2. Derivative f ′: f ′(x) = 6x5 − 40x3.

Step 3. Second order derivative f ′′: f ′′ = 30x4 − 120x2 = 30x2(x2 − 4) = 30x2(x −

2)(x+ 2)

Step 4. Partition numbers for f ′′:

1) f ′′ = 0 if x2(x − 2)(x + 2) = 0, then x1 = −2, x2 = 0 and x3 = 2 are partition

numbers;

2) f ′′ exists for any real number.

Step 5. Sign chart for f ′′:
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x
•
−2

•
0

•
2

+ − − +

⌣ ⌢ ⌢ ⌣

Test numbers

x f ′′(x)

−3 +

−1 −

1 −

3 +

Answer: The sign chart indicates that f is concave up on (−∞;−2) and (2;+∞);

f is concave down on (−2; 2). All three values 0, −2 and 2 are in the domain of f .

However, since f ′′ does not change sign at 0, the function has not an in�ection point

at 0. Since f ′′ changes sign at −2 and 2, the function has in�ection points at −2

and 2. Moreover, f(−2) = (−2)6 − 10 · (−2)4 = 64− 160 = −96 and f(2) = −96.
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