

5 Derivatives and graphs

5.1 Intervals of monotonicity and local extreme points

Let us remind the following definition.

Definition 1 If $a < x_1 < x_2 < b$ implies that $f(x_1) < f(x_2)$, then a function $y = f(x)$ is increasing on an interval $(a; b)$. If $a < x_1 < x_2 < b$ implies that $f(x_1) > f(x_2)$, then f is decreasing on $(a; b)$.

Theorem 1 Suppose that a function $y = f(x)$ is differentiable over an interval $(a; b)$.

1. If $f'(x) > 0$ for each x in the interval $(a; b)$, then f is increasing on $(a; b)$;
2. if $f'(x) < 0$ for each x in the interval $(a; b)$, then f is decreasing on $(a; b)$.

Definition 2 $f(x_0)$ is called a local maximum of $y = f(x)$ if $f(x_0) > f(x_0 + h)$ and $f(x_0) > f(x_0 - h)$ for any sufficiently small h ; $f(x_0)$ is called a local minimum of $f(x)$ if $f(x_0) < f(x_0 + h)$ and $f(x_0) < f(x_0 - h)$ for any sufficiently small h .

$f(x_0)$ is a local extremum if it is either a local maximum or minimum.

Theorem 2 If $y = f(x)$ has a local extremum at x_0 , then either $f'(x_0) = 0$ or $f'(x_0)$ does not exist.

The inverse statement is not always correct. For example, let $f(x) = (x - 1)^3 + 2$. Its derivative $f'(x) = 3(x - 1)^2$. Then, $f'(1) = 0$. However, from the graph of $f(x) = (x - 1)^3 + 2$ (Figure 2) it is obvious that $x_0 = 1$ is not a local extreme point.

Definition 3 The partition numbers for a function $y = f(x)$ are values of x such that f is discontinuous at x or $f(x) = 0$.

Definition 4 The partition number x_0 for f' in the domain of f is called the critical number; $f(x_0)$ and $(x_0; f(x_0))$ are called the critical value and critical point, respectively.

Remark 1 From Definitions 3 and 4 it is obvious that f' may have partition numbers that are not critical if they are not in the domain of f .

Theorem 3 Suppose that $y = f(x)$ is differentiable over some neighborhood of a critical number x_0 . If f' changes sign from positive to negative at x_0 , then $f(x_0)$ is a local maximum; if f' changes sign from negative to positive at x_0 , then $f(x_0)$ is a local minimum.

The strategy for finding local extrema is the following: find partition numbers for f' , construct a sign chart for f' , locate the found partition numbers on the sign chart, select a test number in each obtained interval to determine the sign of f' , indicate critical numbers among the partition numbers and draw a conclusion if they produce local maximum, local minimum or neither.

Example 1 Find the intervals of monotonicity and local extreme points for $f(x) = \frac{x}{3} - \sqrt[3]{x^2}$.

Solution 1 Step 1. Domain: $D(f) = (-\infty; +\infty)$.

Step 2. Derivative f' : $f'(x) = \left(\frac{x}{3} - x^{\frac{2}{3}}\right)' = \frac{1}{3} - \frac{2}{3}x^{-\frac{1}{3}} = \frac{1}{3} - \frac{2}{3\sqrt[3]{x}} = \frac{\sqrt[3]{x}-2}{3\sqrt[3]{x}}$.

Step 3. Partition numbers for f' :

1) $f' = 0$ if $\sqrt[3]{x} - 2 = 0$, then $x_1 = 8$ is a partition number;

2) f' does not exist if $3\sqrt[3]{x} = 0$, then $x_2 = 0$ is a partition number.

Step 4. Sign chart for f' :

Answer: The sign chart indicates that f is increasing on $(-\infty; 0)$ and $(8; +\infty)$; f is decreasing on $(0; 8)$. Moreover, since 0 and 8 are in the domain of f , they are also critical numbers. Thus, $f(0) = 0$ is a local maximum and $f(8) = \frac{8}{3} - \sqrt[3]{8} = \frac{8}{3} - 4 = -\frac{4}{3}$ is a local minimum.

Example 2 Find the intervals of monotonicity and local extreme points for $f(x) = \frac{1}{(x-2)^2}$.

Solution 2 Step 1. Domain: $D(f) = (-\infty; 2) \cup (2; +\infty)$.

Step 2. Derivative f' : $f'(x) = \left(\frac{1}{(x-2)^2}\right)' = \frac{-2}{(x-2)^3}$.

Step 3. Partition numbers for f' :

- 1) $f' \neq 0$ for any number of the domain of f' ;
- 2) f' does not exist if $(x-2)^3 = 0$, then $x_0 = 2$ is a partition number.

Step 4. Sign chart for f' :

Answer: The sign chart indicates that f is increasing on $(-\infty; 2)$ and f is decreasing on $(2; +\infty)$. Moreover, since 2 is not in the domain of f , it is not a critical number. Thus, f has no extreme points.

Second order derivative test

Sometimes, especially for polynomials, it is more convenient to use the test called the second order derivative test.

Theorem 4 Let a function $y = f(x)$ be twice differentiable over some neighborhood of a number x_0 . Suppose that $f'(x_0) = 0$ and $f''(x_0) \neq 0$. If $f''(x_0) < 0$, then $f(x_0)$ is a local maximum; if $f''(x_0) > 0$, then $f(x_0)$ is a local minimum.

Example 3 Find the local extreme points for $f(x) = x^3 + 6x^2 - 63x + 7$.

Solution 3 Step 1. Domain: $D(f) = (-\infty; +\infty)$.

Step 2. Derivative f' : $f'(x) = 3x^2 + 12x - 63 = 3(x^2 + 4x - 21) = 3(x - 4)(x + 7)$.

Step 3. Critical numbers for $f' = 0$:

$3(x - 4)(x + 7) = 0$, then $x_1 = 4$ and $x_2 = -7$ are critical numbers.

Step 4. Second order derivative f'' : $f''(x) = 6x + 12$.

Step 5. Sign check for f'' : $f''(4) = 24 + 12 = 36 > 0$, then $f(4) = 4^3 + 6 \cdot 4^2 - 63 \cdot 4 + 7 = 64 + 96 - 252 + 7 = 85$ is a local minimum.

$f''(-7) = -42 + 12 = -30 < 0$, then $f(-7) = (-7)^3 + 6 \cdot (-7)^2 - 63 \cdot (-7) + 7 = -343 + 294 + 441 + 7 = 399$ is a local maximum.

Applications

Example 4 A company produces and sells pencils. It has fixed costs (at 0 output) of \$4000 per month; and variable costs of \$1 per pencil. The price-demand equation is $P(x) = 6 - 0.001x$. What is the maximum profit?

Solution 4 The cost function is

$$C(x) = 1 \cdot x + 4000.$$

The revenue function is

$$R(x) = x \cdot (6 - 0.001x).$$

The profit function is

$$P(x) = R(x) - C(x) = x \cdot (6 - 0.001x) - x - 4000 = -0.001x^2 + 5x - 4000.$$

The marginal profit function is

$$P'(x) = (-0.001x^2 + 5x - 4000)' = -0.002x + 5.$$

Then

$$-0.002x + 5 = 0$$

$$x = 2500 \text{ critical number}$$

Since $P''(x) = -0.002 < 0$, by the second order derivative test the number $x = 2500$ maximizes the profit

$$P(2500) = -0.001 \cdot 2500^2 + 5 \cdot 2500 - 4000 = -6250 + 12500 - 4000 = \$ 2250.$$

5.2 Intervals of concavity and inflection points

Definition 5 We say that $y = f(x)$ is concave upward on an interval, if the graph of f lies above its tangent lines. We say that $y = f(x)$ is concave downward on an interval, if the graph of f lies below its tangent lines. The point of $y = f(x)$, where the graph of f changes concavity, is called the inflection point.

Theorem 5 Suppose that a function $y = f(x)$ is twice differentiable over an interval $(a; b)$.

1. If $f''(x) > 0$ for each x in the interval $(a; b)$, then f is concave upward on $(a; b)$;
2. if $f''(x) < 0$ for each x in the interval $(a; b)$, then f is concave downward on $(a; b)$.

Theorem 6 If $y = f(x)$ has an inflection point at x_0 , then either $f''(x_0) = 0$ or $f''(x_0)$ does not exist.

The inverse statement is not always correct. Thus, we need one more theorem.

Theorem 7 Suppose that $y = f(x)$ is twice differentiable over some neighborhood of a number x_0 , where x_0 is a partition number of f'' that belongs to the domain of f . If f'' changes sign at x_0 , then $(x_0; f(x_0))$ is an inflection point.

Example 5 Find the intervals of concavity and inflection points for $f(x) = x^6 - 10x^4$.

Solution 5 Step 1. Domain: $D(f) = (-\infty; +\infty)$.

Step 2. Derivative f' : $f'(x) = 6x^5 - 40x^3$.

Step 3. Second order derivative f'' : $f'' = 30x^4 - 120x^2 = 30x^2(x^2 - 4) = 30x^2(x - 2)(x + 2)$

Step 4. Partition numbers for f'' :

1) $f'' = 0$ if $x^2(x - 2)(x + 2) = 0$, then $x_1 = -2$, $x_2 = 0$ and $x_3 = 2$ are partition numbers;

2) f'' exists for any real number.

Step 5. Sign chart for f'' :

Test numbers	
x	$f''(x)$
-3	+
-1	-
1	-
3	+

Answer: The sign chart indicates that f is concave up on $(-\infty; -2)$ and $(2; +\infty)$; f is concave down on $(-2; 2)$. All three values 0, -2 and 2 are in the domain of f . However, since f'' does not change sign at 0, the function has not an inflection point at 0. Since f'' changes sign at -2 and 2, the function has inflection points at -2 and 2. Moreover, $f(-2) = (-2)^6 - 10 \cdot (-2)^4 = 64 - 160 = -96$ and $f(2) = -96$.