
Derivatives

Let us consider the graph of a function y = f(x) that has a non-vertical tangent

line at the point M(x0; y0). Let α be an angle formed by this tangent line and the

positive direction of the x-axis. Let us �nd the slope of the tangent line k = tanα. For

this purpose, we draw one more line through two points of the graph M(x0; f(x0))

and M1(x0 + ∆x; f(x0 + ∆x)) (Figure 1). This line MM1 is a secant line of the

graph. Let ϕ be an angle formed by this secant line and the positive direction of the

x-axis. It is easy to �nd that

tanϕ =
∆y

∆x
=
f(x0 + ∆x)− f(x0)

∆x

It is obvious that when ∆x tends to 0, then ∆y also tends to 0. It means that

the point M1 tends to the point M , therefore the secant line becomes closer to the

tangent line. It means that ϕ becomes closer to α. This fact can be written as

tanα = lim
∆x→0

tanϕ.

Hence,

k = tanα = lim
∆x→0

tanϕ = lim
∆x→0

∆y

∆x
=
f(x0 + ∆x)− f(x0)

∆x
.

This formula is the geometric interpretation of the derivative.
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De�nition 1 The derivative of a function f is a new function f ′ de�ned by the

formula

f ′(x) = lim
∆x→0

f(x+ ∆x)− f(x)

∆x

if the limit exists. If f ′ exists for each x in the interval (a; b), then f is di�erentiable

over (a; b).

If the limit

f ′(c) = lim
∆x→0

f(c+ ∆x)− f(c)

∆x

does not exist, we say that f is non-di�erentiable at x = c. The points on the graph

of f where f ′(c) does not exist can be recognized geometrically (Figure 2).
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Remark 1 For a function y = f(x), the notations

f ′(x), y′,
df

dx
,
dy

dx
, Df(x) and Dxy

all represent the derivative of f .

Example 1 Find the derivative of f(x) = x2.

Solution 1 By the de�nition of the derivative, we have

f ′(x) = lim
∆x→0

(x+ ∆x)2 − x2

∆x
= lim

∆x→0

x2 + 2x∆x+ (∆x)2 − x2

∆x

= lim
∆x→0

2x∆x+ (∆x)2

∆x
= lim

∆x→0
(2x+ ∆x) = 2x.

Thus, (x2)′ = 2x.

Example 2 Find the derivative of f(x) = ln x.

Solution 2 By the de�nition of the derivative, we have

f ′(x) = lim
∆x→0

ln(x+ ∆x)− lnx

∆x
= lim

∆x→0

(
1

∆x
ln
x+ ∆x

x

)

= lim
∆x→0

ln

(
x+ ∆x

x

) 1
∆x

= lim
∆x→0

ln

(
1 +

∆x

x

) 1
∆x

= lim
∆x→0

ln

((
1 +

∆x

x

) x
∆x

) 1
x

= ln e
1
x =

1

x
.

Thus, (lnx)′ = 1
x
.
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Arguing as in Examples 1 and 2 we construct

Table of main derivatives

1. c′ = 0, where c is any constant;

2. (xα)′ = αxα−1;

3. (ax)′ = ax ln a, in particular, (ex)′ = ex;

4. (loga x)′ = 1
x ln a

, in particular, (lnx)′ = 1
x
;

5. (sinx)′ = cosx;

6. (cosx)′ = − sinx;

7. (tanx)′ = 1
cos2 x

;

8. (cotx)′ = − 1
sin2 x

;

9. (arcsinx)′ = 1√
1−x2 ;

10. (arccosx)′ = − 1√
1−x2 ;

11. (arctanx)′ = 1
1+x2 ;

12. (arccotx)′ = − 1
1+x2 .

Chain rule

Let us develop a way to �nd the derivative of the composite function y = f(u),

where u = g(x), i.e., y = f(g(x)).

For the function y = f(u) we have that lim
∆u→0

∆y
∆u

= y′u. Therefore,
∆y
∆u

= y′u +α or

∆y = y′u ·∆u+ α ·∆u,

where α→ 0 when ∆u→ 0.

Similarly, for the function u = g(x) we have that lim
∆x→0

∆u
∆x

= u′x. Therefore,

∆u = u′x ·∆x+ β ·∆x,

where β → 0 when ∆x→ 0.

If we substitute the expression ∆u in the expression ∆y, we get

∆y = y′u(u
′
x ·∆x+ β ·∆x) + α(u′x ·∆x+ β ·∆x)

∆y = y′u · u′x ·∆x+ y′u · β ·∆x+ α · u′x ·∆x+ α · β ·∆x.

Division by ∆x yields

∆y

∆x
= y′u · u′x + y′u · β + α · u′x + α · β,
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that gives

y′x = y′u · u′x

when ∆x→ 0.

This rule is known as the chain rule for the composite function y = f(g(x)), and

it can be also written in the form:

y′ = f ′(g(x)) · g′(x).

Rules of di�erentiation

Let u(x) and v(x) be di�erentiable functions over the interval (a; b).

1. Sum � di�erence rule

Suppose that y = u± v. Then, by the de�nition of derivative, we have

y′ = lim
∆x→0

(u(x+ ∆x)± v(x+ ∆x))− (u(x)± v(x))

∆x

= lim
∆x→0

(
u(x+ ∆x)− u(x)

∆x
± v(x+ ∆x)− v(x)

∆x

)
= lim

∆x→0

∆u

∆x
± lim

∆x→0

∆v

∆x
= u′ ± v′.

Thus,

(u± v)′ = u′ ± v′.

2. Product rule

Suppose that y = u · v. Then

y′ = lim
∆x→0

u(x+ ∆x) · v(x+ ∆x)− u(x) · v(x)

∆x

= lim
∆x→0

(u(x) + ∆u) · (v(x) + ∆v)− u(x) · v(x)

∆x

= lim
∆x→0

u(x) · v(x) + u(x) ·∆v + v(x) ·∆u+ ∆u ·∆v − u(x) · v(x)

∆x

= lim
∆x→0

(
u(x) · ∆v

∆x
+ v(x) · ∆u

∆x
+ ∆u · ∆v

∆x

)
= u(x) · lim

∆x→0

∆v

∆x
+ v(x) · lim

∆x→0

∆u

∆x
+ lim

∆x→0
∆u · lim

∆x→0

∆v

∆x

= u · v′ + v · u′ + 0 · v′ = u′ · v + v′ · u.

5



Thus,

(u · v)′ = u′ · v + v′ · u.

In particular,

(c · u)′ = c · u′,

where c is a constant.

3. Quotient rule

Suppose that y = u
v
. Then

y′ = lim
∆x→0

u(x+∆x)
v(x+∆x)

− u(x)
v(x)

∆x
= lim

∆x→0

u(x)+∆u
v(x)+∆v

− u(x)
v(x)

∆x

= lim
∆x→0

u(x) · v(x) + v(x) ·∆u− u(x) · v(x)− u(x) ·∆v
∆x(v(x) + ∆v)v(x)

= lim
∆x→0

v(x) ·∆u− u(x) ·∆v
∆x(v2(x) + v(x) ·∆v)

= lim
∆x→0

v(x) · ∆u
∆x
− u(x) · ∆v

∆x

v2(x) + v(x) ·∆v

=
v(x) · lim

∆x→0

∆u
∆x
− u(x) · lim

∆x→0

∆v
∆x

v2(x) + v(x) · lim
∆x→0

∆v
=
u′ · v − v′ · u

v2
.

Thus, (u
v

)′
=
u′ · v − v′ · u

v2
.

Example 3 Find the derivative of f(x) = 5x
3−4.

Solution 3 We use the chain and di�erence rules:

f ′(x) = (5x
3−4)′ = 5x

3−4 · ln 5 · (x3 − 4)′ = 5x
3−4 · ln 5 · 3x

Example 4 Find the derivative of f(x) = 3x2+4x−5
cosx

.

Solution 4 We use the quotient and sum-di�erence rules:

f ′(x) =

(
3x2 + 4x− 5

cosx

)′
=

(3x2 + 4x− 5)
′
cosx− (cosx)′(3x2 + 4x− 5)

cos2 x

=
(6x+ 4) cosx+ sinx(3x2 + 4x− 5)

cos2 x
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Higher order derivatives

If a function y = f(x) has the derivative f ′, then the derivative of f ′, if it exists,

is called the second order derivative and written as f ′′. The derivative of f ′′, if it

exists, is called the third order derivative and written as f ′′′, and so on. If we continue

this process we can �nd nth order derivative.

Remark 2 For a function y = f(x), the notations

f ′′(x), y′′,
d2f

dx2
,
d2y

dx2
, D2

xf(x) and D2
xy

all represent the second order derivative of f .

The third order derivative is written similarly. For n ≥ 4, the nth order derivative

is written as f (n)(x).

Example 5 Find the fourth order derivative of f(x) = 7x4 + 3x3 + 5x2 − 6x+ 11.

Solution 5

f ′(x) = 28x3 + 9x2 + 10x− 6;

f ′′(x) = 84x2 + 18x+ 10;

f ′′′(x) = 168x+ 18;

f (4)(x) = 168.
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