

4 Derivatives

4.1 Definition

Let us consider the graph of a function $y = f(x)$ that has a non-vertical tangent line at the point $M(x_0; y_0)$. Let α be an angle formed by this tangent line and the positive direction of the x -axis. Let us find the slope $k = \tan \alpha$ of the tangent line. For this purpose, we draw one more line through two points of the graph $M(x_0; f(x_0))$ and $M_1(x_0 + \Delta x; f(x_0 + \Delta x))$ (Figure 20). This line MM_1 is a secant line of the graph. Let φ be an angle formed by this secant line and the positive direction of the x -axis. It is easy to find that

$$\tan \varphi = \frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

It is obvious that when Δx tends to 0, then Δy also tends to 0. This means that the point M_1 tends to the point M , therefore the secant line becomes closer to the tangent line. This means that φ becomes closer to α . This fact can be written as

$$\tan \alpha = \lim_{\Delta x \rightarrow 0} \tan \varphi.$$

Hence,

$$k = \tan \alpha = \lim_{\Delta x \rightarrow 0} \tan \varphi = \lim_{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

This formula is the geometric interpretation of the derivative.

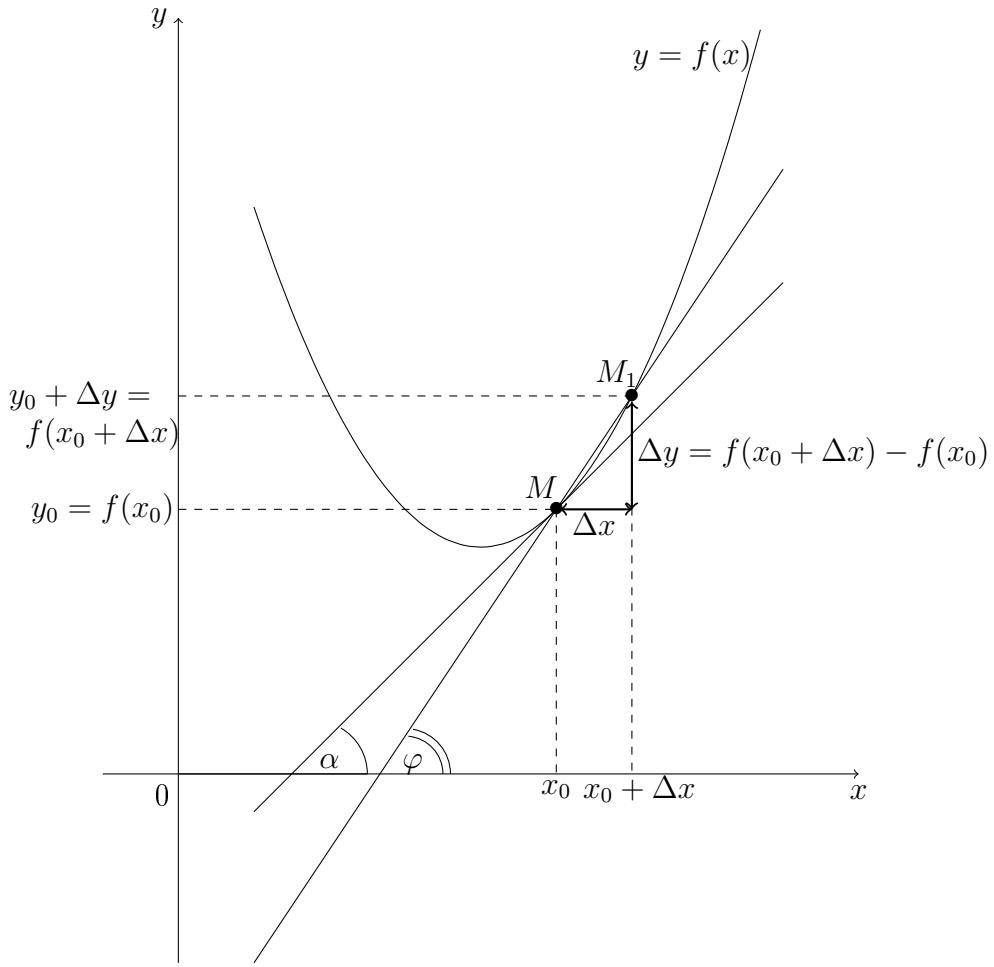


Figure 20

Definition 1 The derivative of a function f is a new function f' defined by the formula

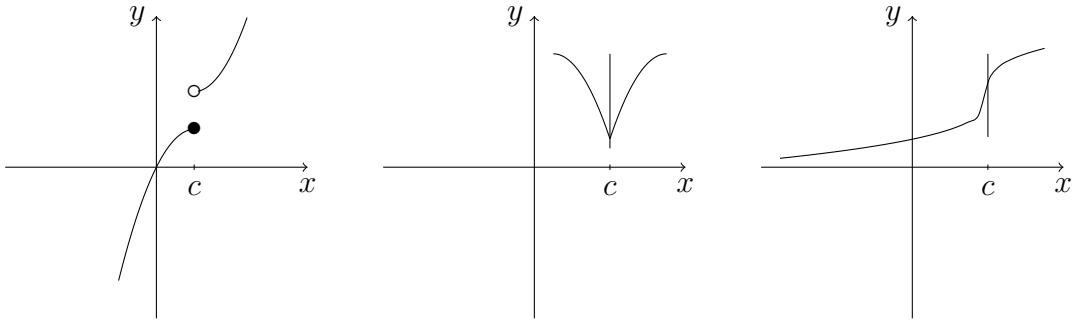
$$f'(x) = \lim_{\Delta x \rightarrow 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

if the limit exists. If f' exists for each x in the interval $(a; b)$, then f is differentiable over $(a; b)$.

If the limit

$$f'(c) = \lim_{\Delta x \rightarrow 0} \frac{f(c + \Delta x) - f(c)}{\Delta x}$$

does not exist, we say that f is not differentiable at $x = c$. The points on the graph of f where $f'(c)$ does not exist can be recognized geometrically (Figure 21).



(A) not continuous at c (B) sharp corner at c (C) vertical tangent at c

Figure 21

Remark 1 For a function $y = f(x)$, the notations

$$f'(x), \quad y', \quad \frac{df}{dx}, \quad \frac{dy}{dx}, \quad Df(x) \text{ and } D_x y$$

all represent the derivative of f .

Example 1 Find the derivative of $f(x) = x^2$.

Solution 1 By the definition of the derivative, we have

$$\begin{aligned} f'(x) &= \lim_{\Delta x \rightarrow 0} \frac{(x + \Delta x)^2 - x^2}{\Delta x} = \lim_{\Delta x \rightarrow 0} \frac{x^2 + 2x\Delta x + (\Delta x)^2 - x^2}{\Delta x} \\ &= \lim_{\Delta x \rightarrow 0} \frac{2x\Delta x + (\Delta x)^2}{\Delta x} = \lim_{\Delta x \rightarrow 0} (2x + \Delta x) = 2x. \end{aligned}$$

Thus, $(x^2)' = 2x$.

Example 2 Find the derivative of $f(x) = \ln x$.

Solution 2 By the definition of the derivative, we have

$$\begin{aligned} f'(x) &= \lim_{\Delta x \rightarrow 0} \frac{\ln(x + \Delta x) - \ln x}{\Delta x} = \lim_{\Delta x \rightarrow 0} \left(\frac{1}{\Delta x} \ln \frac{x + \Delta x}{x} \right) \\ &= \lim_{\Delta x \rightarrow 0} \ln \left(\frac{x + \Delta x}{x} \right)^{\frac{1}{\Delta x}} = \lim_{\Delta x \rightarrow 0} \ln \left(1 + \frac{\Delta x}{x} \right)^{\frac{1}{\Delta x}} \\ &= \lim_{\Delta x \rightarrow 0} \ln \left(\left(1 + \frac{\Delta x}{x} \right)^{\frac{x}{\Delta x}} \right)^{\frac{1}{x}} = \ln e^{\frac{1}{x}} = \frac{1}{x}. \end{aligned}$$

Thus, $(\ln x)' = \frac{1}{x}$.

Arguing as in Examples 1 and 2, we construct
the table of main derivatives

1. $c' = 0$, where c is any constant;
2. $(x^\alpha)' = \alpha x^{\alpha-1}$;
3. $(a^x)' = a^x \ln a$, in particular, $(e^x)' = e^x$;
4. $(\log_a x)' = \frac{1}{x \ln a}$, in particular, $(\ln x)' = \frac{1}{x}$;
5. $(\sin x)' = \cos x$;
6. $(\cos x)' = -\sin x$;
7. $(\tan x)' = \frac{1}{\cos^2 x}$;
8. $(\cot x)' = -\frac{1}{\sin^2 x}$;
9. $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$;
10. $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$;
11. $(\arctan x)' = \frac{1}{1+x^2}$;
12. $(\text{arccot } x)' = -\frac{1}{1+x^2}$.

4.2 Chain rule

Let us develop a way to find the derivative of the composite function $y = f(u)$, where $u = g(x)$, i.e., $y = f(g(x))$.

For the function $y = f(u)$ we have that $\lim_{\Delta u \rightarrow 0} \frac{\Delta y}{\Delta u} = y'_u$. Therefore, $\frac{\Delta y}{\Delta u} = y'_u + \alpha$ or

$$\Delta y = y'_u \cdot \Delta u + \alpha \cdot \Delta u,$$

where $\alpha \rightarrow 0$ when $\Delta u \rightarrow 0$.

Similarly, for the function $u = g(x)$ we have that $\lim_{\Delta x \rightarrow 0} \frac{\Delta u}{\Delta x} = u'_x$. Therefore,

$$\Delta u = u'_x \cdot \Delta x + \beta \cdot \Delta x,$$

where $\beta \rightarrow 0$ when $\Delta x \rightarrow 0$.

If we substitute the expression Δu in the expression Δy , we get

$$\Delta y = y'_u (u'_x \cdot \Delta x + \beta \cdot \Delta x) + \alpha (u'_x \cdot \Delta x + \beta \cdot \Delta x)$$

$$\Delta y = y'_u \cdot u'_x \cdot \Delta x + y'_u \cdot \beta \cdot \Delta x + \alpha \cdot u'_x \cdot \Delta x + \alpha \cdot \beta \cdot \Delta x.$$

Division by Δx yields

$$\frac{\Delta y}{\Delta x} = y'_u \cdot u'_x + y'_u \cdot \beta + \alpha \cdot u'_x + \alpha \cdot \beta,$$

that gives

$$y'_x = y'_u \cdot u'_x$$

when $\Delta x \rightarrow 0$.

This rule is known as the chain rule for the composite function $y = f(g(x))$, and it can be also written in the form:

$$y' = f'(g(x)) \cdot g'(x).$$

4.3 Rules of differentiation

Let $u(x)$ and $v(x)$ be differentiable functions over the interval $(a; b)$.

1. Sum – difference rule

Suppose that $y = u \pm v$. Then, by the definition of derivative, we have

$$\begin{aligned} y' &= \lim_{\Delta x \rightarrow 0} \frac{(u(x + \Delta x) \pm v(x + \Delta x)) - (u(x) \pm v(x))}{\Delta x} \\ &= \lim_{\Delta x \rightarrow 0} \left(\frac{u(x + \Delta x) - u(x)}{\Delta x} \pm \frac{v(x + \Delta x) - v(x)}{\Delta x} \right) \\ &= \lim_{\Delta x \rightarrow 0} \frac{\Delta u}{\Delta x} \pm \lim_{\Delta x \rightarrow 0} \frac{\Delta v}{\Delta x} = u' \pm v'. \end{aligned}$$

Thus,

$$(u \pm v)' = u' \pm v'.$$

2. Product rule

Suppose that $y = u \cdot v$. Then

$$\begin{aligned} y' &= \lim_{\Delta x \rightarrow 0} \frac{u(x + \Delta x) \cdot v(x + \Delta x) - u(x) \cdot v(x)}{\Delta x} \\ &= \lim_{\Delta x \rightarrow 0} \frac{(u(x) + \Delta u) \cdot (v(x) + \Delta v) - u(x) \cdot v(x)}{\Delta x} \\ &= \lim_{\Delta x \rightarrow 0} \frac{u(x) \cdot v(x) + u(x) \cdot \Delta v + v(x) \cdot \Delta u + \Delta u \cdot \Delta v - u(x) \cdot v(x)}{\Delta x} \end{aligned}$$

$$\begin{aligned}
&= \lim_{\Delta x \rightarrow 0} \left(u(x) \cdot \frac{\Delta v}{\Delta x} + v(x) \cdot \frac{\Delta u}{\Delta x} + \Delta u \cdot \frac{\Delta v}{\Delta x} \right) \\
&= u(x) \cdot \lim_{\Delta x \rightarrow 0} \frac{\Delta v}{\Delta x} + v(x) \cdot \lim_{\Delta x \rightarrow 0} \frac{\Delta u}{\Delta x} + \lim_{\Delta x \rightarrow 0} \Delta u \cdot \lim_{\Delta x \rightarrow 0} \frac{\Delta v}{\Delta x} \\
&= u \cdot v' + v \cdot u' + 0 \cdot v' = u' \cdot v + v' \cdot u.
\end{aligned}$$

Thus,

$$(u \cdot v)' = u' \cdot v + v' \cdot u.$$

In particular,

$$(c \cdot u)' = c \cdot u',$$

where c is a constant.

3. Quotient rule

Suppose that $y = \frac{u}{v}$. Then

$$\begin{aligned}
y' &= \lim_{\Delta x \rightarrow 0} \frac{\frac{u(x+\Delta x)}{v(x+\Delta x)} - \frac{u(x)}{v(x)}}{\Delta x} = \lim_{\Delta x \rightarrow 0} \frac{\frac{u(x)+\Delta u}{v(x)+\Delta v} - \frac{u(x)}{v(x)}}{\Delta x} \\
&= \lim_{\Delta x \rightarrow 0} \frac{u(x) \cdot v(x) + v(x) \cdot \Delta u - u(x) \cdot v(x) - u(x) \cdot \Delta v}{\Delta x (v(x) + \Delta v) v(x)} \\
&= \lim_{\Delta x \rightarrow 0} \frac{v(x) \cdot \Delta u - u(x) \cdot \Delta v}{\Delta x (v^2(x) + v(x) \cdot \Delta v)} = \lim_{\Delta x \rightarrow 0} \frac{v(x) \cdot \frac{\Delta u}{\Delta x} - u(x) \cdot \frac{\Delta v}{\Delta x}}{v^2(x) + v(x) \cdot \Delta v} \\
&= \frac{v(x) \cdot \lim_{\Delta x \rightarrow 0} \frac{\Delta u}{\Delta x} - u(x) \cdot \lim_{\Delta x \rightarrow 0} \frac{\Delta v}{\Delta x}}{v^2(x) + v(x) \cdot \lim_{\Delta x \rightarrow 0} \Delta v} = \frac{u' \cdot v - v' \cdot u}{v^2}.
\end{aligned}$$

Thus,

$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - v' \cdot u}{v^2}.$$

Example 3 Find the derivative of $f(x) = 5^{x^3-4}$.

Solution 3 We use the chain and difference rules:

$$f'(x) = (5^{x^3-4})' = 5^{x^3-4} \cdot \ln 5 \cdot (x^3 - 4)' = 5^{x^3-4} \cdot \ln 5 \cdot 3x$$

Example 4 Find the derivative of $f(x) = \frac{3x^2+4x-5}{\cos x}$.

Solution 4 We use the quotient and sum-difference rules:

$$\begin{aligned}
f'(x) &= \left(\frac{3x^2 + 4x - 5}{\cos x} \right)' = \frac{(3x^2 + 4x - 5)' \cos x - (\cos x)'(3x^2 + 4x - 5)}{\cos^2 x} \\
&= \frac{(6x + 4) \cos x + \sin x (3x^2 + 4x - 5)}{\cos^2 x}
\end{aligned}$$

4.4 Higher order derivatives

If a function $y = f(x)$ has the derivative f' , then the derivative of f' , if it exists, is called the second order derivative and written as f'' . The derivative of f'' , if it exists, is called the third order derivative and written as f''' , and so on. If we continue this process we can find n th order derivative.

Remark 2 For a function $y = f(x)$, the notations

$$f''(x), \quad y'', \quad \frac{d^2f}{dx^2}, \quad \frac{d^2y}{dx^2}, \quad D_x^2f(x) \quad \text{and} \quad D_x^2y$$

all represent the second order derivative of f .

The third order derivative is written similarly. For $n \geq 4$, the n th order derivative is written as $f^{(n)}(x)$.

Example 5 Find the fourth order derivative of $f(x) = 7x^4 + 3x^3 + 5x^2 - 6x + 11$.

Solution 5

$$f'(x) = 28x^3 + 9x^2 + 10x - 6;$$

$$f''(x) = 84x^2 + 18x + 10;$$

$$f'''(x) = 168x + 18;$$

$$f^{(4)}(x) = 168.$$