## Quadratic function

Definition 1 If $a, b$ and $c$ are real numbers with $a \neq 0$, then the function

$$
f(x)=a x^{2}+b x+c
$$

is a quadratic function and its graph is a parabola.

Any quadratic function can be transformed into the vertex form:

$$
f(x)=a(x-h)^{2}+k,
$$

where the point $V(h ; k)$ is the vertex of the parabola. This process is called the completing the square.

Example 1 Find the vertex of the parabola $f(x)=5 x^{2}-2 x+8$.

## Solution 1

$$
\begin{gathered}
f(x)=5\left(x^{2}-\frac{2}{5} \cdot x\right)+8 \\
=5\left(x^{2}-2 \cdot \frac{1}{5} \cdot x+\frac{1}{25}\right)-\frac{1}{5}+8=5\left(x-\frac{1}{5}\right)^{2}+\frac{39}{5} .
\end{gathered}
$$

Thus, the point $V\left(\frac{1}{5} ; \frac{39}{5}\right)$ is the vertex of the parabola $f(x)=5 x^{2}-2 x+8$.

If $a>0$, then the graph of a quadratic function $f(x)=a x^{2}+b x+c$ opens upward. If $a<0$, then the graph of a quadratic function $f(x)=a x^{2}+b x+c$ opens downward.

(A) $a>0$

(B) $a<0$

Figure 1

## Applications

Let $x$ be a number of units manufactured and sold. It will represent the independent variable. Let $a, b, m$ and $n$ be real numbers. Then we can define the following functions:

1. cost function

$$
C(x)=(\text { variable cost })+(\text { fixed cost })=a x+b ;
$$

2. price-demand function (suppose that all produced goods can be sold at a price $P$ per unit)

$$
P(x)=m x+n ;
$$

3. revenue function

$$
R(x)=(\text { number of units sold }) \cdot(\text { price per unit })=x \cdot P(x)=x \cdot(m x+n) ;
$$

4. profit function

$$
P(x)=R(x)-C(x)=x \cdot(m x+n)-(a x+b)
$$

A loss occurs if $R(x)<C(x)$ and a profit occurs if $R(x)>C(x)$. Break-even points are the production levels at which $R(x)=C(x)$.

Example 2 A company that produces watches has fixed costs (at 0 output) of $\$ 12000$ per month; and variable costs of $\$ 300$ per watch. The price is $\$ 500$. Find the breakeven point.

Solution 2 The cost function is written as follows $C(x)=300 \cdot x+12000$. The price is fixed, so the price-demand function is $P(x)=500$. The revenue function has the form $R(x)=500 \cdot x$. To find the break-even point, we need to solve the equation $R(x)=C(x)$. Thus,

$$
\begin{gathered}
500 \cdot x=300 \cdot x+12000 \\
200 \cdot x=12000 \\
x=60 \text { watches }
\end{gathered}
$$

Moreover,

$$
R(60)=C(60)=500 \cdot 60=\$ 30000
$$



Figure 2

## Polynomial function

Definition 2 A polynomial function is a function that can be written in the form:

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

for a non-negative integer $n$ called the degree of the polynomial. The coefficients $a_{0}$, $a_{1}, \ldots, a_{n-1}$ and $a_{n}$ are real numbers with $a_{n} \neq 0$.

The domain of a polynomial function is the set of all real numbers.

## Rational function

Definition 3 A rational function is a function that can be written in the form:

$$
f(x)=\frac{n(x)}{d(x)},
$$

where $n(x)$ and $d(x)$ are polynomials.

The domain of a rational function is the set of all real numbers such that $d(x) \neq 0$. We assume that $n(x)$ and $d(x)$ have no real zeroes in common.

## Exponential function

Definition 4 The equation

$$
f(x)=b^{x}, \quad b>0, \quad b \neq 1,
$$

defines an exponential function for each different constant b, called the base.

The domain of an exponential function $f(x)=b^{x}$ is the set of all real numbers. The range is the set of all positive real numbers.
Basic properties of graphs of exponential functions

1. All graphs pass through the point $(0 ; 1)$, since $b^{0}=1$ for any permissable base $b$.
2. All graphs are continuous curves with no holes and jumps.
3. If $b>1$, then $b^{x}$ increases as $x$ increases.
4. If $0<b<1$, then $b^{x}$ decreases as $x$ increases.

5 . The $x$-axis is a horizontal asymptote.

(A) $b>1$

(B) $0<b<1$

Figure 3

## Base exponential function

The number $e$ is an irrational number that can be approximated by evaluating the expression

$$
\left(1+\frac{1}{x}\right)^{x}
$$

for a sufficiently large $x$. It means that if $x$ increases without bound, the value of the above expression approaches a number we denote $e$. The following table illustrates this fact:

| $x$ | 1 | 10 | 100 | 1000 | 10000 | 100000 | 1000000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(1+\frac{1}{x}\right)^{x}$ | 2 | $2.59374 \ldots$ | $2.70481 \ldots$ | $2.71692 \ldots$ | $2.71814 \ldots$ | $2.71827 \ldots$ | $2.71828 \ldots$ |

Therefore, the irrational number $e$ is approximately equal to $e \approx 2.718 \ldots$
Exponential functions with base $e$ and base $\frac{1}{e}$ are defined by $y=e^{x}$ and $y=e^{-x}$ , respectively.

(A)

(B)

Figure 4

## Properties of exponential functions

If $a$ and $b$ are positive real numbers such that $a \neq 1$ and $b \neq 1$, and $x$ and $y$ are real numbers, then

1. $a^{x} a^{y}=a^{x+y}$ and $\frac{a^{x}}{a^{y}}=a^{x-y}$;
2. $\left(a^{x}\right)^{y}=a^{x y},(a b)^{x}=a^{x} b^{x}$ and $\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$;
3. $a^{x}=a^{y}$ if and only if $x=y$;
4. for $x \neq 0, a^{x}=b^{x}$ if and only if $a=b$.

## Logarithmic function

To define a logarithmic function, we need to introduce the definition of inverse function. Let us consider two functions: $f(x)=x$ and $g(x)=|x|$. By the definition of function, we know that each domain value corresponds to unique range value. The inverse statement is not always correct. In fact, if the range value of $f$ is 2 , the corresponding domain value is unique and equal to 2 . However, if the range value of $g$ is 2 , there are two corresponding domain values 2 and -2 . Function $f$ is said to be an one-to-one function.



Figure 5

Definition $5 A$ function $f$ is said to be one-to-one if each range value corresponds to exactly one domain value.

Definition 6 If a function $f$ is one-to-one, the inverse of $f$ is the function formed by interchanging the independent and dependent variables.

Remark 1 If a function $f$ is not one-to-one, it does not have an inverse.

Remark 2 If a function is one-to-one, then it is either increasing or decreasing for all domain values. If a function increases for some domain values and decreases for others, then it is not one-to-one.

It is obvious that any exponential function is one-to-one, therefore, it has the inverse function.

Definition 7 If we start with the exponential function

$$
y=b^{x}
$$

and interchange the variables, we get the inverse

$$
x=b^{y} .
$$

We call the inverse the logarithmic function with base $b$ and write

$$
y=\log _{b} x .
$$

The domain of a logarithmic function $y=\log _{b} x$ is the set of all positive real numbers. The range is the set of all real numbers. Moreover, all graphs pass through the point $(1 ; 0)$.

The graphs of $y=b^{x}$ and $y=\log _{b} x$ are shown in Figure 6 for the cases $b>1$ and $0<b<1$.


Figure 6

## Properties of logarithmic functions

If $b, M$ and $N$ are positive real numbers such that $b \neq 1$, and $x$ and $p$ are real numbers, then

1. $\log _{b} 1=0$;
2. $\log _{b} b=1$;
3. $\log _{b} b^{x}=x$;
4. $b^{\log _{b} x}=x$ for $x>0$;
5. $\log _{b} M N=\log _{b} M+\log _{b} N$;
6. $\log _{b} \frac{M}{N}=\log _{b} M-\log _{b} N$;
7. $\log _{b} M^{p}=p \log _{b} M$;
8. $\log _{b} M=\log _{b} N$ if and only if $M=N$.

Remark 3 Common logarithm is a logarithm with the base 10: $\log _{10} x=\log x$.
Natural logarithm is a logarithm with the base $e: \log _{e} x=\ln x$.

## Applications

1. The fee paid to use another's money is called interest. It is usually presented as a percent and called interest rate. Suppose that you deposit $P$ value of money at the annual interest rate $R \%$ (annual interest rate can be expressed as a decimal number $r$, so that $r=\frac{R}{100}$ ). After one year, the account balance is

$$
P+R \% \text { of } P=P+r \cdot P=P(1+r) .
$$

At the end of the second year, the account balance is
$(P(1+r))+R \%$ of $(P(1+r))=P(1+r)+r \cdot P(1+r)=P(1+r)(1+r)=P(1+r)^{2}$.

At the end of the third year, the account balance is
$\left(P(1+r)^{2}\right)+R \%$ of $\left(P(1+r)^{2}\right)=P(1+r)^{2}+r \cdot P(1+r)^{2}=P(1+r)^{2}(1+r)=P(1+r)^{3}$.

If we continue this process, it is obvious that after $t$ years, the account balance can be calculated using the formula:

$$
A=P(1+r)^{t},
$$

where $A$ is the amount at the end of $t$ years.
Arguing similarly, we can write the general compound interest formula:

$$
A=P\left(1+\frac{r}{m}\right)^{m t}
$$

where
$A=$ future value or amount at the end of $t$ years,
$P=$ present value or principle,
$r=$ annual rate, expressed as a decimal,
$m=$ number of compounding periods per year,
$t=$ time in years.

Example 3 Suppose $\$ 5000$ is invested in an account paying 9\% compounded monthly.
How much will be in account after 5 years? 10 years?

## Solution 3

$$
A=5000\left(1+\frac{0.09}{12}\right)^{12 t}=5000(1+0.0075)^{12 t}=5000(1.0075)^{12 t}
$$

If $t=5$, then

$$
5000(1.0075)^{12 \cdot 5} \approx 5000 \cdot 1.565681 \approx \$ 7828.41
$$

If $t=10$, then

$$
5000(1.0075)^{12 \cdot 10} \approx 5000 \cdot 2.451357 \approx \$ 12256.79
$$

2. Suppose we need to know the length of time it takes the value of an investment to double or doubling time. Thus, from the general compound interest formula we have

$$
\begin{aligned}
2 P & =P\left(1+\frac{r}{m}\right)^{m t} \\
2 & =\left(1+\frac{r}{m}\right)^{m t} \\
\ln 2 & =\ln \left(1+\frac{r}{m}\right)^{m t} \\
\ln 2 & =m \cdot t \cdot \ln \left(1+\frac{r}{m}\right) \\
t & =\frac{\ln 2}{m \cdot \ln \left(1+\frac{r}{m}\right)}
\end{aligned}
$$

In particular, for rates compounded annually we have

$$
t=\frac{\ln 2}{\ln (1+r)}
$$

Example 4 How long will it take money to double if it is invested at 20\% compounded annually?

## Solution 4

$$
t=\frac{\ln 2}{\ln (1+0.2)}=\frac{\ln 2}{\ln 1.2}=\frac{0.693147}{0.182322} \approx 3.801784 \approx 4 \text { years }
$$

When interest is paid at the end of 4 years, the money will be slightly more than doubled.

