1 Functions

1.1 Definition

In mathematics, the central concept of a function is a correspondence. Thus, a
function is a relation between a set of inputs and a set of outputs. Usually, to denote
that y is a function of x, we write y = f(x), where x is called the independent variable
and y is called the dependent variable.

This formula represents the relationship between the radius r and the area of a
circle s. It is obvious that the larger r is, the larger s is. Therefore, it is a function

that can be presented in the form s = f(r).

The second example of a function is as follows:
(

3932, 0 < s <1100,
7864, 1100 < s < 1500,
11796, 1500 < s < 2000,
t =14 23592, 2000 < s < 2500,
35388, 2500 < s < 3000,
58980, 3000 < s < 4000,
460044, s > 4000.

\
This formula shows the correspondence between the tax rate ¢ on vehicles (in tenge)

and their engine size s in Kazakhstan in 2025. This function can be written in the

form t = f(s).

Definition 1 A function f is a rule that assigns to each element (number) x of a
set D(f) a unique element (number) of a set R(f).
The set D(f) is called the domain of f, and the set R(f) is called the range of f.

Example 1 Find the domains of the functions:
1 flx) =V1—a?; 2 g(x) = 5.

2 must be greater than or equal to

Solution 1 1. For the square root to exist, 1 — x
0. That 1s,

1—2°>0 or (1—a)(1+2)>0
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or
14+42>0 1+42<0
r <1 x>1

or .
x> —1 < -1

The second system has no solutions. Thus, D(f) = [—1;1].
2. For the fraction to exist, the denominator x — 3 must not be equal to 0 (division

by 0 is not defined). That is,
x—3#0 or x #3.

Thus, D(f) = (—00;3) U (3; +00).

1.2 Cartesian system of coordinates

The set of all pairs of real numbers is called the number plane. This number plane

can be represented by a Cartesian system of coordinates (Figure 1).

Ordinate
4
A(_,?? 3) ‘. 7777777 3T
Abscissa |
2
i 1! Origin

3 -2 -1 0 iéé]x

Figure 1

The graph of a function f consists of those points in the Cartesian plane whose

coordinates (x,y) satisfy the equation y = f(x). This means that the pair (z,y) lies
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on the graph of f if and only if z is in the domain and y = f(z). Usually, to draw the
graph of a function, we use a table of coordinate pairs (x, f(z)) for various values
of x in the domain of f, then plot these points and connect them with a “smooth”

curve.
Example 2 Sketch the graph of the function f(x) = (x — 1)3 + 2.

Solution 2 Make a table of coordinate pairs that satisfy the equation f(z) = (x —
1)3 +2:

| -1|o|1]2] 3
yl611|2|3]10

Plot these points and join them with a smooth curve as shown in Figure 2.

Yy

10 f@) = (@ —1)*+2

-1/01 2 3 x

Figure 2

1.3 Graph transformations

Comparing the graph of y = f(x) + k with the graph of y = f(x), we see that it is
the graph of y = f(z) vertically shifted up by & units if &k is positive and down by



k units if k is negative.

Comparing the graph of y = f(z + h) with the graph of y = f(x), we see that it is
the graph of y = f(z) horizontally shifted left by A units if h is positive and right
by h units if A is negative.

To sketch the graph of y = —f(z), we reflect the graph of y = f(x) in the x-axis.
Moreover, the graph of y = Af(z) is a vertical stretch of the graph of y = f(x) if
A > 1, and a vertical shrink of the graph of y = f(z) if 0 < A < 1.

Remark 1 The graph of the equation f(x) = (v — 1)® + 2 given in Ezample 2 can
be sketched using graph transformations. First, we sketch the graph of f(x) = 2°.

Then we shift it upward by 2 units and to the right by 1 unit.

1.4 Intercepts

x-intercept (root) is the abscissa of such a point on the graph where the graph
crosses (or touches) the z-axis. To find the z-intercept, we set y = 0, and the value
of z satisfying f(z) = 0 is the z-intercept.

y-intercept is the ordinate of such a point on the graph where the graph crosses
(or touches) the y-axis. To find the y-intercept, we set x = 0, and the value of y
satisfying y = f(0) is the y-intercept.

1.5 Increasing and decreasing functions

We say that a function f is increasing on an interval (a;b) if f(z1) < f(x2) whenever
a < x3 < x3 < b. We say that a function f is decreasing on an interval (a;b) if

f(z1) > f(x2) whenever a < x; < x9 < b.



2 Some elementary functions

2.1 Linear function

Definition 2 A function f is a linear function if
y=kx+b,

where k and b are real numbers.

The domain and range of a linear function are the set of all real numbers.

The graph of a linear function y = kx + b is a straight line with the slope k and
the y-intercept b. Therefore, the equation y = kx + b is called the slope-intercept
form of a linear function.

The standard form of a linear function is
Ax+ By =C,

where A, B, and C are real numbers. If B # 0, the standard equation can be resolved
with respect to y:

This is the slope-intercept form.

Suppose that two fixed distinct points M (zq;y;) and Ms(zo;y2) belong to the
graph of y = kx+b. This means that their coordinates satisfy the equation y = kx+0;
hence, y; = kx1 + b and ys = kxy + b. If we find the difference yo — y1, we get

yo —y1 = (kxg +b) — (kxy +b) = kxg + b — kxy — b = k(zy — 1)
Y2 — Y1 :k(xz—xl)

b — ?/2—91.
To — I

Definition 3 If a straight line passes through two distinct points My(x1;y1) and
My (xo;y2), then its slope is given by the formula:

b — 92—91‘
To2 — X7

5



Thus, the slope k of a line y = kx + b equals the tangent of an angle a formed
by this line and the positive direction of the z-axis. It is known that
(A) if 0 < a < § (a is an acute angle), then tana > 0;
(B) if § < a <7 (a is an obtuse angle), then tana < 0;
(C) if & = 0, then tana = 0;
(D) if a = 7, then tan a does not exist.

Therefore, since k = tan a,, we have
(A) if k£ > 0, then a straight line y = kx + b is increasing;
(B) if k < 0, then a straight line y = kx + b is decreasing;
(C) if k = 0, then a straight line y = b is a horizontal line parallel to the x-axis;
(D) if k& does not exist, then x = a is a vertical line that is not a function.

Each case is illustrated in Figure 3.

Y Y Y Y
& &
0 x 0 x 0 x 0 x
(A) k>0 (B) k<0 (C) k=0 (D) k does not exist
Figure 3

Arguing as above, for a line that passes through an arbitrary point M (z;y) and

a fixed point M;(z1;y1), its slope is given by the formula:

Thus, we write the following definition.

Definition 4 If a straight line passes through the point M, (x1;y1) and has the slope

k, then its equation is given by the formula:

y =y = k(z —x).



Moreover, if we combine

L — Y2 — and k:y—%
To — X1 r — T

?

we come up with one more definition.

Definition 5 If a straight line passes through two distinct points Mi(x1;y1) and

My (xo;y2), then its equation is given by the formula:

Yy—u1 _ T —I
Y2 — Y1 To — 21

Parallel and perpendicular lines
Suppose that we have two distinct lines y; = k1x 4 by and yo = kox + bs. Denote by
a and S the angles formed by the lines y; and y, and the positive direction of the
x-axis, respectively. This means that k; = tana and ke = tan .
1. If two non-vertical lines are parallel, they have the same slope.

Since « and [ are two corresponding angles formed by the two parallel lines

y1 and yo with the z-axis as a transversal line (Figure 4), then o = (. Therefore,

ki = ks.

n

Y2

A A

Figure 4

2. If two lines y; and ¥y, are perpendicular, excluding the case of vertical and

horizontal lines, the product of their slopes equals —1.



To prove this formula we draw a line parallel to the x-axis through the point of
intersection of y; and y, (Figure 5). Since the sum of two interior angles formed by

two parallel lines and a transversal line equals 7, we have

(5o
Bzg—l-a.

We substitute the obtained relation into ks and get

s 1 1
> = tan § = tan( 5 + a) cot a p— "
Therefore, ky - ko = —1.
Y
Yy
!
AN
0 x
Y2
Figure 5

Example 3 Find the equation of the line

1. if it passes through the points (1;—2) and (—4;3);

2. if it passes through the point (5; —3) and is parallel to the line 3x — 2y = 6;
3. if 1t is perpendicular to the line y = %x + ‘—; and has the y-intercept (5).

Solution 3 1. If we use Definition 5, we get

y+2 x—1
34+2 —4-1
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Figure 6

2. If we resolve the equation 3x — 2y = 6 with respect to y, we get y = %x - 3.

The slope of this line is %; this means that the slope of the desired function is also

3 PR .
5. Now, we use Definition 4 and obtain

3 15
=—xz———3
Y=o
3 21
Y=ot T
Y

yz%x—(ﬂ y:%$—%
0 5 z
-3

Figure 7

3. The slope of the given line is % Since the product of the slopes of two perpendicular
lines is (—1), the slope of the desired line is (—3). By the condition, the y-intercept

15 §. Thus, the desired equation is
Yy = —3r + 9.
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Figure 8

Applications

The supply and demand of an item are usually related to its price. A producer will
supply larger quantities of the item at a higher price. However, at a higher price,
a consumer will demand less of the item. Thus, in general, the graph of the supply
equation y = S(x) increases and the graph of the demand equation y = D(z)
decreases. Here, z stands for the quantity and y stands for the price. If we have

linear functions for supply and demand curves, they can be written in the form:
S(z) =ax+0b

and

D(x) = mz + n,

where a, b, m and n are real numbers. Moreover, since the line S(z) increases and
the line D(x) decreases, their slopes must be positive (a > 0) and negative (m < 0),
respectively. The price tends to stabilize at the point of intersection of the supply
and demand equations. This is the equilibrium point, where its first coordinate x is

the equilibrium quantity and its second coordinate y is the equilibrium price.

Example 4 At a price of $50 per kilo, the annual Kazakhstan supply and demand
for tea are 1500 and 1700 tonnes, respectively. When the price rises to $80, the supply
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increases to 1800 tonnes while the demand decreases to 1300 tonnes. 1. Assuming
that the price-supply and the price-demand equations are linear, find their equations;

2. Find the equilibrium point for the Kazakhstan tea market.

Solution 4 1. We have that the supply curve S(x) passes through two points (1500; 50)
and (1800; 80). If we use Definition 5, we get

S(z) =50 @ —1500
80 — 50 1800 — 1500

(S(z) — 50) - 300 = (z — 1500) - 30 or (S(z) —50)-10 =z — 1500

1
S(z) = 0%~ 100.

Similarly, since the demand curve D(x) passes through two points (1700;50) and
(13005 80), from Definition 5 we have

D(x)—50  x—1700
80 —50 1300 — 1700

(D(x) — 50) - (—400) = (z — 1700) - 30 or (D(x) — 50)-40 = (x — 1700) - (=3)

40 - D(z) = —3x + 7100

3 355

2. To find the equilibrium point, we need to solve the equation S(x) = D(z). Thus,

1 3 355
1 3 355 555
10" T ot T g I o ger =y
555 40 11100

T = 5 7 = — ~ 1585.7 tonnes.

Moreover,
11100 11100 1 11100 1110 700 410

S|l—|=D|— | =——-100= ———— = — =~ $58.57 kilo.
(7) (7)107 7T T e $985T per kilo
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140
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100
90
30
70
60
20
40
30
20
10

Equilibrium point
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Figure 9
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