
1 Functions

1.1 De�nition

In mathematics, the central concept of a function is a correspondence. Thus, a

function is a relation between a set of inputs and a set of outputs. Usually, to denote

that y is a function of x, we write y = f(x), where x is called the independent variable

and y is called the dependent variable.

This formula represents the relationship between the radius r and the area of a

circle s. It is obvious that the larger r is, the larger s is. Therefore, it is a function

that can be presented in the form s = f(r).

The second example of a function is as follows:

t =



3932, 0 < s ≤ 1100,

7864, 1100 < s ≤ 1500,

11796, 1500 < s ≤ 2000,

23592, 2000 < s ≤ 2500,

35388, 2500 < s ≤ 3000,

58980, 3000 < s ≤ 4000,

460044, s > 4000.

This formula shows the correspondence between the tax rate t on vehicles (in tenge)

and their engine size s in Kazakhstan in 2025. This function can be written in the

form t = f(s).

De�nition 1 A function f is a rule that assigns to each element (number) x of a

set D(f) a unique element (number) of a set R(f).

The set D(f) is called the domain of f , and the set R(f) is called the range of f .

Example 1 Find the domains of the functions:

1. f(x) =
√
1− x2; 2. g(x) = 1

x−3
.

Solution 1 1. For the square root to exist, 1− x2 must be greater than or equal to

0. That is,

1− x2 ≥ 0 or (1− x)(1 + x) ≥ 0
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 1− x ≥ 0

1 + x ≥ 0
or

 1− x ≤ 0

1 + x ≤ 0 x ≤ 1

x ≥ −1
or

 x ≥ 1

x ≤ −1
.

The second system has no solutions. Thus, D(f) = [−1; 1].

2. For the fraction to exist, the denominator x− 3 must not be equal to 0 (division

by 0 is not de�ned). That is,

x− 3 ̸= 0 or x ̸= 3.

Thus, D(f) = (−∞; 3) ∪ (3;+∞).

1.2 Cartesian system of coordinates

The set of all pairs of real numbers is called the number plane. This number plane

can be represented by a Cartesian system of coordinates (Figure 1).
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The graph of a function f consists of those points in the Cartesian plane whose

coordinates (x, y) satisfy the equation y = f(x). This means that the pair (x, y) lies
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on the graph of f if and only if x is in the domain and y = f(x). Usually, to draw the

graph of a function, we use a table of coordinate pairs (x, f(x)) for various values

of x in the domain of f , then plot these points and connect them with a �smooth�

curve.

Example 2 Sketch the graph of the function f(x) = (x− 1)3 + 2.

Solution 2 Make a table of coordinate pairs that satisfy the equation f(x) = (x −

1)3 + 2:

x -1 0 1 2 3

y -6 1 2 3 10

Plot these points and join them with a smooth curve as shown in Figure 2.

x0−1 1 2 3

−6

1
2
3

10

y

f(x) = (x− 1)3 + 2

•

•
•

•

•

Figure 2

1.3 Graph transformations

Comparing the graph of y = f(x) + k with the graph of y = f(x), we see that it is

the graph of y = f(x) vertically shifted up by k units if k is positive and down by
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k units if k is negative.

Comparing the graph of y = f(x+ h) with the graph of y = f(x), we see that it is

the graph of y = f(x) horizontally shifted left by h units if h is positive and right

by h units if h is negative.

To sketch the graph of y = −f(x), we re�ect the graph of y = f(x) in the x-axis.

Moreover, the graph of y = Af(x) is a vertical stretch of the graph of y = f(x) if

A > 1, and a vertical shrink of the graph of y = f(x) if 0 < A < 1.

Remark 1 The graph of the equation f(x) = (x− 1)3 + 2 given in Example 2 can

be sketched using graph transformations. First, we sketch the graph of f(x) = x3.

Then we shift it upward by 2 units and to the right by 1 unit.

1.4 Intercepts

x-intercept (root) is the abscissa of such a point on the graph where the graph

crosses (or touches) the x-axis. To �nd the x-intercept, we set y = 0, and the value

of x satisfying f(x) = 0 is the x-intercept.

y-intercept is the ordinate of such a point on the graph where the graph crosses

(or touches) the y-axis. To �nd the y-intercept, we set x = 0, and the value of y

satisfying y = f(0) is the y-intercept.

1.5 Increasing and decreasing functions

We say that a function f is increasing on an interval (a; b) if f(x1) < f(x2) whenever

a < x1 < x2 < b. We say that a function f is decreasing on an interval (a; b) if

f(x1) > f(x2) whenever a < x1 < x2 < b.
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2 Some elementary functions

2.1 Linear function

De�nition 2 A function f is a linear function if

y = kx+ b,

where k and b are real numbers.

The domain and range of a linear function are the set of all real numbers.

The graph of a linear function y = kx+ b is a straight line with the slope k and

the y-intercept b. Therefore, the equation y = kx + b is called the slope-intercept

form of a linear function.

The standard form of a linear function is

Ax+By = C,

where A, B, and C are real numbers. If B ̸= 0, the standard equation can be resolved

with respect to y:

y = −A

B
x+

C

B
.

This is the slope-intercept form.

Suppose that two �xed distinct points M1(x1; y1) and M2(x2; y2) belong to the

graph of y = kx+b. This means that their coordinates satisfy the equation y = kx+b;

hence, y1 = kx1 + b and y2 = kx2 + b. If we �nd the di�erence y2 − y1, we get

y2 − y1 = (kx2 + b)− (kx1 + b) = kx2 + b− kx1 − b = k(x2 − x1)

y2 − y1 = k(x2 − x1)

k =
y2 − y1
x2 − x1

.

De�nition 3 If a straight line passes through two distinct points M1(x1; y1) and

M2(x2; y2), then its slope is given by the formula:

k =
y2 − y1
x2 − x1

.
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Thus, the slope k of a line y = kx + b equals the tangent of an angle α formed

by this line and the positive direction of the x-axis. It is known that

(A) if 0 < α < π
2
(α is an acute angle), then tanα > 0;

(B) if π
2
< α < π (α is an obtuse angle), then tanα < 0;

(C) if α = 0, then tanα = 0;

(D) if α = π
2
, then tanα does not exist.

Therefore, since k = tanα, we have

(A) if k > 0, then a straight line y = kx+ b is increasing;

(B) if k < 0, then a straight line y = kx+ b is decreasing;

(C) if k = 0, then a straight line y = b is a horizontal line parallel to the x-axis;

(D) if k does not exist, then x = a is a vertical line that is not a function.

Each case is illustrated in Figure 3.
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Figure 3

Arguing as above, for a line that passes through an arbitrary point M(x; y) and

a �xed point M1(x1; y1), its slope is given by the formula:

k =
y − y1
x− x1

.

Thus, we write the following de�nition.

De�nition 4 If a straight line passes through the point M1(x1; y1) and has the slope

k, then its equation is given by the formula:

y − y1 = k(x− x1).
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Moreover, if we combine

k =
y2 − y1
x2 − x1

and k =
y − y1
x− x1

,

we come up with one more de�nition.

De�nition 5 If a straight line passes through two distinct points M1(x1; y1) and

M2(x2; y2), then its equation is given by the formula:

y − y1
y2 − y1

=
x− x1

x2 − x1

.

Parallel and perpendicular lines

Suppose that we have two distinct lines y1 = k1x+ b1 and y2 = k2x+ b2. Denote by

α and β the angles formed by the lines y1 and y2 and the positive direction of the

x-axis, respectively. This means that k1 = tanα and k2 = tan β.

1. If two non-vertical lines are parallel, they have the same slope.

Since α and β are two corresponding angles formed by the two parallel lines

y1 and y2 with the x-axis as a transversal line (Figure 4), then α = β. Therefore,

k1 = k2.
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Figure 4

2. If two lines y1 and y2 are perpendicular, excluding the case of vertical and

horizontal lines, the product of their slopes equals −1.
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To prove this formula we draw a line parallel to the x-axis through the point of

intersection of y1 and y2 (Figure 5). Since the sum of two interior angles formed by

two parallel lines and a transversal line equals π, we have(π
2
− α

)
+ β = π

β =
π

2
+ α.

We substitute the obtained relation into k2 and get

k2 = tan β = tan(
π

2
+ α) = − cotα = − 1

tanα
= − 1

k1
.

Therefore, k1 · k2 = −1.
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Figure 5

Example 3 Find the equation of the line

1. if it passes through the points (1;−2) and (−4; 3);

2. if it passes through the point (5;−3) and is parallel to the line 3x− 2y = 6;

3. if it is perpendicular to the line y = 1
3
x+ 4

7
and has the y-intercept (5).

Solution 3 1. If we use De�nition 5, we get

y + 2

3 + 2
=

x− 1

−4− 1
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(y + 2) · (−5) = (x− 1) · 5

y + 2 = −x+ 1

y = −x− 1.
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2. If we resolve the equation 3x − 2y = 6 with respect to y, we get y = 3
2
x − 3.

The slope of this line is 3
2
; this means that the slope of the desired function is also

3
2
. Now, we use De�nition 4 and obtain

y + 3 =
3

2
(x− 5)

y =
3

2
x− 15

2
− 3

y =
3

2
x− 21

2
.
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3. The slope of the given line is 1
3
. Since the product of the slopes of two perpendicular

lines is (−1), the slope of the desired line is (−3). By the condition, the y-intercept

is 5. Thus, the desired equation is

y = −3x+ 5.
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Applications

The supply and demand of an item are usually related to its price. A producer will

supply larger quantities of the item at a higher price. However, at a higher price,

a consumer will demand less of the item. Thus, in general, the graph of the supply

equation y = S(x) increases and the graph of the demand equation y = D(x)

decreases. Here, x stands for the quantity and y stands for the price. If we have

linear functions for supply and demand curves, they can be written in the form:

S(x) = ax+ b

and

D(x) = mx+ n,

where a, b, m and n are real numbers. Moreover, since the line S(x) increases and

the line D(x) decreases, their slopes must be positive (a > 0) and negative (m < 0),

respectively. The price tends to stabilize at the point of intersection of the supply

and demand equations. This is the equilibrium point, where its �rst coordinate x is

the equilibrium quantity and its second coordinate y is the equilibrium price.

Example 4 At a price of $50 per kilo, the annual Kazakhstan supply and demand

for tea are 1500 and 1700 tonnes, respectively. When the price rises to $80, the supply
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increases to 1800 tonnes while the demand decreases to 1300 tonnes. 1. Assuming

that the price-supply and the price-demand equations are linear, �nd their equations;

2. Find the equilibrium point for the Kazakhstan tea market.

Solution 4 1. We have that the supply curve S(x) passes through two points (1500; 50)

and (1800; 80). If we use De�nition 5, we get

S(x)− 50

80− 50
=

x− 1500

1800− 1500

(S(x)− 50) · 300 = (x− 1500) · 30 or (S(x)− 50) · 10 = x− 1500

S(x) =
1

10
x− 100.

Similarly, since the demand curve D(x) passes through two points (1700; 50) and

(1300; 80), from De�nition 5 we have

D(x)− 50

80− 50
=

x− 1700

1300− 1700

(D(x)− 50) · (−400) = (x− 1700) · 30 or (D(x)− 50) · 40 = (x− 1700) · (−3)

40 ·D(x) = −3x+ 7100

D(x) = − 3

40
x+

355

2
.

2. To �nd the equilibrium point, we need to solve the equation S(x) = D(x). Thus,

1

10
x− 100 = − 3

40
x+

355

2

1

10
x+

3

40
x =

355

2
+ 100 or

7

40
x =

555

2

x =
555

2
· 40
7

=
11100

7
≈ 1585.7 tonnes.

Moreover,

S

(
11100

7

)
= D

(
11100

7

)
=

1

10
·11100

7
−100 =

1110

7
−700

7
=

410

7
≈ $58.57 per kilo.
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