

1 Functions

1.1 Definition

In mathematics, the central concept of a function is a correspondence. Thus, a function is a relation between a set of inputs and a set of outputs. Usually, to denote that y is a function of x , we write $y = f(x)$, where x is called the *independent* variable and y is called the *dependent* variable.

This formula represents the relationship between the radius r and the area of a circle s . It is obvious that the larger r is, the larger s is. Therefore, it is a function that can be presented in the form $s = f(r)$.

The second example of a function is as follows:

$$t = \begin{cases} 3932, & 0 < s \leq 1100, \\ 7864, & 1100 < s \leq 1500, \\ 11796, & 1500 < s \leq 2000, \\ 23592, & 2000 < s \leq 2500, \\ 35388, & 2500 < s \leq 3000, \\ 58980, & 3000 < s \leq 4000, \\ 460044, & s > 4000. \end{cases}$$

This formula shows the correspondence between the tax rate t on vehicles (in tenge) and their engine size s in Kazakhstan in 2025. This function can be written in the form $t = f(s)$.

Definition 1 A function f is a rule that assigns to each element (number) x of a set $D(f)$ a unique element (number) of a set $R(f)$.

The set $D(f)$ is called the domain of f , and the set $R(f)$ is called the range of f .

Example 1 Find the domains of the functions:

$$1. f(x) = \sqrt{1 - x^2}; \quad 2. g(x) = \frac{1}{x-3}.$$

Solution 1 1. For the square root to exist, $1 - x^2$ must be greater than or equal to 0. That is,

$$1 - x^2 \geq 0 \quad \text{or} \quad (1 - x)(1 + x) \geq 0$$

$$\begin{cases} 1 - x \geq 0 \\ 1 + x \geq 0 \end{cases} \quad \text{or} \quad \begin{cases} 1 - x \leq 0 \\ 1 + x \leq 0 \end{cases}$$

$$\begin{cases} x \leq 1 \\ x \geq -1 \end{cases} \quad \text{or} \quad \begin{cases} x \geq 1 \\ x \leq -1 \end{cases}.$$

The second system has no solutions. Thus, $D(f) = [-1; 1]$.

2. For the fraction to exist, the denominator $x - 3$ must not be equal to 0 (division by 0 is not defined). That is,

$$x - 3 \neq 0 \quad \text{or} \quad x \neq 3.$$

Thus, $D(f) = (-\infty; 3) \cup (3; +\infty)$.

1.2 Cartesian system of coordinates

The set of all pairs of real numbers is called the number plane. This number plane can be represented by a *Cartesian system of coordinates* (Figure 1).

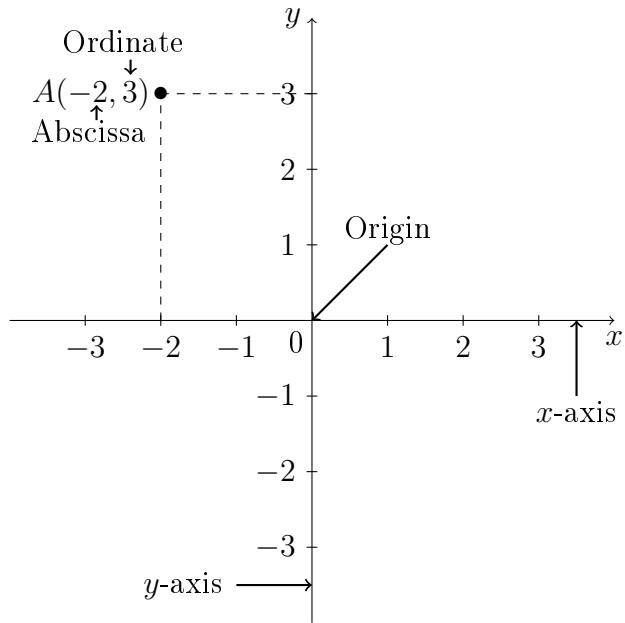


Figure 1

The graph of a function f consists of those points in the Cartesian plane whose coordinates (x, y) satisfy the equation $y = f(x)$. This means that the pair (x, y) lies

on the graph of f if and only if x is in the domain and $y = f(x)$. Usually, to draw the graph of a function, we use a table of coordinate pairs $(x, f(x))$ for various values of x in the domain of f , then plot these points and connect them with a “smooth” curve.

Example 2 Sketch the graph of the function $f(x) = (x - 1)^3 + 2$.

Solution 2 Make a table of coordinate pairs that satisfy the equation $f(x) = (x - 1)^3 + 2$:

x	-1	0	1	2	3
y	-6	1	2	3	10

Plot these points and join them with a smooth curve as shown in Figure 2.

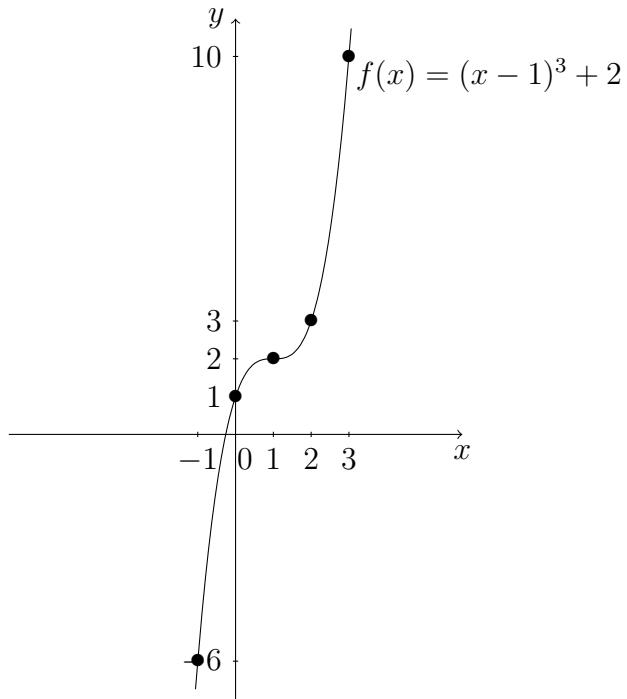


Figure 2

1.3 Graph transformations

Comparing the graph of $y = f(x) + k$ with the graph of $y = f(x)$, we see that it is the graph of $y = f(x)$ vertically shifted up by k units if k is positive and down by

k units if k is negative.

Comparing the graph of $y = f(x + h)$ with the graph of $y = f(x)$, we see that it is the graph of $y = f(x)$ horizontally shifted left by h units if h is positive and right by h units if h is negative.

To sketch the graph of $y = -f(x)$, we reflect the graph of $y = f(x)$ in the x -axis.

Moreover, the graph of $y = Af(x)$ is a vertical stretch of the graph of $y = f(x)$ if $A > 1$, and a vertical shrink of the graph of $y = f(x)$ if $0 < A < 1$.

Remark 1 *The graph of the equation $f(x) = (x - 1)^3 + 2$ given in Example 2 can be sketched using graph transformations. First, we sketch the graph of $f(x) = x^3$. Then we shift it upward by 2 units and to the right by 1 unit.*

1.4 Intercepts

x-intercept (root) is the abscissa of such a point on the graph where the graph crosses (or touches) the x -axis. To find the *x*-intercept, we set $y = 0$, and the value of x satisfying $f(x) = 0$ is the *x*-intercept.

y-intercept is the ordinate of such a point on the graph where the graph crosses (or touches) the y -axis. To find the *y*-intercept, we set $x = 0$, and the value of y satisfying $y = f(0)$ is the *y*-intercept.

1.5 Increasing and decreasing functions

We say that a function f is *increasing* on an interval $(a; b)$ if $f(x_1) < f(x_2)$ whenever $a < x_1 < x_2 < b$. We say that a function f is *decreasing* on an interval $(a; b)$ if $f(x_1) > f(x_2)$ whenever $a < x_1 < x_2 < b$.

2 Some elementary functions

2.1 Linear function

Definition 2 A function f is a linear function if

$$y = kx + b,$$

where k and b are real numbers.

The domain and range of a linear function are the set of all real numbers.

The graph of a linear function $y = kx + b$ is a straight line with the *slope* k and the *y-intercept* b . Therefore, the equation $y = kx + b$ is called the *slope-intercept form* of a linear function.

The *standard form* of a linear function is

$$Ax + By = C,$$

where A , B , and C are real numbers. If $B \neq 0$, the standard equation can be resolved with respect to y :

$$y = -\frac{A}{B}x + \frac{C}{B}.$$

This is the slope-intercept form.

Suppose that two fixed distinct points $M_1(x_1; y_1)$ and $M_2(x_2; y_2)$ belong to the graph of $y = kx + b$. This means that their coordinates satisfy the equation $y = kx + b$; hence, $y_1 = kx_1 + b$ and $y_2 = kx_2 + b$. If we find the difference $y_2 - y_1$, we get

$$y_2 - y_1 = (kx_2 + b) - (kx_1 + b) = kx_2 + b - kx_1 - b = k(x_2 - x_1)$$

$$y_2 - y_1 = k(x_2 - x_1)$$

$$k = \frac{y_2 - y_1}{x_2 - x_1}.$$

Definition 3 If a straight line passes through two distinct points $M_1(x_1; y_1)$ and $M_2(x_2; y_2)$, then its slope is given by the formula:

$$k = \frac{y_2 - y_1}{x_2 - x_1}.$$

Thus, the slope k of a line $y = kx + b$ equals the tangent of an angle α formed by this line and the positive direction of the x -axis. It is known that

- (A) if $0 < \alpha < \frac{\pi}{2}$ (α is an acute angle), then $\tan \alpha > 0$;
- (B) if $\frac{\pi}{2} < \alpha < \pi$ (α is an obtuse angle), then $\tan \alpha < 0$;
- (C) if $\alpha = 0$, then $\tan \alpha = 0$;
- (D) if $\alpha = \frac{\pi}{2}$, then $\tan \alpha$ does not exist.

Therefore, since $k = \tan \alpha$, we have

- (A) if $k > 0$, then a straight line $y = kx + b$ is increasing;
- (B) if $k < 0$, then a straight line $y = kx + b$ is decreasing;
- (C) if $k = 0$, then a straight line $y = b$ is a horizontal line parallel to the x -axis;
- (D) if k does not exist, then $x = a$ is a vertical line that is not a function.

Each case is illustrated in Figure 3.

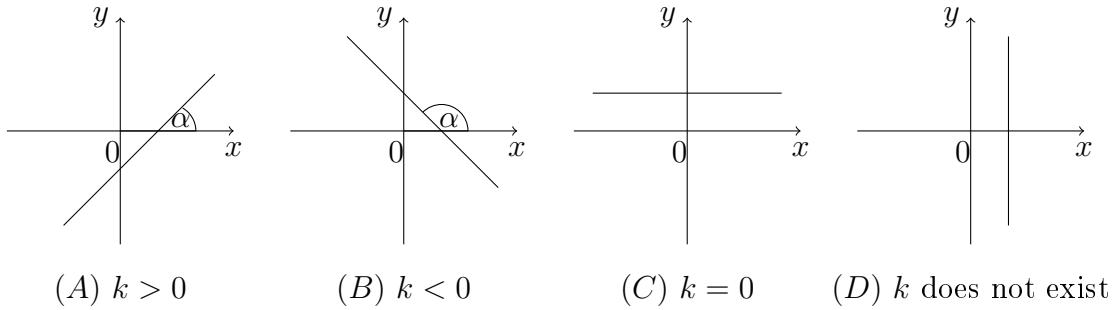


Figure 3

Arguing as above, for a line that passes through an arbitrary point $M(x; y)$ and a fixed point $M_1(x_1; y_1)$, its slope is given by the formula:

$$k = \frac{y - y_1}{x - x_1}.$$

Thus, we write the following definition.

Definition 4 *If a straight line passes through the point $M_1(x_1; y_1)$ and has the slope k , then its equation is given by the formula:*

$$y - y_1 = k(x - x_1).$$

Moreover, if we combine

$$k = \frac{y_2 - y_1}{x_2 - x_1} \text{ and } k = \frac{y - y_1}{x - x_1},$$

we come up with one more definition.

Definition 5 *If a straight line passes through two distinct points $M_1(x_1; y_1)$ and $M_2(x_2; y_2)$, then its equation is given by the formula:*

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}.$$

Parallel and perpendicular lines

Suppose that we have two distinct lines $y_1 = k_1x + b_1$ and $y_2 = k_2x + b_2$. Denote by α and β the angles formed by the lines y_1 and y_2 and the positive direction of the x -axis, respectively. This means that $k_1 = \tan \alpha$ and $k_2 = \tan \beta$.

1. If two non-vertical lines are parallel, they have the same slope.

Since α and β are two corresponding angles formed by the two parallel lines y_1 and y_2 with the x -axis as a transversal line (Figure 4), then $\alpha = \beta$. Therefore, $k_1 = k_2$.

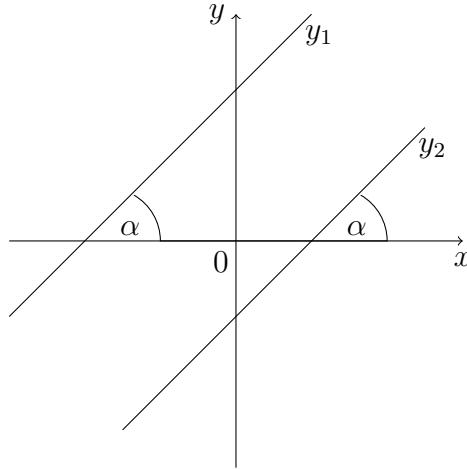


Figure 4

2. If two lines y_1 and y_2 are perpendicular, excluding the case of vertical and horizontal lines, the product of their slopes equals -1 .

To prove this formula we draw a line parallel to the x -axis through the point of intersection of y_1 and y_2 (Figure 5). Since the sum of two interior angles formed by two parallel lines and a transversal line equals π , we have

$$\left(\frac{\pi}{2} - \alpha\right) + \beta = \pi$$

$$\beta = \frac{\pi}{2} + \alpha.$$

We substitute the obtained relation into k_2 and get

$$k_2 = \tan \beta = \tan\left(\frac{\pi}{2} + \alpha\right) = -\cot \alpha = -\frac{1}{\tan \alpha} = -\frac{1}{k_1}.$$

Therefore, $k_1 \cdot k_2 = -1$.

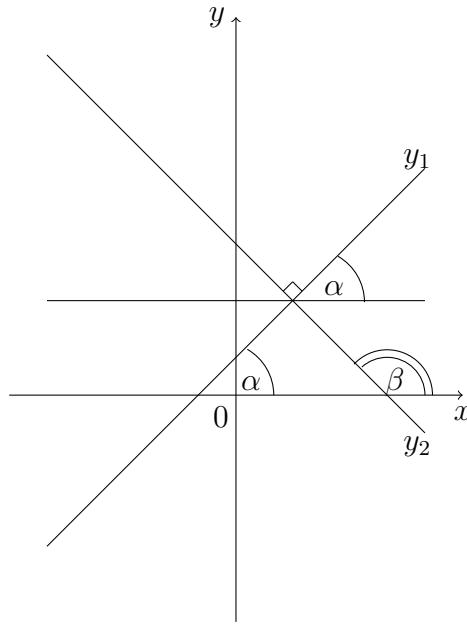


Figure 5

Example 3 Find the equation of the line

1. if it passes through the points $(1; -2)$ and $(-4; 3)$;
2. if it passes through the point $(5; -3)$ and is parallel to the line $3x - 2y = 6$;
3. if it is perpendicular to the line $y = \frac{1}{3}x + \frac{4}{7}$ and has the y -intercept (5) .

Solution 3 1. If we use Definition 5, we get

$$\frac{y + 2}{3 + 2} = \frac{x - 1}{-4 - 1}$$

$$(y + 2) \cdot (-5) = (x - 1) \cdot 5$$

$$y + 2 = -x + 1$$

$$y = -x - 1.$$

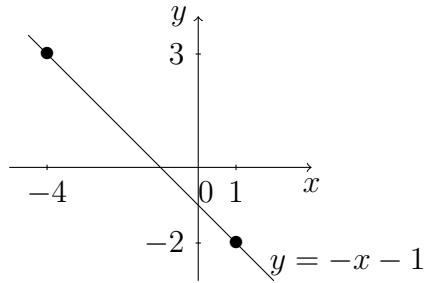


Figure 6

2. If we resolve the equation $3x - 2y = 6$ with respect to y , we get $y = \frac{3}{2}x - 3$.

The slope of this line is $\frac{3}{2}$; this means that the slope of the desired function is also $\frac{3}{2}$. Now, we use Definition 4 and obtain

$$y + 3 = \frac{3}{2}(x - 5)$$

$$y = \frac{3}{2}x - \frac{15}{2} - 3$$

$$y = \frac{3}{2}x - \frac{21}{2}.$$

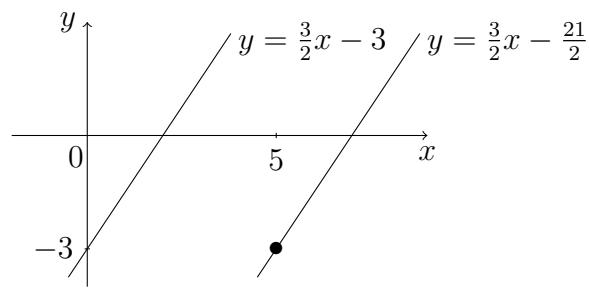


Figure 7

3. The slope of the given line is $\frac{1}{3}$. Since the product of the slopes of two perpendicular lines is (-1) , the slope of the desired line is (-3) . By the condition, the y -intercept is 5. Thus, the desired equation is

$$y = -3x + 5.$$

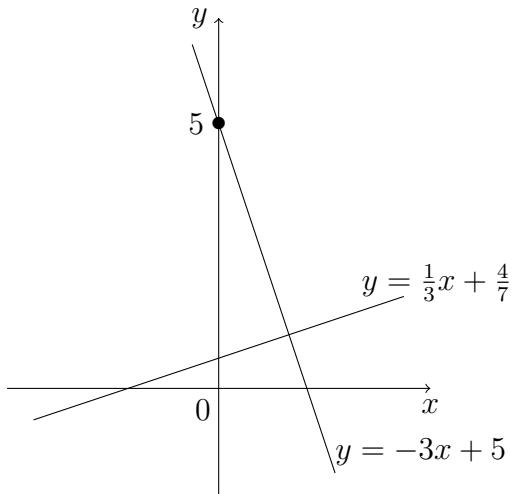


Figure 8

Applications

The supply and demand of an item are usually related to its price. A producer will supply larger quantities of the item at a higher price. However, at a higher price, a consumer will demand less of the item. Thus, in general, the graph of the supply equation $y = S(x)$ increases and the graph of the demand equation $y = D(x)$ decreases. Here, x stands for the quantity and y stands for the price. If we have linear functions for supply and demand curves, they can be written in the form:

$$S(x) = ax + b$$

and

$$D(x) = mx + n,$$

where a , b , m and n are real numbers. Moreover, since the line $S(x)$ increases and the line $D(x)$ decreases, their slopes must be positive ($a > 0$) and negative ($m < 0$), respectively. The price tends to stabilize at the point of intersection of the supply and demand equations. This is *the equilibrium point*, where its first coordinate x is *the equilibrium quantity* and its second coordinate y is *the equilibrium price*.

Example 4 At a price of \$50 per kilo, the annual Kazakhstan supply and demand for tea are 1500 and 1700 tonnes, respectively. When the price rises to \$80, the supply

increases to 1800 tonnes while the demand decreases to 1300 tonnes.

1. Assuming that the price-supply and the price-demand equations are linear, find their equations;
2. Find the equilibrium point for the Kazakhstan tea market.

Solution 4 1. We have that the supply curve $S(x)$ passes through two points $(1500; 50)$ and $(1800; 80)$. If we use Definition 5, we get

$$\frac{S(x) - 50}{80 - 50} = \frac{x - 1500}{1800 - 1500}$$

$$(S(x) - 50) \cdot 300 = (x - 1500) \cdot 30 \quad \text{or} \quad (S(x) - 50) \cdot 10 = x - 1500$$

$$S(x) = \frac{1}{10}x - 100.$$

Similarly, since the demand curve $D(x)$ passes through two points $(1700; 50)$ and $(1300; 80)$, from Definition 5 we have

$$\frac{D(x) - 50}{80 - 50} = \frac{x - 1700}{1300 - 1700}$$

$$(D(x) - 50) \cdot (-400) = (x - 1700) \cdot 30 \quad \text{or} \quad (D(x) - 50) \cdot 40 = (x - 1700) \cdot (-3)$$

$$40 \cdot D(x) = -3x + 7100$$

$$D(x) = -\frac{3}{40}x + \frac{355}{2}.$$

2. To find the equilibrium point, we need to solve the equation $S(x) = D(x)$. Thus,

$$\begin{aligned} \frac{1}{10}x - 100 &= -\frac{3}{40}x + \frac{355}{2} \\ \frac{1}{10}x + \frac{3}{40}x &= \frac{355}{2} + 100 \quad \text{or} \quad \frac{7}{40}x = \frac{555}{2} \\ x &= \frac{555}{2} \cdot \frac{40}{7} = \frac{11100}{7} \approx 1585.7 \text{ tonnes.} \end{aligned}$$

Moreover,

$$S\left(\frac{11100}{7}\right) = D\left(\frac{11100}{7}\right) = \frac{1}{10} \cdot \frac{11100}{7} - 100 = \frac{1110}{7} - \frac{700}{7} = \frac{410}{7} \approx \$58.57 \text{ per kilo.}$$

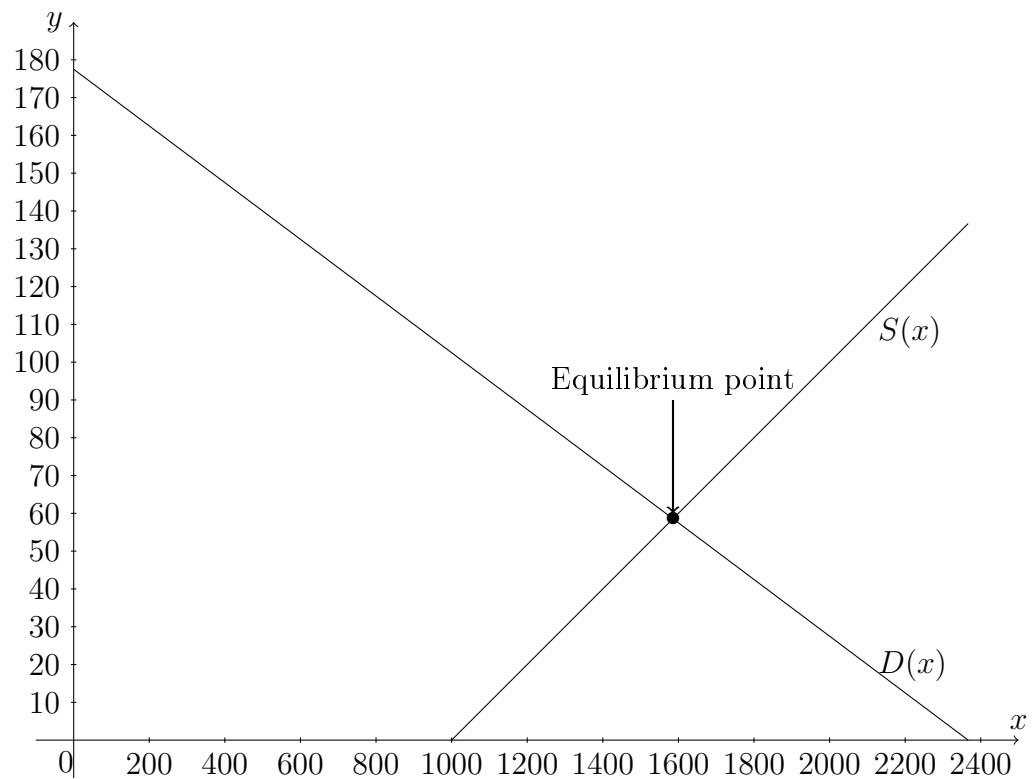


Figure 9