Integration

Antiderivatives and indefinite integrals

Definition $1 A$ function F is an antiderivative of a function $y=f(x)$ if $F^{\prime}(x)=$ $f(x)$.

For example, $F(x)=\sin x$ is an antiderivative of $f(x)=\cos x$ since

$$
(\sin x)^{\prime}=\cos x
$$

If $F(x)$ is an antiderivative of $f(x)$, then $F(x)+C$, where C is a constant, is also an antiderivative of $f(x)$ since $(F(x)+C)^{\prime}=f(x)$.

Definition 2 We use the symbol

$$
\int f(x) d x
$$

called the indefinite integral, to represent the family of all antiderivatives of $f(x)$, and write

$$
\int f(x) d x=F(x)+C
$$

if $F^{\prime}(x)=f(x)$.

The symbol \int is called the integral sign, and the function $f(x)$ is called the integrand. The $d x$ in the integral indicates the variable x of integration.

Since finding of an antiderivative is the inverse operation to finding of a derivative, each rule for derivatives leads to a rule for antiderivatives. Thus, we write the table of main antiderivatives and their properties.
Table of main antiderivatives

1. $\int d x=x+C$;
2. $\int x^{m} d x=\frac{x^{m+1}}{m+1}+C, m \neq-1$;
3. $\int \frac{d x}{x}=\ln |x|+C$;
4. $\int a^{x} d x=\frac{a^{x}}{\ln a}+C$,
$\int e^{x} d x=e^{x}+C ;$
5. $\int \sin x d x=-\cos x+C$;
6. $\int \cos x d x=\sin x+C$;
7. $\int \frac{d x}{\cos x}=\tan x+C$;
8. $\int \frac{d x}{\sin x}=-\cot x+C$;
9. $\int \frac{d x}{1+x^{2}}=\arctan x+C$;
10. $\int \frac{d x}{\sqrt{1-x^{2}}}=\arcsin x+C$.

Properties of antiderivatives

1. $\int(f(x) \pm g(x)) d x=\int f(x) d x \pm \int g(x) d x$;
2. $\int k \cdot f(x) d x=k \int f(x) d x$, where k is a real number.

Methods of integration

There are three methods of integration: direct method, integration by substitution and integration by parts.

Direct method

This method is based on the table of main antiderivatives and their properties.

Example 1 Evaluate the integral $\int\left(\sqrt[3]{x}-7 e^{x}\right) d x$.

Solution 1

$$
\begin{gathered}
\int\left(\sqrt[3]{x}-7 e^{x}\right) d x=\int \sqrt[3]{x} d x-\int 7 e^{x} d x=\int x^{\frac{1}{3}} d x-7 \int e^{x} d x \\
=\frac{x^{\frac{1}{3}+1}}{\frac{1}{3}+1}-7 e^{x}+C=\frac{3 x^{\frac{4}{3}}}{4}-7 e^{x}+C
\end{gathered}
$$

Integration by substitution

This method is based on the introduction of a new variable t such that $x=g(t)$ and $d x=d g(t)=g^{\prime}(t) d t$. Thus,

$$
\int f(x) d x=\int f(g(t)) \cdot g^{\prime}(t) d t
$$

Remark 1 In Remark ?? we point out that the notations $f^{\prime}(x)$ and $\frac{d f(x)}{d x}$ represent the derivative of f. Therefore,

$$
f^{\prime}(x)=\frac{d f(x)}{d x} \text { or } d f(x)=f^{\prime}(x) d x .
$$

Similarly, we obtain the equality $d g(t)=g^{\prime}(t) d t$ used in the substitution technique.

Example 2 Evaluate the integral $\int x \cdot e^{4 x^{2}-1} d x$.

Solution 2 We introduce the following substitution: $t=4 x^{2}-1$. Therefore, $d t=$ $d\left(4 x^{2}-1\right)=8 x \cdot d x$ that gives $x \cdot d x=\frac{1}{8} d t$. Thus,

$$
\int x \cdot e^{4 x^{2}-1} d x=\int e^{t} \frac{1}{8} d t=\frac{1}{8} \int e^{t} d t=\frac{1}{8} e^{t}+C=\frac{1}{8} e^{4 x^{2}-1}+C
$$

Integration by parts

This method is based on the product formula of derivatives. Suppose that $u(x)$ and $v(x)$ are differentiable functions over some interval (a, b). Then $(u \cdot v)^{\prime}=u^{\prime} \cdot v+v^{\prime} \cdot u$. By Remark 1, we write

$$
d(u \cdot v)=(u \cdot v)^{\prime} d x
$$

or
$d(u \cdot v)=\left(u^{\prime} \cdot v+v^{\prime} \cdot u\right) d x=u^{\prime} \cdot v \cdot d x+v^{\prime} \cdot u \cdot d x=v \cdot u^{\prime} \cdot d x+u \cdot v^{\prime} \cdot d x=v \cdot d u+u \cdot d v$.

Therefore,

$$
\begin{aligned}
\int d(u \cdot v)= & \int(v \cdot d u+u \cdot d v)=\int v \cdot d u+\int u \cdot d v \\
& u \cdot v=\int v \cdot d u+\int u \cdot d v \\
& \int u \cdot d v=u \cdot v-\int v \cdot d u
\end{aligned}
$$

The last formula is known as the integration by parts.

Selection of u and $d v$

Recommendations for selecting u and $d v$ for some types of integrals are given below.
Suppose that $P(x)$ is a polynomial and a and b are real numbers.

1. For integrals $\int P(x) \cdot e^{a x} d x, \int P(x) \cdot \sin b x d x$ and $\int P(x) \cdot \cos b x d x$, try $u=P(x)$ and $d v$ is the rest;
2. For integrals $\int P(x) \cdot \ln x d x, \int P(x) \cdot \arcsin x d x, \int P(x) \cdot \arccos x d x$ and $\int P(x) \cdot$ $\arctan x d x$, try $d v=P(x) d x$ and u is the rest;
3. For integrals $\int e^{a x} \cdot \sin b x d x$ and $\int e^{a x} \cdot \cos b x d x$, try $u=e^{a x}$ and $d v$ is the rest.

Example 3 Evaluate the integral $\int(2 x+1) \cdot e^{3 x} d x$.

Solution 3 Let

$$
u=2 x+1 \quad \text { and } \quad d v=e^{3 x} d x
$$

Then

$$
d u=2 d x \quad \text { and } \quad v=\int e^{3 x} d x=\frac{1}{3} e^{3 x}
$$

Substitute the results into the integration by parts formula:

$$
\begin{aligned}
& \int(2 x+1) \cdot e^{3 x} d x=(2 x+1) \cdot \frac{1}{3} e^{3 x}-\int \frac{1}{3} e^{3 x} \cdot 2 d x= \\
& \frac{1}{3}(2 x+1) e^{3 x}-\frac{2}{3} \int e^{3 x} d x=\frac{1}{3}(2 x+1) e^{3 x}-\frac{2}{9} e^{3 x}+C .
\end{aligned}
$$

