1. Use the graphing strategy to analyse the function $f(x)$.

Summarize the following information
a) (max 4 pts) find the domain, intercepts and asymptotes,
b) ($\max 4 \mathrm{pts}$) find the intervals of monotonicity and the local extrema,
c) (max 4 pts) find the intervals of concavity and the inflection points,
d) (max 2 pts) and sketch the graph of f.
I. $f(x)=\frac{x^{3}-4 x}{x^{2}-1}$
II. $f(x)=x^{2}\left(x^{2}-1\right)$
III. $f(x)=\frac{x}{x^{2}-1}$
IV. $f(x)=-2-x e^{-x+2}$
2. (max 6 pts)
I. Find the average value of $f(x)=\sqrt[3]{2-x}$ over the interval $[-5 ; 0]$.
II. Find the average value of $f(x)=x \sqrt{9-x}$ over the interval $[0 ; 9]$.
III. Find the average value of $f(x)=\frac{x}{\left(4-x^{2}\right)^{2}}$ over the interval [1;3].
3. (max 7 pts)
I. Find the area of the region bounded by $f(x)=2 x^{2}-3 x+9$ and $f(x)=x^{2}+3 x+1$.

Graph the region.
II. Find the area of the region bounded by $f(x)=2(x-2)^{2}-10$ and $f(x)=-4 x+4$ for $-1 \leq x \leq 4$. Graph the region.
III. Find the area of the region bounded by $f(x)=(x-1)^{2}+1$ and $f(x)=-3 x-2$ for $-1 \leq$ $x \leq 2$. Graph the region.
4. a) (max 4 pts) Solve the system of linear equations by Cramer's rule and Gaussian elimination method:
I. $\left\{\begin{array}{l}3 x-8 y-z=-25 \\ 2 x-3 y+2 z=-2 \\ -x+2 y-2 z=1\end{array}\right.$
II. $\left\{\begin{array}{l}y+5 x-3 z=-1 \\ z+x+3 y=3 \\ -y-2 x+5 z=8\end{array}\right.$
III. $\left\{\begin{array}{l}y+2 x=z+1 \\ 2 z-y=7-3 x \\ 2 y=8-x-z\end{array}\right.$
IV. $\left\{\begin{array}{l}3 \mathrm{P}_{1}+2 \mathrm{P}_{2}+\mathrm{P}_{3}=28 \\ 2 \mathrm{P}_{1}+4 \mathrm{P}_{2}-\mathrm{P}_{3}=22 \\ 4 \mathrm{P}_{1}+\mathrm{P}_{2}+3 \mathrm{P}_{3}=39\end{array}\right.$
b) (max 4 pts) Solve the matrix equation:
I. $X \cdot\left(\begin{array}{ccc}3 & -2 & 4 \\ 7 & 2 & 3 \\ 10 & -1 & 8\end{array}\right)=\left(\begin{array}{ccc}1 & 2 & 3 \\ 1 & 1 & -1 \\ 1 & 2 & 2\end{array}\right)$
II. $\left(\begin{array}{ccc}-3 & 1 & 2 \\ 1 & 0 & -1 \\ -4 & 3 & 0\end{array}\right) \cdot X=\left(\begin{array}{ccc}-2 & 1 & 2 \\ 1 & -1 & 3 \\ 1 & -1 & 4\end{array}\right)$
III. $X-X \cdot\left(\begin{array}{ll}2 & 3 \\ 3 & 5\end{array}\right)=\left(\begin{array}{cc}-2 & 1 \\ 1 & -2\end{array}\right)$
IV. $\left(\begin{array}{cc}1 & -1 \\ -7 & 3\end{array}\right) \cdot X+X=\left(\begin{array}{cc}6 & 1 \\ 2 & -3\end{array}\right)$
5. (max 5 pts$)$
I. Find the point of intersection of two straight lines and draw them if the first line passes through the points $(1 ;-4)$ and $(2 ; 1)$, while the second line has the slope (-5) and passes through the point $(2 ;-3)$.
II. Find the point of intersection of two straight lines and draw them if the first line is parallel to the line with the equation $2 y-3=5 x+2$ and passes through the origin, while the second line is perpendicular to the line $3 y-2 x=4$ and passes through the point $(4 ; 6)$.
III. Find the point of intersection of two straight lines and draw them if the first line has y intercept (-5) and x-intercept (-3), while the second line passes through the points ($1 ;-2$) and (-5;4).

